Abstract

In this work, we investigate the propagation of designer surface plasmons in planar perfect electric conductor structures that are subject to a parabolic graded-index distribution. A three-dimensional, fully vectorial finite-difference time-domain method was used to engineer a structure with a parabolic effective group index by modulating the dielectric constant of the structure’s square holes. Using this structure in our simulations, the lateral confinement of propagating designer surface plasmons is demonstrated. Focusing, collimation and waveguiding of designer plasmons in the lateral direction is realized by changing the width of the source beam. Our findings contribute to applications of designer surface plasmons that require energy concentration, diffusion, guiding, and beam aperture modification within planar perfect electric conductors.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). http://www.nature.com/nature/journal/ v391/n6668/abs/391667a0.html.
    [CrossRef]
  2. L. Martın-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). http://link.aps.org/abstract/PRL/v86/p1114.
    [CrossRef] [PubMed]
  3. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). http://www.sciencemag.org/cgi/content/abstract/ 305/5685/847.
    [CrossRef] [PubMed]
  4. F. J. Garcia-Vidal, L. Martın-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005). http://www.iop.org/EJ/abstract/ 1464-4258/7/2/013/.
    [CrossRef]
  5. F. J. G. de Abajo and J. J. Saenz, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett.  95, 233,901-1-4 (2005) http://link.aps.org/abstract/PRL/v95/e233901.
  6. M. Qiu, "Photonic band structures for surface waves on structured metal surfaces," Opt. Express 13, 7583-7588 (2005).http://www.opticsexpress.org/abstract.cfm?uri=oe-13-19-7583.
    [CrossRef] [PubMed]
  7. A. Hibbins, B. Evans, and J. Sambles, "Experimental Verification of Designer Surface Plasmons," Science 308, 670-672 (2005) http://www.sciencemag.org/cgi/content/abstract/308/5722/670.
    [CrossRef] [PubMed]
  8. A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, "Waveguide Arrays as Plasmonic Metamaterials: Transmission below Cutoff," Phys. Rev. Lett.  96, 073,904-1-5 (2006). http://link.aps.org/ abstract/PRL/v96/e073904.
    [CrossRef]
  9. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernndez-Domnguez, L. Martn-Moreno, and F. J. Garca-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008) http://www.nature.com/nphoton/journal/v2/n3/abs/nphoton.2007. 301.html.
    [CrossRef]
  10. W. Zhu, A. Agrawal, and A. Nahata, "Planar plasmonic terahertz guided-wave devices," Opt. Express 16, 6216-6226 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-9-6216.
    [CrossRef] [PubMed]
  11. H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004) http://www.opticsinfobase.org/ abstract.cfm?URI=oe-12-6-1004.
    [CrossRef] [PubMed]
  12. F. Miyamaru and M. Hangyo, "Strong enhancement of terahertz transmission for a three-layer heterostructure of metal hole arrays," Phys. Rev. B 72, 035,429-1-5 (2005). http://link.aps.org/abstract/PRB/ v72/e035429.
    [CrossRef]
  13. J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201,306-1-4 (2003). http://link.aps.org/abstract/PRB/ v68/e201306.
    [CrossRef]
  14. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Grating-coupled surface plasmons at microwave frequencies," J. Appl. Phys. 86, 1791-1795 (1999). http://link.aip.org/link/?JAPIAU/86/1791/1.
    [CrossRef]
  15. M. Johnston, "Plasmonics: Superfocusing of terahertz waves," Nat. Photonics 1, 14-15 (2007). http://www. nature.com/nphoton/journal/v1/n1/full/nphoton.2006.60.html.
    [CrossRef]
  16. J. Gomez Rivas, "Terahertz: The art of confinement," Nat. Photonics 2, 137-138 (2008). http://www. nature.com/nphoton/journal/v2/n3/abs/nphoton.2008.12.html.
    [CrossRef]
  17. D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003) http://link.aip.org/link/?APPLAB/83/201/1.
    [CrossRef]
  18. S. A. Maier, S. R. Andrews, L. Martın-Moreno, and F. J. Garcıa-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett.  97, 176,805-1-4 (2006) http://link.aps.org/abstract/PRL/v97/e176805.
    [CrossRef]
  19. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13,021-13,029 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13021.
  20. L. Shen, X. Chen, Y. Zhong, and K. Agarwal, "Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires," Phys. Rev. B 77, 075,408-1-7 (2008) http://link. aps.org/abstract/PRB/v77/e075408.
    [CrossRef]
  21. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Bidirectional subwavelength slit splitter for THz surface plasmons," Opt. Express 15, 18,050-18,055 (2007) http://www.opticsexpress.org/abstract.cfm? URI=oe-15-26-18050.
    [CrossRef]
  22. Z. Ruan and M. Qiu, "Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface," Appl. Phys. Lett.  90, 201,906-1-3 (2007) http://link.aip.org/link/ ?APPLAB/90/201906/1.
    [CrossRef]
  23. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-Bandwidth Slow-Light System Based on THz Plasmonic Graded Metallic Grating Structures," Phys. Rev. Lett.  100, 256,803-1-3 (2008) http://link.aps.org/ abstract/PRL/v100/e256803.
    [CrossRef]
  24. S. S. Oh, S.-G. Lee, J.-E. Kim, and H. Y. Park, "Self-collimation phenomena of surface waves in structured perfect electric conductors and metal surfaces," Opt. Express 15, 1205-1210 (2007) http://www. opticsinfobase.org/abstract.cfm?uri=oe-15-3-1205.
    [CrossRef] [PubMed]
  25. J. Shi, S.-C. Lin, and T. J. Huang, "Wide-band acoustic collimating by phononic crystal composites," Appl. Phy. Lett.  92, 111,901-1-3 (2008).http://link.aip.org/link/?APPLAB/92/111901/1.
    [CrossRef]
  26. Z. Ruan and M. Qiu, "Negative refraction and sub-wavelength imaging through surface waves on structured perfect conductor surfaces," Opt. Express 14, 6172-6177 (2006). http://www.opticsexpress.org/ abstract.cfm?uri=oe-14-13-6172.
    [CrossRef] [PubMed]
  27. S. A. Maier and S. R. Andrews, "Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces," Appl. Phys. Lett.  88, 251,120-1-4 (2006). http://link.aip.org/link/ ?APL/88/251120/1.
    [CrossRef]
  28. C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-index Optics: Fundamentals and Applications (Springer, 2002).
  29. D. T. Moore, "Gradient-index optics: a review," Appl. Opt. 19, 1035-1038 (1980). http://www. opticsinfobase.org/abstract.cfm?URI=ao-19-7-1035.
    [CrossRef] [PubMed]
  30. A. O. Pinchuk and G. C. Schatz, "Metamaterials with gradient negative index of refraction," J. Opt. Soc. Am. A 24, A39-A44 (2007) http://www.opticsinfobase.org/abstract.cfm?URI= josaa-24-10-A39.
    [CrossRef]
  31. H. Kurt and D. S. Citrin, "Graded index photonic crystals," Opt. Express 15, 1240-1253 (2007). http://www. opticsexpress.org/abstract.cfm?uri=oe-15-3-1240.
    [CrossRef] [PubMed]
  32. P. Stellman, K. Tian, and G. Barbastathis, "Design of Gradient Index (GRIN) Lens using Photonic Non-Crystals," in Conference on Lasers and Electro-Optics, p. 1 (2007). http://ieeexplore.ieee.org/search/ wrapper.jsp?arnumber=4453288.
  33. F. S. Roux and I. De Leon, "Planar photonic crystal gradient index lens, simulated with a finite difference time domain method," Phys. Rev. B 74, 113,103-1-4 (2006) http://link.aps.org/abstract/PRB/v74/ e113103.
    [CrossRef]
  34. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2000).
  35. V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals and its applications," J. Chem. Phys. 107, 6756-6769 (1997). http://link.aip.org/link/?JCPSA6/107/6756/1.
    [CrossRef]
  36. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-20-2972.
    [CrossRef] [PubMed]
  37. J. Saxler, J . Gomez Rivas, C . Janke, H . Pellemans, P . Bolıvar, and H . Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155,427-1-4 (2004). http: //link.aps.org/abstract/PRB/v69/e155427.
    [CrossRef]
  38. W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett.  86, 181,108-1-3 (2005) http://link.aip.org/link/ ?APL/86/181108/1.
    [CrossRef]
  39. Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett.  90, 161,130-1-3 (2007) http://link.aip.org/link/?APL/90/161130/1.
    [CrossRef]
  40. F. Lopez-Tejeira, S. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. Gonzalez,  et al., "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys.  3, 324-328 (2007) http://www.nature.com/nphys/journal/v3/n5/abs/nphys584.html.
    [CrossRef]
  41. P. Berini, "Plasmon polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). http://link.aps.org/doi/10.1103/PhysRevB. 61.10484.
    [CrossRef]
  42. B. K Juluri, Y. B Zheng, D. Ahmed, L. Jensen, and T. J. Huang, "Effects of geometry and composition on chargeinduced plasmonic shifts in gold nanoparticles," J. Phys. Chem. C 112, 7309-7312 (2008). http://dx.doi. org/10.1021/jp077346h.
    [CrossRef]

