Abstract

Nanocrystal quantum rods (QRs) have been identified as an important potential key to future photonic devices because of their unique two-photon (2P) excitation, large 2P absorption cross section and polarization sensitivity. 2P excitation in a conventional solid photosensitive medium has driven all-optical devices towards three-dimensional (3D) platform architectures such as 3D photonic crystals, optical circuits and optical memory. The development of a QR-sensitized medium should allow for a polarization-dependent change in refractive index. Such a localized polarization control inside the focus can confine the light not only in 3D but also in additional polarization domain. Here we report on the first 2P absorption excitation of QR-dispersed photopolymers and its application to the fabrication of polarization switched waveguides, multi-dimensional optical patterning and optical memory. This fabrication was achieved by a 2P excited energy transfer process between QRs and azo dyes which facilitated 3D localized polarization sensitivity resulting in the control of light in four dimensions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
    [CrossRef]
  2. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, "Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator," Opt. Lett. 26, 1516-1518 (2001).
    [CrossRef]
  3. D. A. Parthenopoulos, and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-845 (1989).
    [CrossRef] [PubMed]
  4. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
    [CrossRef]
  5. E. Walker, and P. M. Rentzepis, "Two-photon technology: a new dimension," Nat. Photonics 2, 406-408 (2008).
    [CrossRef]
  6. J. Serbin, and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals," Adv. Mater. 18, 221-224 (2006).
    [CrossRef]
  7. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
    [CrossRef] [PubMed]
  8. H. Ishitobi, Z. Sekkat, and S. Kawata, "Photo-orientation by multiphoton photoselection," J. Opt. Soc. Am. B 23, 868-873 (2006).
    [CrossRef]
  9. X. Li, J. W. M. Chon, S. Wu, R. A. Evans, and M. Gu, "Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer," Opt. Lett. 32, 277-279 (2007).
    [CrossRef] [PubMed]
  10. E. Rothenberg, Y. Ebenstein, M. Kazes, and U. Banin, "Two-photon fluorescence microscopy of single semiconductor quantum rods: Direct observation of highly polarized nonlinear absorption dipole," J. Phys. Chem. B. 108, 2797-2800 (2004).
    [CrossRef]
  11. K.-T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano. Lett. 7, 761-765 (2007).
    [CrossRef] [PubMed]
  12. A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," Science 271, 933-937 (1996).
    [CrossRef]
  13. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals," Nature 404, 59-61 (2000).
    [CrossRef] [PubMed]
  14. X. Li, J. Van Embden, J. W. M. Chon, and M. Gu, "Enhanced two-photon absorption of CdS nanocrystal rods," to be submitted.
  15. J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, and A. P. Alivisatos, "Linearly polarized emission from colloidal semiconductor quantum rods," Science 292, 2060-2063 (2001).
    [CrossRef] [PubMed]
  16. L. De Boni, J. J. RodriguesJr., D. S. Dos SantosJr., C. H. T. P. Silva, D. T. Balogh, O. N. OliveiraJr., S. C. Zilio, L. Misoguti, and C. R. Mendonca, "Two-photon absorption in azoaromatic compounds," Chem. Phys. Lett. 361, 209-213 (2002).
    [CrossRef]
  17. Z. Sekkat, J. Wood, E. F. Aust, W. Knoll, W. Volksen, and R. D. Miller, "Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain," J. Opt. Soc. Am. B 13, 1713-1724 (1996).
    [CrossRef]
  18. F. Shieh, A. E. Saunders, and B. A. Korgel, "General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures," J. Phys. Chem. B. 109, 8538-8542 (2005).
    [CrossRef]
  19. X. Chen, A. Nazzal, D. Goorskey, M. Xiao, Z. Adam Peng, and X. Peng, "Polarization spectroscopy of single CdSe quantum rods," Phys. Rev. B 64, 2453041-2453044 (2001).
    [CrossRef]
  20. J. R. Lakowicz, Principles of fluorescence spectroscopy (Kluwer Academic/Plenum, New York, 1999).

2008 (1)

E. Walker, and P. M. Rentzepis, "Two-photon technology: a new dimension," Nat. Photonics 2, 406-408 (2008).
[CrossRef]

2007 (3)

K.-T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano. Lett. 7, 761-765 (2007).
[CrossRef] [PubMed]

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

X. Li, J. W. M. Chon, S. Wu, R. A. Evans, and M. Gu, "Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer," Opt. Lett. 32, 277-279 (2007).
[CrossRef] [PubMed]

2006 (2)

H. Ishitobi, Z. Sekkat, and S. Kawata, "Photo-orientation by multiphoton photoselection," J. Opt. Soc. Am. B 23, 868-873 (2006).
[CrossRef]

J. Serbin, and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals," Adv. Mater. 18, 221-224 (2006).
[CrossRef]

2005 (1)

