Abstract

We demonstrate low bend loss for tightly bent optical fibers by winding the fiber around a mandrel designed to follow an adiabatic transition path into the bend. Light in the fundamental core-guided mode is smoothly transferred to a single cladding mode of the bent fiber, and back to the core mode as it leaves the bent region again. Design of the transition is based on modeling of the propagation and coupling characteristics of the core and cladding modes, which clearly illustrate the physical processes involved.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Himeno, S. Matsuo, N. Guan, and A. Wada, "Low-bending-loss single-mode fibres for fibre-to-the-home," J. Lightwave Technol. 23, 3494-3499, (2005).
    [CrossRef]
  2. R. C. Gauthier and C. Ross, "Theoretical and experimental considerations for a single-mode fiber-optic bend-type sensor," Appl. Opt. 36, 6264-6273, (1997).
    [CrossRef]
  3. D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Am. 66, 216-220, (1976).
    [CrossRef]
  4. A. W. Snyder and J. D. Love, Optical Waveguide Theory (London, Chapman and Hall, 1983).
  5. A. J. Harris and P. F. Castle, "Bend loss measurements on High numerical aperture single-mode fibres as a function of wavelength and bend radius," J. Lightwave Technol 4, 34-40, (1986).
    [CrossRef]
  6. L. Faustini and G. Martini, "Bend loss in single-mode fibres," J. Lightwave Technol. 15, 671-679, (1997).
    [CrossRef]
  7. J. D. Love and C. Durniak, "Bend Loss, Tapering, and Cladding-Mode Coupling in Single-Mode Fibers," IEEE Photon. Technol. Lett. 19, 1257-1259 (2007).
    [CrossRef]
  8. H. F. Taylor, "Bending Effects in Optical Fibers," J. Lightwave Technol. 2, 617-628 (1984).
    [CrossRef]
  9. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria," IEE. PROC-J. 138, 343-354 (1991).

2007 (1)

J. D. Love and C. Durniak, "Bend Loss, Tapering, and Cladding-Mode Coupling in Single-Mode Fibers," IEEE Photon. Technol. Lett. 19, 1257-1259 (2007).
[CrossRef]

2005 (1)

1997 (2)

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria," IEE. PROC-J. 138, 343-354 (1991).

1986 (1)

A. J. Harris and P. F. Castle, "Bend loss measurements on High numerical aperture single-mode fibres as a function of wavelength and bend radius," J. Lightwave Technol 4, 34-40, (1986).
[CrossRef]

1984 (1)

H. F. Taylor, "Bending Effects in Optical Fibers," J. Lightwave Technol. 2, 617-628 (1984).
[CrossRef]

1976 (1)

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria," IEE. PROC-J. 138, 343-354 (1991).

Castle, P. F.

A. J. Harris and P. F. Castle, "Bend loss measurements on High numerical aperture single-mode fibres as a function of wavelength and bend radius," J. Lightwave Technol 4, 34-40, (1986).
[CrossRef]

Durniak, C.

J. D. Love and C. Durniak, "Bend Loss, Tapering, and Cladding-Mode Coupling in Single-Mode Fibers," IEEE Photon. Technol. Lett. 19, 1257-1259 (2007).
[CrossRef]

Faustini, L.

L. Faustini and G. Martini, "Bend loss in single-mode fibres," J. Lightwave Technol. 15, 671-679, (1997).
[CrossRef]

Gauthier, R. C.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria," IEE. PROC-J. 138, 343-354 (1991).

Guan, N.

Harris, A. J.

A. J. Harris and P. F. Castle, "Bend loss measurements on High numerical aperture single-mode fibres as a function of wavelength and bend radius," J. Lightwave Technol 4, 34-40, (1986).
[CrossRef]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria," IEE. PROC-J. 138, 343-354 (1991).

Himeno, K.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria," IEE. PROC-J. 138, 343-354 (1991).

Love, J. D.

J. D. Love and C. Durniak, "Bend Loss, Tapering, and Cladding-Mode Coupling in Single-Mode Fibers," IEEE Photon. Technol. Lett. 19, 1257-1259 (2007).
[CrossRef]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria," IEE. PROC-J. 138, 343-354 (1991).

Marcuse, D.

Martini, G.

L. Faustini and G. Martini, "Bend loss in single-mode fibres," J. Lightwave Technol. 15, 671-679, (1997).
[CrossRef]

Matsuo, S.

Ross, C.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria," IEE. PROC-J. 138, 343-354 (1991).

Taylor, H. F.

H. F. Taylor, "Bending Effects in Optical Fibers," J. Lightwave Technol. 2, 617-628 (1984).
[CrossRef]

Wada, A.

Appl. Opt. (1)

IEE. PROC-J. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria," IEE. PROC-J. 138, 343-354 (1991).

IEEE Photon. Technol. Lett. (1)

J. D. Love and C. Durniak, "Bend Loss, Tapering, and Cladding-Mode Coupling in Single-Mode Fibers," IEEE Photon. Technol. Lett. 19, 1257-1259 (2007).
[CrossRef]

J. Lightwave Technol (1)

A. J. Harris and P. F. Castle, "Bend loss measurements on High numerical aperture single-mode fibres as a function of wavelength and bend radius," J. Lightwave Technol 4, 34-40, (1986).
[CrossRef]

J. Lightwave Technol. (3)

L. Faustini and G. Martini, "Bend loss in single-mode fibres," J. Lightwave Technol. 15, 671-679, (1997).
[CrossRef]

H. F. Taylor, "Bending Effects in Optical Fibers," J. Lightwave Technol. 2, 617-628 (1984).
[CrossRef]

K. Himeno, S. Matsuo, N. Guan, and A. Wada, "Low-bending-loss single-mode fibres for fibre-to-the-home," J. Lightwave Technol. 23, 3494-3499, (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (London, Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Refractive index profile across the fabricated fiber (blue solid) and the index profile when the fiber is bent at the critical bend point (red dashed). (b) Geometry of a bent fiber, x origin in the fiber axis.

Fig. 2.
Fig. 2.

Effective mode indices of the 4 lowest-order modes as a function of bend curvature 1/R. The dispersive lines correspond to the first few cladding modes, confined to the outer edge of the fiber by the tilted index profile. The anti-crossings correspond to coupling points at which light can be transferred from one mode to another. The mode patterns pointing to certain positions are plots of the z-component of the power flow.

Fig. 3.
Fig. 3.

(a) Bend curvature in the transition path for the Archimedean spiral profile (blue solid) and the optimum profile (red dashed), with the z origin at the critical bend radius point. (b) Rate of change of curvature versus curvature for the Archimedean spiral profile (blue solid) and the optimum profile (red dashed).

Fig. 4.
Fig. 4.

(a) A schematic of the mandrel (b) A photograph of bent coated fiber wound around the mandrel. Light is incident through the fiber from the right.

Fig. 5.
Fig. 5.

Bend loss spectra for fiber bent around the mandrel without (black solid) and with (green dashed) index matching gel, and straight fiber with index matching gel (red dotted)

Fig. 6.
Fig. 6.

Bend loss spectra for fiber bent around the whole mandrel (black solid) and fiber bent just around the middle part of the mandrel (red dashed)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n = n 0 [ 1 + ( 1 + χ ) x / R ]
d ( 1 R ) dz k m 2 δ n 0 [ P 1 P ] 1 2 [ δ n 0 2 m 2 + ( 1 R 1 R 0 ) 2 ] 3 2
1 R ( z ) = 1 R 0 + δ n 0 z m ( z 0 2 z 2 ) 1 2

Metrics