2008

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernndez-Domnguez, L. Martn-Moreno, and F. J. Garca-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008) http://www.nature.com/nphoton/journal/v2/n3/abs/nphoton.2007. 301.html.
[CrossRef]

J. Gomez Rivas, "Terahertz: The art of confinement," Nat. Photonics 2, 137-138 (2008). http://www. nature.com/nphoton/journal/v2/n3/abs/nphoton.2008.12.html.
[CrossRef]

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, "Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires," Phys. Rev. B 77, 075,408-1-7 (2008) http://link. aps.org/abstract/PRB/v77/e075408.
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-Bandwidth Slow-Light System Based on THz Plasmonic Graded Metallic Grating Structures," Phys. Rev. Lett.  100, 256,803-1-3 (2008) http://link.aps.org/ abstract/PRL/v100/e256803.
[CrossRef]

J. Shi, S.-C. Lin, and T. J. Huang, "Wide-band acoustic collimating by phononic crystal composites," Appl. Phy. Lett.  92, 111,901-1-3 (2008).http://link.aip.org/link/?APPLAB/92/111901/1.
[CrossRef]

B. K Juluri, Y. B Zheng, D. Ahmed, L. Jensen, and T. J. Huang, "Effects of geometry and composition on chargeinduced plasmonic shifts in gold nanoparticles," J. Phys. Chem. C 112, 7309-7312 (2008). http://dx.doi. org/10.1021/jp077346h.
[CrossRef]

W. Zhu, A. Agrawal, and A. Nahata, "Planar plasmonic terahertz guided-wave devices," Opt. Express 16, 6216-6226 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-9-6216.
[CrossRef] [PubMed]

2007

S. S. Oh, S.-G. Lee, J.-E. Kim, and H. Y. Park, "Self-collimation phenomena of surface waves in structured perfect electric conductors and metal surfaces," Opt. Express 15, 1205-1210 (2007) http://www. opticsinfobase.org/abstract.cfm?uri=oe-15-3-1205.
[CrossRef] [PubMed]

H. Kurt and D. S. Citrin, "Graded index photonic crystals," Opt. Express 15, 1240-1253 (2007). http://www. opticsexpress.org/abstract.cfm?uri=oe-15-3-1240.
[CrossRef] [PubMed]

A. O. Pinchuk and G. C. Schatz, "Metamaterials with gradient negative index of refraction," J. Opt. Soc. Am. A 24, A39-A44 (2007) http://www.opticsinfobase.org/abstract.cfm?URI= josaa-24-10-A39.
[CrossRef]

M. Johnston, "Plasmonics: Superfocusing of terahertz waves," Nat. Photonics 1, 14-15 (2007). http://www. nature.com/nphoton/journal/v1/n1/full/nphoton.2006.60.html.
[CrossRef]

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett.  90, 161,130-1-3 (2007) http://link.aip.org/link/?APL/90/161130/1.
[CrossRef]

F. Lopez-Tejeira, S. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. Gonzalez,  et al., "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys.  3, 324-328 (2007) http://www.nature.com/nphys/journal/v3/n5/abs/nphys584.html.
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Bidirectional subwavelength slit splitter for THz surface plasmons," Opt. Express 15, 18,050-18,055 (2007) http://www.opticsexpress.org/abstract.cfm? URI=oe-15-26-18050.
[CrossRef]

Z. Ruan and M. Qiu, "Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface," Appl. Phys. Lett.  90, 201,906-1-3 (2007) http://link.aip.org/link/ ?APPLAB/90/201906/1.
[CrossRef]