F. Shieh, A. E. Saunders, and B. A. Korgel, "General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures," J. Phys. Chem. B. 109, 8538-8542 (2005).
[CrossRef]

2004 (1)

E. Rothenberg, Y. Ebenstein, M. Kazes, and U. Banin, "Two-photon fluorescence microscopy of single semiconductor quantum rods: Direct observation of highly polarized nonlinear absorption dipole," J. Phys. Chem. B. 108, 2797-2800 (2004).
[CrossRef]

2002 (1)

L. De Boni, J. J. RodriguesJr., D. S. Dos SantosJr., C. H. T. P. Silva, D. T. Balogh, O. N. OliveiraJr., S. C. Zilio, L. Misoguti, and C. R. Mendonca, "Two-photon absorption in azoaromatic compounds," Chem. Phys. Lett. 361, 209-213 (2002).
[CrossRef]

2001 (4)

J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, and A. P. Alivisatos, "Linearly polarized emission from colloidal semiconductor quantum rods," Science 292, 2060-2063 (2001).
[CrossRef] [PubMed]

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, "Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator," Opt. Lett. 26, 1516-1518 (2001).
[CrossRef]

X. Chen, A. Nazzal, D. Goorskey, M. Xiao, Z. Adam Peng, and X. Peng, "Polarization spectroscopy of single CdSe quantum rods," Phys. Rev. B 64, 2453041-2453044 (2001).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

2000 (1)

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals," Nature 404, 59-61 (2000).
[CrossRef] [PubMed]

1999 (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

1996 (2)

1989 (1)

D. A. Parthenopoulos, and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-845 (1989).
[CrossRef] [PubMed]

Adam Peng, Z.

X. Chen, A. Nazzal, D. Goorskey, M. Xiao, Z. Adam Peng, and X. Peng, "Polarization spectroscopy of single CdSe quantum rods," Phys. Rev. B 64, 2453041-2453044 (2001).
[CrossRef]

Alivisatos, A. P.

J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, and A. P. Alivisatos, "Linearly polarized emission from colloidal semiconductor quantum rods," Science 292, 2060-2063 (2001).
[CrossRef] [PubMed]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals," Nature 404, 59-61 (2000).
[CrossRef] [PubMed]

A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," Science 271, 933-937 (1996).
[CrossRef]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Asano, T.

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Aust, E. F.

Balogh, D. T.

L. De Boni, J. J. RodriguesJr., D. S. Dos SantosJr., C. H. T. P. Silva, D. T. Balogh, O. N. OliveiraJr., S. C. Zilio, L. Misoguti, and C. R. Mendonca, "Two-photon absorption in azoaromatic compounds," Chem. Phys. Lett. 361, 209-213 (2002).
[CrossRef]

Banin, U.

E. Rothenberg, Y. Ebenstein, M. Kazes, and U. Banin, "Two-photon fluorescence microscopy of single semiconductor quantum rods: Direct observation of highly polarized nonlinear absorption dipole," J. Phys. Chem. B. 108, 2797-2800 (2004).
[CrossRef]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Bergey, E. J.

K.-T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano. Lett. 7, 761-765 (2007).
[CrossRef] [PubMed]

Chen, X.

X. Chen, A. Nazzal, D. Goorskey, M. Xiao, Z. Adam Peng, and X. Peng, "Polarization spectroscopy of single CdSe quantum rods," Phys. Rev. B 64, 2453041-2453044 (2001).
[CrossRef]

Chon, J. W. M.

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

De Boni, L.

L. De Boni, J. J. RodriguesJr., D. S. Dos SantosJr., C. H. T. P. Silva, D. T. Balogh, O. N. OliveiraJr., S. C. Zilio, L. Misoguti, and C. R. Mendonca, "Two-photon absorption in azoaromatic compounds," Chem. Phys. Lett. 361, 209-213 (2002).
[CrossRef]

Dos Santos, D. S.

L. De Boni, J. J. RodriguesJr., D. S. Dos SantosJr., C. H. T. P. Silva, D. T. Balogh, O. N. OliveiraJr., S. C. Zilio, L. Misoguti, and C. R. Mendonca, "Two-photon absorption in azoaromatic compounds," Chem. Phys. Lett. 361, 209-213 (2002).
[CrossRef]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Ebenstein, Y.

E. Rothenberg, Y. Ebenstein, M. Kazes, and U. Banin, "Two-photon fluorescence microscopy of single semiconductor quantum rods: Direct observation of highly polarized nonlinear absorption dipole," J. Phys. Chem. B. 108, 2797-2800 (2004).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Evans, R. A.

Fujimoto, J. G.

Fujita, M.

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Goorskey, D.