2006

S. A. Maier, S. R. Andrews, L. Martın-Moreno, and F. J. Garcıa-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett.  97, 176,805-1-4 (2006) http://link.aps.org/abstract/PRL/v97/e176805.
[CrossRef]

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13,021-13,029 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13021.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, "Waveguide Arrays as Plasmonic Metamaterials: Transmission below Cutoff," Phys. Rev. Lett.  96, 073,904-1-5 (2006). http://link.aps.org/ abstract/PRL/v96/e073904.
[CrossRef]

S. A. Maier and S. R. Andrews, "Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces," Appl. Phys. Lett.  88, 251,120-1-4 (2006). http://link.aip.org/link/ ?APL/88/251120/1.
[CrossRef]

F. S. Roux and I. De Leon, "Planar photonic crystal gradient index lens, simulated with a finite difference time domain method," Phys. Rev. B 74, 113,103-1-4 (2006) http://link.aps.org/abstract/PRB/v74/ e113103.
[CrossRef]

Z. Ruan and M. Qiu, "Negative refraction and sub-wavelength imaging through surface waves on structured perfect conductor surfaces," Opt. Express 14, 6172-6177 (2006). http://www.opticsexpress.org/ abstract.cfm?uri=oe-14-13-6172.
[CrossRef] [PubMed]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-20-2972.
[CrossRef] [PubMed]

2005

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett.  86, 181,108-1-3 (2005) http://link.aip.org/link/ ?APL/86/181108/1.
[CrossRef]

F. Miyamaru and M. Hangyo, "Strong enhancement of terahertz transmission for a three-layer heterostructure of metal hole arrays," Phys. Rev. B 72, 035,429-1-5 (2005). http://link.aps.org/abstract/PRB/ v72/e035429.
[CrossRef]

F. J. Garcia-Vidal, L. Martın-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005). http://www.iop.org/EJ/abstract/ 1464-4258/7/2/013/.
[CrossRef]

F. J. G. de Abajo and J. J. Saenz, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett.  95, 233,901-1-4 (2005) http://link.aps.org/abstract/PRL/v95/e233901.

A. Hibbins, B. Evans, and J. Sambles, "Experimental Verification of Designer Surface Plasmons," Science 308, 670-672 (2005) http://www.sciencemag.org/cgi/content/abstract/308/5722/670.
[CrossRef] [PubMed]

M. Qiu, "Photonic band structures for surface waves on structured metal surfaces," Opt. Express 13, 7583-7588 (2005).http://www.opticsexpress.org/abstract.cfm?uri=oe-13-19-7583.
[CrossRef] [PubMed]

2004

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). http://www.sciencemag.org/cgi/content/abstract/ 305/5685/847.
[CrossRef] [PubMed]

H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004) http://www.opticsinfobase.org/ abstract.cfm?URI=oe-12-6-1004.
[CrossRef] [PubMed]

J. Saxler, J . Gomez Rivas, C . Janke, H . Pellemans, P . Bolıvar, and H . Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155,427-1-4 (2004). http: //link.aps.org/abstract/PRB/v69/e155427.
[CrossRef]

2003

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003) http://link.aip.org/link/?APPLAB/83/201/1.
[CrossRef]

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201,306-1-4 (2003). http://link.aps.org/abstract/PRB/ v68/e201306.
[CrossRef]

2001

L. Martın-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). http://link.aps.org/abstract/PRL/v86/p1114.
[CrossRef] [PubMed]

2000

P. Berini, "Plasmon polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). http://link.aps.org/doi/10.1103/PhysRevB. 61.10484.
[CrossRef]

1999

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Grating-coupled surface plasmons at microwave frequencies," J. Appl. Phys. 86, 1791-1795 (1999). http://link.aip.org/link/?JAPIAU/86/1791/1.
[CrossRef]

1998

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). http://www.nature.com/nature/journal/ v391/n6668/abs/391667a0.html.
[CrossRef]

1997

V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals and its applications," J. Chem. Phys. 107, 6756-6769 (1997). http://link.aip.org/link/?JCPSA6/107/6756/1.
[CrossRef]

1980

Agarwal, K.

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, "Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires," Phys. Rev. B 77, 075,408-1-7 (2008) http://link. aps.org/abstract/PRB/v77/e075408.
[CrossRef]

Agrawal, A.

Ahmed, D.

B. K Juluri, Y. B Zheng, D. Ahmed, L. Jensen, and T. J. Huang, "Effects of geometry and composition on chargeinduced plasmonic shifts in gold nanoparticles," J. Phys. Chem. C 112, 7309-7312 (2008). http://dx.doi. org/10.1021/jp077346h.
[CrossRef]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernndez-Domnguez, L. Martn-Moreno, and F. J. Garca-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008) http://www.nature.com/nphoton/journal/v2/n3/abs/nphoton.2007. 301.html.
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martın-Moreno, and F. J. Garcıa-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett.  97, 176,805-1-4 (2006) http://link.aps.org/abstract/PRL/v97/e176805.
[CrossRef]

S. A. Maier and S. R. Andrews, "Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces," Appl. Phys. Lett.  88, 251,120-1-4 (2006). http://link.aip.org/link/ ?APL/88/251120/1.
[CrossRef]

Bartoli, F. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-Bandwidth Slow-Light System Based on THz Plasmonic Graded Metallic Grating Structures," Phys. Rev. Lett.  100, 256,803-1-3 (2008) http://link.aps.org/ abstract/PRL/v100/e256803.
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Bidirectional subwavelength slit splitter for THz surface plasmons," Opt. Express 15, 18,050-18,055 (2007) http://www.opticsexpress.org/abstract.cfm? URI=oe-15-26-18050.
[CrossRef]

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett.  90, 161,130-1-3 (2007) http://link.aip.org/link/?APL/90/161130/1.
[CrossRef]

Basov, D.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003) http://link.aip.org/link/?APPLAB/83/201/1.
[CrossRef]

Berini, P.

P. Berini, "Plasmon polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). http://link.aps.org/doi/10.1103/PhysRevB. 61.10484.
[CrossRef]

Bermel, P.

Bolivar, P

J. Saxler, J . Gomez Rivas, C . Janke, H . Pellemans, P . Bolıvar, and H . Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155,427-1-4 (2004). http: //link.aps.org/abstract/PRB/v69/e155427.
[CrossRef]

Bozhevolnyi, S.

F. Lopez-Tejeira, S. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. Gonzalez,  et al., "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys.  3, 324-328 (2007) http://www.nature.com/nphys/journal/v3/n5/abs/nphys584.html.
[CrossRef]

Burr, G. W.

Cao, H.

Chai, L.

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13,021-13,029 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13021.

Chen, L.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett.  90, 161,130-1-3 (2007) http://link.aip.org/link/?APL/90/161130/1.
[CrossRef]

Chen, X.

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, "Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires," Phys. Rev. B 77, 075,408-1-7 (2008) http://link. aps.org/abstract/PRB/v77/e075408.
[CrossRef]

Chen, Y.

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13,021-13,029 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13021.

Citrin, D. S.

de Abajo, F. J. G.

F. J. G. de Abajo and J. J. Saenz, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett.  95, 233,901-1-4 (2005) http://link.aps.org/abstract/PRL/v95/e233901.

De Leon, I.

F. S. Roux and I. De Leon, "Planar photonic crystal gradient index lens, simulated with a finite difference time domain method," Phys. Rev. B 74, 113,103-1-4 (2006) http://link.aps.org/abstract/PRB/v74/ e113103.
[CrossRef]

Devaux, E.

F. Lopez-Tejeira, S. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. Gonzalez,  et al., "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys.  3, 324-328 (2007) http://www.nature.com/nphys/journal/v3/n5/abs/nphys584.html.
[CrossRef]

Ding, Y. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-Bandwidth Slow-Light System Based on THz Plasmonic Graded Metallic Grating Structures," Phys. Rev. Lett.  100, 256,803-1-3 (2008) http://link.aps.org/ abstract/PRL/v100/e256803.
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Bidirectional subwavelength slit splitter for THz surface plasmons," Opt. Express 15, 18,050-18,055 (2007) http://www.opticsexpress.org/abstract.cfm? URI=oe-15-26-18050.
[CrossRef]

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett.  90, 161,130-1-3 (2007) http://link.aip.org/link/?APL/90/161130/1.
[CrossRef]

Ebbesen, T.

F. Lopez-Tejeira, S. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. Gonzalez,  et al., "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys.  3, 324-328 (2007) http://www.nature.com/nphys/journal/v3/n5/abs/nphys584.html.
[CrossRef]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). http://www.nature.com/nature/journal/ v391/n6668/abs/391667a0.html.
[CrossRef]

Ebbesen, T. W.

L. Martın-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). http://link.aps.org/abstract/PRL/v86/p1114.
[CrossRef] [PubMed]

Evans, B.

A. Hibbins, B. Evans, and J. Sambles, "Experimental Verification of Designer Surface Plasmons," Science 308, 670-672 (2005) http://www.sciencemag.org/cgi/content/abstract/308/5722/670.
[CrossRef] [PubMed]

Fang, N.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003) http://link.aip.org/link/?APPLAB/83/201/1.
[CrossRef]

Farjadpour, A.

Fernndez-Domnguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernndez-Domnguez, L. Martn-Moreno, and F. J. Garca-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008) http://www.nature.com/nphoton/journal/v2/n3/abs/nphoton.2007. 301.html.
[CrossRef]

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-Bandwidth Slow-Light System Based on THz Plasmonic Graded Metallic Grating Structures," Phys. Rev. Lett.  100, 256,803-1-3 (2008) http://link.aps.org/ abstract/PRL/v100/e256803.
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Bidirectional subwavelength slit splitter for THz surface plasmons," Opt. Express 15, 18,050-18,055 (2007) http://www.opticsexpress.org/abstract.cfm? URI=oe-15-26-18050.
[CrossRef]

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett.  90, 161,130-1-3 (2007) http://link.aip.org/link/?APL/90/161130/1.
[CrossRef]

Gan, Q.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-Bandwidth Slow-Light System Based on THz Plasmonic Graded Metallic Grating Structures," Phys. Rev. Lett.  100, 256,803-1-3 (2008) http://link.aps.org/ abstract/PRL/v100/e256803.
[CrossRef]

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett.  90, 161,130-1-3 (2007) http://link.aip.org/link/?APL/90/161130/1.
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Bidirectional subwavelength slit splitter for THz surface plasmons," Opt. Express 15, 18,050-18,055 (2007) http://www.opticsexpress.org/abstract.cfm? URI=oe-15-26-18050.
[CrossRef]

Garca-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernndez-Domnguez, L. Martn-Moreno, and F. J. Garca-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008) http://www.nature.com/nphoton/journal/v2/n3/abs/nphoton.2007. 301.html.
[CrossRef]

Garcia-Vidal, F.

F. Lopez-Tejeira, S. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. Gonzalez,  et al., "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys.  3, 324-328 (2007) http://www.nature.com/nphys/journal/v3/n5/abs/nphys584.html.
[CrossRef]

Garcia-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martın-Moreno, and F. J. Garcıa-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett.  97, 176,805-1-4 (2006) http://link.aps.org/abstract/PRL/v97/e176805.
[CrossRef]

F. J. Garcia-Vidal, L. Martın-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005). http://www.iop.org/EJ/abstract/ 1464-4258/7/2/013/.
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). http://www.sciencemag.org/cgi/content/abstract/ 305/5685/847.
[CrossRef] [PubMed]

L. Martın-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). http://link.aps.org/abstract/PRL/v86/p1114.
[CrossRef] [PubMed]

Ghaemi, H.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). http://www.nature.com/nature/journal/ v391/n6668/abs/391667a0.html.
[CrossRef]

Gomez Rivas, J

J. Saxler, J . Gomez Rivas, C . Janke, H . Pellemans, P . Bolıvar, and H . Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155,427-1-4 (2004). http: //link.aps.org/abstract/PRB/v69/e155427.
[CrossRef]

Gomez Rivas, J.

J. Gomez Rivas, "Terahertz: The art of confinement," Nat. Photonics 2, 137-138 (2008). http://www. nature.com/nphoton/journal/v2/n3/abs/nphoton.2008.12.html.
[CrossRef]

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201,306-1-4 (2003). http://link.aps.org/abstract/PRB/ v68/e201306.
[CrossRef]

Gonzalez, M.