X. Chen, A. Nazzal, D. Goorskey, M. Xiao, Z. Adam Peng, and X. Peng, "Polarization spectroscopy of single CdSe quantum rods," Phys. Rev. B 64, 2453041-2453044 (2001).
[CrossRef]

Gu, M.

Hartl, I.

He, S.

K.-T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano. Lett. 7, 761-765 (2007).
[CrossRef] [PubMed]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Hu, J.

J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, and A. P. Alivisatos, "Linearly polarized emission from colloidal semiconductor quantum rods," Science 292, 2060-2063 (2001).
[CrossRef] [PubMed]

Ippen, E. P.

Ishitobi, H.

Kadavanich, A.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals," Nature 404, 59-61 (2000).
[CrossRef] [PubMed]

Kawata, S.

H. Ishitobi, Z. Sekkat, and S. Kawata, "Photo-orientation by multiphoton photoselection," J. Opt. Soc. Am. B 23, 868-873 (2006).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Kazes, M.

E. Rothenberg, Y. Ebenstein, M. Kazes, and U. Banin, "Two-photon fluorescence microscopy of single semiconductor quantum rods: Direct observation of highly polarized nonlinear absorption dipole," J. Phys. Chem. B. 108, 2797-2800 (2004).
[CrossRef]

Knoll, W.

Korgel, B. A.

F. Shieh, A. E. Saunders, and B. A. Korgel, "General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures," J. Phys. Chem. B. 109, 8538-8542 (2005).
[CrossRef]

Kowalevicz, A. M.

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Lee, H. H.

K.-T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano. Lett. 7, 761-765 (2007).
[CrossRef] [PubMed]

Lee, I.-Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Li, L.-S.

J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, and A. P. Alivisatos, "Linearly polarized emission from colloidal semiconductor quantum rods," Science 292, 2060-2063 (2001).
[CrossRef] [PubMed]

Li, X.

Maitra, A.

K.-T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano. Lett. 7, 761-765 (2007).
[CrossRef] [PubMed]

Manna, L.

J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, and A. P. Alivisatos, "Linearly polarized emission from colloidal semiconductor quantum rods," Science 292, 2060-2063 (2001).
[CrossRef] [PubMed]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals," Nature 404, 59-61 (2000).
[CrossRef] [PubMed]

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Mendonca, C. R.

L. De Boni, J. J. RodriguesJr., D. S. Dos SantosJr., C. H. T. P. Silva, D. T. Balogh, O. N. OliveiraJr., S. C. Zilio, L. Misoguti, and C. R. Mendonca, "Two-photon absorption in azoaromatic compounds," Chem. Phys. Lett. 361, 209-213 (2002).
[CrossRef]

Miller, R. D.

Minoshima, K.

Misoguti, L.

L. De Boni, J. J. RodriguesJr., D. S. Dos SantosJr., C. H. T. P. Silva, D. T. Balogh, O. N. OliveiraJr., S. C. Zilio, L. Misoguti, and C. R. Mendonca, "Two-photon absorption in azoaromatic compounds," Chem. Phys. Lett. 361, 209-213 (2002).
[CrossRef]

Nazzal, A.

X. Chen, A. Nazzal, D. Goorskey, M. Xiao, Z. Adam Peng, and X. Peng, "Polarization spectroscopy of single CdSe quantum rods," Phys. Rev. B 64, 2453041-2453044 (2001).
[CrossRef]

Noda, S.

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Oliveira, O. N.

L. De Boni, J. J. RodriguesJr., D. S. Dos SantosJr., C. H. T. P. Silva, D. T. Balogh, O. N. OliveiraJr., S. C. Zilio, L. Misoguti, and C. R. Mendonca, "Two-photon absorption in azoaromatic compounds," Chem. Phys. Lett. 361, 209-213 (2002).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos, and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-845 (1989).
[CrossRef] [PubMed]

Peng, X.

X. Chen, A. Nazzal, D. Goorskey, M. Xiao, Z. Adam Peng, and X. Peng, "Polarization spectroscopy of single CdSe quantum rods," Phys. Rev. B 64, 2453041-2453044 (2001).
[CrossRef]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals," Nature 404, 59-61 (2000).
[CrossRef] [PubMed]

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Prasad, P. N.

K.-T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano. Lett. 7, 761-765 (2007).
[CrossRef] [PubMed]

Qian, J.

K.-T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano. Lett. 7, 761-765 (2007).
[CrossRef] [PubMed]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Rentzepis, P. M.

E. Walker, and P. M. Rentzepis, "Two-photon technology: a new dimension," Nat. Photonics 2, 406-408 (2008).
[CrossRef]

D. A. Parthenopoulos, and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-845 (1989).
[CrossRef] [PubMed]

Rockel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Rodrigues, J. J.