F. Lopez-Tejeira, S. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. Gonzalez,  et al., "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys.  3, 324-328 (2007) http://www.nature.com/nphys/journal/v3/n5/abs/nphys584.html.
[CrossRef]

Guo, B.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett.  90, 161,130-1-3 (2007) http://link.aip.org/link/?APL/90/161130/1.
[CrossRef]

Hangyo, M.

F. Miyamaru and M. Hangyo, "Strong enhancement of terahertz transmission for a three-layer heterostructure of metal hole arrays," Phys. Rev. B 72, 035,429-1-5 (2005). http://link.aps.org/abstract/PRB/ v72/e035429.
[CrossRef]

Haring Bolivar, P.

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201,306-1-4 (2003). http://link.aps.org/abstract/PRB/ v68/e201306.
[CrossRef]

Hibbins, A.

A. Hibbins, B. Evans, and J. Sambles, "Experimental Verification of Designer Surface Plasmons," Science 308, 670-672 (2005) http://www.sciencemag.org/cgi/content/abstract/308/5722/670.
[CrossRef] [PubMed]

Hibbins, A. P.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, "Waveguide Arrays as Plasmonic Metamaterials: Transmission below Cutoff," Phys. Rev. Lett.  96, 073,904-1-5 (2006). http://link.aps.org/ abstract/PRL/v96/e073904.
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Grating-coupled surface plasmons at microwave frequencies," J. Appl. Phys. 86, 1791-1795 (1999). http://link.aip.org/link/?JAPIAU/86/1791/1.
[CrossRef]

Hooper, I. R.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, "Waveguide Arrays as Plasmonic Metamaterials: Transmission below Cutoff," Phys. Rev. Lett.  96, 073,904-1-5 (2006). http://link.aps.org/ abstract/PRL/v96/e073904.
[CrossRef]

Hu, M.

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13,021-13,029 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13021.

Huang, T. J.

J. Shi, S.-C. Lin, and T. J. Huang, "Wide-band acoustic collimating by phononic crystal composites," Appl. Phy. Lett.  92, 111,901-1-3 (2008).http://link.aip.org/link/?APPLAB/92/111901/1.
[CrossRef]

B. K Juluri, Y. B Zheng, D. Ahmed, L. Jensen, and T. J. Huang, "Effects of geometry and composition on chargeinduced plasmonic shifts in gold nanoparticles," J. Phys. Chem. C 112, 7309-7312 (2008). http://dx.doi. org/10.1021/jp077346h.
[CrossRef]

Ibanescu, M.

Janke, C

J. Saxler, J . Gomez Rivas, C . Janke, H . Pellemans, P . Bolıvar, and H . Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155,427-1-4 (2004). http: //link.aps.org/abstract/PRB/v69/e155427.
[CrossRef]

Jensen, L.

B. K Juluri, Y. B Zheng, D. Ahmed, L. Jensen, and T. J. Huang, "Effects of geometry and composition on chargeinduced plasmonic shifts in gold nanoparticles," J. Phys. Chem. C 112, 7309-7312 (2008). http://dx.doi. org/10.1021/jp077346h.
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Johnston, M.

M. Johnston, "Plasmonics: Superfocusing of terahertz waves," Nat. Photonics 1, 14-15 (2007). http://www. nature.com/nphoton/journal/v1/n1/full/nphoton.2006.60.html.
[CrossRef]

Juluri, B. K

B. K Juluri, Y. B Zheng, D. Ahmed, L. Jensen, and T. J. Huang, "Effects of geometry and composition on chargeinduced plasmonic shifts in gold nanoparticles," J. Phys. Chem. C 112, 7309-7312 (2008). http://dx.doi. org/10.1021/jp077346h.
[CrossRef]

Kim, J.-E.

Krenn, J.

F. Lopez-Tejeira, S. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. Gonzalez,  et al., "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys.  3, 324-328 (2007) http://www.nature.com/nphys/journal/v3/n5/abs/nphys584.html.
[CrossRef]

Kurt, H.

Kurz, H

J. Saxler, J . Gomez Rivas, C . Janke, H . Pellemans, P . Bolıvar, and H . Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155,427-1-4 (2004). http: //link.aps.org/abstract/PRB/v69/e155427.
[CrossRef]

Kurz, H.

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201,306-1-4 (2003). http://link.aps.org/abstract/PRB/ v68/e201306.
[CrossRef]

Lawrence, C. R.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Grating-coupled surface plasmons at microwave frequencies," J. Appl. Phys. 86, 1791-1795 (1999). http://link.aip.org/link/?JAPIAU/86/1791/1.
[CrossRef]

Lee, S.-G.

Lezec, H.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). http://www.nature.com/nature/journal/ v391/n6668/abs/391667a0.html.
[CrossRef]

Lezec, H. J.

L. Martın-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). http://link.aps.org/abstract/PRL/v86/p1114.
[CrossRef] [PubMed]

Li, Y.

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13,021-13,029 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13021.

Lin, S.-C.

J. Shi, S.-C. Lin, and T. J. Huang, "Wide-band acoustic collimating by phononic crystal composites," Appl. Phy. Lett.  92, 111,901-1-3 (2008).http://link.aip.org/link/?APPLAB/92/111901/1.
[CrossRef]

Lockyear, M. J.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, "Waveguide Arrays as Plasmonic Metamaterials: Transmission below Cutoff," Phys. Rev. Lett.  96, 073,904-1-5 (2006). http://link.aps.org/ abstract/PRL/v96/e073904.
[CrossRef]

Lopez-Tejeira, F.

F. Lopez-Tejeira, S. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. Gonzalez,  et al., "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys.  3, 324-328 (2007) http://www.nature.com/nphys/journal/v3/n5/abs/nphys584.html.
[CrossRef]

Maier, S. A.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernndez-Domnguez, L. Martn-Moreno, and F. J. Garca-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008) http://www.nature.com/nphoton/journal/v2/n3/abs/nphoton.2007. 301.html.
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martın-Moreno, and F. J. Garcıa-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett.  97, 176,805-1-4 (2006) http://link.aps.org/abstract/PRL/v97/e176805.
[CrossRef]

S. A. Maier and S. R. Andrews, "Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces," Appl. Phys. Lett.  88, 251,120-1-4 (2006). http://link.aip.org/link/ ?APL/88/251120/1.
[CrossRef]

Mandelshtam, V. A.

V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals and its applications," J. Chem. Phys. 107, 6756-6769 (1997). http://link.aip.org/link/?JCPSA6/107/6756/1.
[CrossRef]

Martin-Moreno, L.

F. Lopez-Tejeira, S. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. Gonzalez,  et al., "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys.  3, 324-328 (2007) http://www.nature.com/nphys/journal/v3/n5/abs/nphys584.html.
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martın-Moreno, and F. J. Garcıa-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett.  97, 176,805-1-4 (2006) http://link.aps.org/abstract/PRL/v97/e176805.
[CrossRef]

F. J. Garcia-Vidal, L. Martın-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005). http://www.iop.org/EJ/abstract/ 1464-4258/7/2/013/.
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). http://www.sciencemag.org/cgi/content/abstract/ 305/5685/847.
[CrossRef] [PubMed]

L. Martın-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). http://link.aps.org/abstract/PRL/v86/p1114.
[CrossRef] [PubMed]

Martn-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernndez-Domnguez, L. Martn-Moreno, and F. J. Garca-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008) http://www.nature.com/nphoton/journal/v2/n3/abs/nphoton.2007. 301.html.
[CrossRef]

Miyamaru, F.

F. Miyamaru and M. Hangyo, "Strong enhancement of terahertz transmission for a three-layer heterostructure of metal hole arrays," Phys. Rev. B 72, 035,429-1-5 (2005). http://link.aps.org/abstract/PRB/ v72/e035429.
[CrossRef]

Moore, D. T.

Nahata, A.

Nomura, W.

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett.  86, 181,108-1-3 (2005) http://link.aip.org/link/ ?APL/86/181108/1.
[CrossRef]

Oh, S. S.

Ohtsu, M.

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett.  86, 181,108-1-3 (2005) http://link.aip.org/link/ ?APL/86/181108/1.
[CrossRef]

Padilla, W.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003) http://link.aip.org/link/?APPLAB/83/201/1.
[CrossRef]

Park, H. Y.

Pellemans, H

J. Saxler, J . Gomez Rivas, C . Janke, H . Pellemans, P . Bolıvar, and H . Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155,427-1-4 (2004). http: //link.aps.org/abstract/PRB/v69/e155427.
[CrossRef]

Pellerin, K. M.

L. Martın-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). http://link.aps.org/abstract/PRL/v86/p1114.
[CrossRef] [PubMed]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martın-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005). http://www.iop.org/EJ/abstract/ 1464-4258/7/2/013/.
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). http://www.sciencemag.org/cgi/content/abstract/ 305/5685/847.
[CrossRef] [PubMed]

L. Martın-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). http://link.aps.org/abstract/PRL/v86/p1114.
[CrossRef] [PubMed]

Pinchuk, A. O.

Qiu, M.

Radko, I.

F. Lopez-Tejeira, S. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. Gonzalez,  et al., "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys.  3, 324-328 (2007) http://www.nature.com/nphys/journal/v3/n5/abs/nphys584.html.
[CrossRef]

Rodrigo, S.

F. Lopez-Tejeira, S. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. Gonzalez,  et al., "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys.  3, 324-328 (2007) http://www.nature.com/nphys/journal/v3/n5/abs/nphys584.html.
[CrossRef]

Rodriguez, A.

Roundy, D.

Roux, F. S.

F. S. Roux and I. De Leon, "Planar photonic crystal gradient index lens, simulated with a finite difference time domain method," Phys. Rev. B 74, 113,103-1-4 (2006) http://link.aps.org/abstract/PRB/v74/ e113103.
[CrossRef]

Ruan, Z.

Z. Ruan and M. Qiu, "Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface," Appl. Phys. Lett.  90, 201,906-1-3 (2007) http://link.aip.org/link/ ?APPLAB/90/201906/1.
[CrossRef]

Z. Ruan and M. Qiu, "Negative refraction and sub-wavelength imaging through surface waves on structured perfect conductor surfaces," Opt. Express 14, 6172-6177 (2006). http://www.opticsexpress.org/ abstract.cfm?uri=oe-14-13-6172.
[CrossRef] [PubMed]

Saenz, J. J.

F. J. G. de Abajo and J. J. Saenz, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett.  95, 233,901-1-4 (2005) http://link.aps.org/abstract/PRL/v95/e233901.

Sambles, J.

A. Hibbins, B. Evans, and J. Sambles, "Experimental Verification of Designer Surface Plasmons," Science 308, 670-672 (2005) http://www.sciencemag.org/cgi/content/abstract/308/5722/670.
[CrossRef] [PubMed]

Sambles, J. R.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, "Waveguide Arrays as Plasmonic Metamaterials: Transmission below Cutoff," Phys. Rev. Lett.  96, 073,904-1-5 (2006). http://link.aps.org/ abstract/PRL/v96/e073904.
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Grating-coupled surface plasmons at microwave frequencies," J. Appl. Phys. 86, 1791-1795 (1999). http://link.aip.org/link/?JAPIAU/86/1791/1.
[CrossRef]

Saxler, J.

J. Saxler, J . Gomez Rivas, C . Janke, H . Pellemans, P . Bolıvar, and H . Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155,427-1-4 (2004). http: //link.aps.org/abstract/PRB/v69/e155427.
[CrossRef]

Schatz, G. C.

Schotsch, C.

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201,306-1-4 (2003). http://link.aps.org/abstract/PRB/ v68/e201306.
[CrossRef]

Schultz, S.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003) http://link.aip.org/link/?APPLAB/83/201/1.
[CrossRef]

Shen, L.

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, "Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires," Phys. Rev. B 77, 075,408-1-7 (2008) http://link. aps.org/abstract/PRB/v77/e075408.
[CrossRef]

Shi, J.

J. Shi, S.-C. Lin, and T. J. Huang, "Wide-band acoustic collimating by phononic crystal composites," Appl. Phy. Lett.  92, 111,901-1-3 (2008).http://link.aip.org/link/?APPLAB/92/111901/1.
[CrossRef]

Smith, D.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003) http://link.aip.org/link/?APPLAB/83/201/1.
[CrossRef]

Song, G.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett.  90, 161,130-1-3 (2007) http://link.aip.org/link/?APL/90/161130/1.
[CrossRef]

Song, Z.

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13,021-13,029 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13021.

Sun, C.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003) http://link.aip.org/link/?APPLAB/83/201/1.
[CrossRef]

Taylor, H. S.

V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals and its applications," J. Chem. Phys. 107, 6756-6769 (1997). http://link.aip.org/link/?JCPSA6/107/6756/1.
[CrossRef]

Thio, T.

L. Martın-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). http://link.aps.org/abstract/PRL/v86/p1114.
[CrossRef] [PubMed]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). http://www.nature.com/nature/journal/ v391/n6668/abs/391667a0.html.
[CrossRef]

Wang, C.-Y.

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13,021-13,029 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13021.

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernndez-Domnguez, L. Martn-Moreno, and F. J. Garca-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008) http://www.nature.com/nphoton/journal/v2/n3/abs/nphoton.2007. 301.html.
[CrossRef]

Wolff, P.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). http://www.nature.com/nature/journal/ v391/n6668/abs/391667a0.html.
[CrossRef]

Wu, D.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003) http://link.aip.org/link/?APPLAB/83/201/1.
[CrossRef]

Xing, Q.

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13,021-13,029 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13021.

Yatsui, T.

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett.  86, 181,108-1-3 (2005) http://link.aip.org/link/ ?APL/86/181108/1.
[CrossRef]

Zhang, X.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003) http://link.aip.org/link/?APPLAB/83/201/1.
[CrossRef]

Zhang, Z.

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13,021-13,029 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13021.

Zheng, Y. B

B. K Juluri, Y. B Zheng, D. Ahmed, L. Jensen, and T. J. Huang, "Effects of geometry and composition on chargeinduced plasmonic shifts in gold nanoparticles," J. Phys. Chem. C 112, 7309-7312 (2008). http://dx.doi. org/10.1021/jp077346h.
[CrossRef]

Zhong, Y.

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, "Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires," Phys. Rev. B 77, 075,408-1-7 (2008) http://link. aps.org/abstract/PRB/v77/e075408.
[CrossRef]

Zhu, W.

Appl. Opt.

Appl. Phy. Lett

J. Shi, S.-C. Lin, and T. J. Huang, "Wide-band acoustic collimating by phononic crystal composites," Appl. Phy. Lett.  92, 111,901-1-3 (2008).http://link.aip.org/link/?APPLAB/92/111901/1.
[CrossRef]

Appl. Phys. Lett

S. A. Maier and S. R. Andrews, "Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces," Appl. Phys. Lett.  88, 251,120-1-4 (2006). http://link.aip.org/link/ ?APL/88/251120/1.
[CrossRef]

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett.  86, 181,108-1-3 (2005) http://link.aip.org/link/ ?APL/86/181108/1.
[CrossRef]

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett.  90, 161,130-1-3 (2007) http://link.aip.org/link/?APL/90/161130/1.
[CrossRef]

Z. Ruan and M. Qiu, "Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface," Appl. Phys. Lett.  90, 201,906-1-3 (2007) http://link.aip.org/link/ ?APPLAB/90/201906/1.
[CrossRef]

Appl. Phys. Lett.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003) http://link.aip.org/link/?APPLAB/83/201/1.
[CrossRef]

J. Appl. Phys.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Grating-coupled surface plasmons at microwave frequencies," J. Appl. Phys. 86, 1791-1795 (1999). http://link.aip.org/link/?JAPIAU/86/1791/1.
[CrossRef]

J. Chem. Phys.

V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals and its applications," J. Chem. Phys. 107, 6756-6769 (1997). http://link.aip.org/link/?JCPSA6/107/6756/1.
[CrossRef]

J. Opt. A: Pure Appl. Opt.

F. J. Garcia-Vidal, L. Martın-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005). http://www.iop.org/EJ/abstract/ 1464-4258/7/2/013/.
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. C

B. K Juluri, Y. B Zheng, D. Ahmed, L. Jensen, and T. J. Huang, "Effects of geometry and composition on chargeinduced plasmonic shifts in gold nanoparticles," J. Phys. Chem. C 112, 7309-7312 (2008). http://dx.doi. org/10.1021/jp077346h.
[CrossRef]

Nat. Photonics

M. Johnston, "Plasmonics: Superfocusing of terahertz waves," Nat. Photonics 1, 14-15 (2007). http://www. nature.com/nphoton/journal/v1/n1/full/nphoton.2006.60.html.
[CrossRef]

J. Gomez Rivas, "Terahertz: The art of confinement," Nat. Photonics 2, 137-138 (2008). http://www. nature.com/nphoton/journal/v2/n3/abs/nphoton.2008.12.html.
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernndez-Domnguez, L. Martn-Moreno, and F. J. Garca-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008) http://www.nature.com/nphoton/journal/v2/n3/abs/nphoton.2007. 301.html.
[CrossRef]

Nat. Phys

F. Lopez-Tejeira, S. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. Gonzalez,  et al., "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys.  3, 324-328 (2007) http://www.nature.com/nphys/journal/v3/n5/abs/nphys584.html.
[CrossRef]

Nature

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). http://www.nature.com/nature/journal/ v391/n6668/abs/391667a0.html.
[CrossRef]

Opt. Express

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13,021-13,029 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13021.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Bidirectional subwavelength slit splitter for THz surface plasmons," Opt. Express 15, 18,050-18,055 (2007) http://www.opticsexpress.org/abstract.cfm? URI=oe-15-26-18050.
[CrossRef]

H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004) http://www.opticsinfobase.org/ abstract.cfm?URI=oe-12-6-1004.
[CrossRef] [PubMed]

M. Qiu, "Photonic band structures for surface waves on structured metal surfaces," Opt. Express 13, 7583-7588 (2005).http://www.opticsexpress.org/abstract.cfm?uri=oe-13-19-7583.
[CrossRef] [PubMed]

Z. Ruan and M. Qiu, "Negative refraction and sub-wavelength imaging through surface waves on structured perfect conductor surfaces," Opt. Express 14, 6172-6177 (2006). http://www.opticsexpress.org/ abstract.cfm?uri=oe-14-13-6172.
[CrossRef] [PubMed]

W. Zhu, A. Agrawal, and A. Nahata, "Planar plasmonic terahertz guided-wave devices," Opt. Express 16, 6216-6226 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-9-6216.
[CrossRef] [PubMed]

S. S. Oh, S.-G. Lee, J.-E. Kim, and H. Y. Park, "Self-collimation phenomena of surface waves in structured perfect electric conductors and metal surfaces," Opt. Express 15, 1205-1210 (2007) http://www. opticsinfobase.org/abstract.cfm?uri=oe-15-3-1205.
[CrossRef] [PubMed]

H. Kurt and D. S. Citrin, "Graded index photonic crystals," Opt. Express 15, 1240-1253 (2007). http://www. opticsexpress.org/abstract.cfm?uri=oe-15-3-1240.
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

P. Berini, "Plasmon polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). http://link.aps.org/doi/10.1103/PhysRevB. 61.10484.
[CrossRef]

J. Saxler, J . Gomez Rivas, C . Janke, H . Pellemans, P . Bolıvar, and H . Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155,427-1-4 (2004). http: //link.aps.org/abstract/PRB/v69/e155427.
[CrossRef]

F. S. Roux and I. De Leon, "Planar photonic crystal gradient index lens, simulated with a finite difference time domain method," Phys. Rev. B 74, 113,103-1-4 (2006) http://link.aps.org/abstract/PRB/v74/ e113103.
[CrossRef]

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, "Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires," Phys. Rev. B 77, 075,408-1-7 (2008) http://link. aps.org/abstract/PRB/v77/e075408.
[CrossRef]

F. Miyamaru and M. Hangyo, "Strong enhancement of terahertz transmission for a three-layer heterostructure of metal hole arrays," Phys. Rev. B 72, 035,429-1-5 (2005). http://link.aps.org/abstract/PRB/ v72/e035429.
[CrossRef]

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201,306-1-4 (2003). http://link.aps.org/abstract/PRB/ v68/e201306.
[CrossRef]

Phys. Rev. Lett

F. J. G. de Abajo and J. J. Saenz, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett.  95, 233,901-1-4 (2005) http://link.aps.org/abstract/PRL/v95/e233901.

S. A. Maier, S. R. Andrews, L. Martın-Moreno, and F. J. Garcıa-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett.  97, 176,805-1-4 (2006) http://link.aps.org/abstract/PRL/v97/e176805.
[CrossRef]

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, "Waveguide Arrays as Plasmonic Metamaterials: Transmission below Cutoff," Phys. Rev. Lett.  96, 073,904-1-5 (2006). http://link.aps.org/ abstract/PRL/v96/e073904.
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-Bandwidth Slow-Light System Based on THz Plasmonic Graded Metallic Grating Structures," Phys. Rev. Lett.  100, 256,803-1-3 (2008) http://link.aps.org/ abstract/PRL/v100/e256803.
[CrossRef]

Phys. Rev. Lett.

L. Martın-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). http://link.aps.org/abstract/PRL/v86/p1114.
[CrossRef] [PubMed]

Science

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). http://www.sciencemag.org/cgi/content/abstract/ 305/5685/847.
[CrossRef] [PubMed]

A. Hibbins, B. Evans, and J. Sambles, "Experimental Verification of Designer Surface Plasmons," Science 308, 670-672 (2005) http://www.sciencemag.org/cgi/content/abstract/308/5722/670.
[CrossRef] [PubMed]

Other

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2000).

C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-index Optics: Fundamentals and Applications (Springer, 2002).

P. Stellman, K. Tian, and G. Barbastathis, "Design of Gradient Index (GRIN) Lens using Photonic Non-Crystals," in Conference on Lasers and Electro-Optics, p. 1 (2007). http://ieeexplore.ieee.org/search/ wrapper.jsp?arnumber=4453288.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Principle of a gradient index based lens. A parabolic gradient (green line) of the group index (N) along the transverse direction of the propagation (Y-axis) enables the focusing or collimation of incoming beam (red arrows). A PEC structure with periodic array of square holes with varying (b) size of square holes and (c) dielectric constant, along the transverse direction of propagation (Y-axis) enables the focusing or collimation of DSPs (red arrows).

Fig. 2.
Fig. 2.

Dispersion relations calculated using Eq. 1 for a PEC structure filled with (a) different εh and fixed a= 0.85d, h=1d (b) different a and fixed εh =2, h=1d and (c) different h with fixed a= 0.85d, εh =2.

Fig. 3.
Fig. 3.

(a) Dispersion relations calculated using FDTD for a PEC structure filled with different εh . Inset shows the unit cell. (b) Variation of Ng with εh at an operating frequency of 0.3742 normalized units obtained from FDTD (dotted line) and a best fit to the data (solid line).

Fig. 4.
Fig. 4.

FDTD model of graded PEC structure (a) X-Y view, (b) X-Z view, (c) Y-Z view, and (d) parabolic change of the Ng (line) and distribution of εh (dots) along the transverse direction of propagation (Y-axis) of DSPs. Perfect matching layers (PML) are employed at the boundaries of the simulation domain.

Fig. 5.
Fig. 5.

Propagation of DSPs excited by Gaussian beams with w = 5d, snapshot of Ez field in a) 0.1d above X-Y plane b) X-Z plane, c) Y-Z plane at X=-40d (source), d) Y-Z plane at X=0d (midway) and e) comparison of the magnitude of Ez at X=0d (solid line) and X=-40d (dotted line).

Fig. 6.
Fig. 6.

Propagation of DSPs excited by Gaussian beams with w = 2d, snapshot of Ez field in a) 0.1d above X-Y plane b) X-Z plane, c) Y-Z plane at X=-40d (source), d) Y-Z plane at X=0d (midway) and e) comparison of the magnitude of Ez at X=0d (solid line) and X=-40d (dotted line).

Fig. 7.
Fig. 7.

Propagation of DSPs excited by Gaussian beams with w = 3.5d, snapshot of Ez field in a) 0.1d above X-Y plane b) X-Z plane, c) Y-Z plane at X=-40d (source), d) Y-Z plane at X=0d (midway) and e) comparison of the magnitude of Ez at X=0d (solid line) and X=-40d (dotted line).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k x 2 k o 2 k o = S 2 k o π 2 / a 2 ε h k o 2 ( 1 e 2 q z h 1 + e 2 q z h ) ,
N g = c / d k x = ω c k x [ 1 + 2 A ω 2 ( ω pl 2 ω 2 ) + A ω 4 ( ω pl 2 ω 2 ) 2 4 A ε h h ω 4 c ( ω pl 2 ω 2 ) 3 / 2 ( e 2 h q z 1 e 4 h q z ) ] ,
A = 64 a 4 π 4 d 4 ε h ( 1 e 2 q z h 1 + e 2 q z h ) 2 .
N g 2 ( Y ) = N o 2 [ 1 ( αY ) 2 ]

Metrics