L. De Boni, J. J. RodriguesJr., D. S. Dos SantosJr., C. H. T. P. Silva, D. T. Balogh, O. N. OliveiraJr., S. C. Zilio, L. Misoguti, and C. R. Mendonca, "Two-photon absorption in azoaromatic compounds," Chem. Phys. Lett. 361, 209-213 (2002).
[CrossRef]

Rothenberg, E.

E. Rothenberg, Y. Ebenstein, M. Kazes, and U. Banin, "Two-photon fluorescence microscopy of single semiconductor quantum rods: Direct observation of highly polarized nonlinear absorption dipole," J. Phys. Chem. B. 108, 2797-2800 (2004).
[CrossRef]

Roy, I.

K.-T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano. Lett. 7, 761-765 (2007).
[CrossRef] [PubMed]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Saunders, A. E.

F. Shieh, A. E. Saunders, and B. A. Korgel, "General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures," J. Phys. Chem. B. 109, 8538-8542 (2005).
[CrossRef]

Scher, E.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals," Nature 404, 59-61 (2000).
[CrossRef] [PubMed]

Sekkat, Z.

Serbin, J.

J. Serbin, and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals," Adv. Mater. 18, 221-224 (2006).
[CrossRef]

Shieh, F.

F. Shieh, A. E. Saunders, and B. A. Korgel, "General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures," J. Phys. Chem. B. 109, 8538-8542 (2005).
[CrossRef]

Silva, C. H. T. P.

L. De Boni, J. J. RodriguesJr., D. S. Dos SantosJr., C. H. T. P. Silva, D. T. Balogh, O. N. OliveiraJr., S. C. Zilio, L. Misoguti, and C. R. Mendonca, "Two-photon absorption in azoaromatic compounds," Chem. Phys. Lett. 361, 209-213 (2002).
[CrossRef]

Sun, H.-B.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Swihart, M. T.

K.-T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano. Lett. 7, 761-765 (2007).
[CrossRef] [PubMed]

Takada, K.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Tanaka, T.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Tramposch, K. M.

K.-T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano. Lett. 7, 761-765 (2007).
[CrossRef] [PubMed]

Volksen, W.

Walker, E.

E. Walker, and P. M. Rentzepis, "Two-photon technology: a new dimension," Nat. Photonics 2, 406-408 (2008).
[CrossRef]

Wang, L.-W.

J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, and A. P. Alivisatos, "Linearly polarized emission from colloidal semiconductor quantum rods," Science 292, 2060-2063 (2001).
[CrossRef] [PubMed]

Wickham, J.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals," Nature 404, 59-61 (2000).
[CrossRef] [PubMed]

Wood, J.

Wu, S.

Wu, X.-L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Xiao, M.

X. Chen, A. Nazzal, D. Goorskey, M. Xiao, Z. Adam Peng, and X. Peng, "Polarization spectroscopy of single CdSe quantum rods," Phys. Rev. B 64, 2453041-2453044 (2001).
[CrossRef]

Yang, W.

J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, and A. P. Alivisatos, "Linearly polarized emission from colloidal semiconductor quantum rods," Science 292, 2060-2063 (2001).
[CrossRef] [PubMed]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals," Nature 404, 59-61 (2000).
[CrossRef] [PubMed]

Yong, K.-T.

K.-T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano. Lett. 7, 761-765 (2007).
[CrossRef] [PubMed]

Zilio, S. C.

L. De Boni, J. J. RodriguesJr., D. S. Dos SantosJr., C. H. T. P. Silva, D. T. Balogh, O. N. OliveiraJr., S. C. Zilio, L. Misoguti, and C. R. Mendonca, "Two-photon absorption in azoaromatic compounds," Chem. Phys. Lett. 361, 209-213 (2002).
[CrossRef]

Adv. Mater. (1)

J. Serbin, and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals," Adv. Mater. 18, 221-224 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

L. De Boni, J. J. RodriguesJr., D. S. Dos SantosJr., C. H. T. P. Silva, D. T. Balogh, O. N. OliveiraJr., S. C. Zilio, L. Misoguti, and C. R. Mendonca, "Two-photon absorption in azoaromatic compounds," Chem. Phys. Lett. 361, 209-213 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B. (2)

F. Shieh, A. E. Saunders, and B. A. Korgel, "General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures," J. Phys. Chem. B. 109, 8538-8542 (2005).
[CrossRef]

E. Rothenberg, Y. Ebenstein, M. Kazes, and U. Banin, "Two-photon fluorescence microscopy of single semiconductor quantum rods: Direct observation of highly polarized nonlinear absorption dipole," J. Phys. Chem. B. 108, 2797-2800 (2004).
[CrossRef]

Nano. Lett. (1)

K.-T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano. Lett. 7, 761-765 (2007).
[CrossRef] [PubMed]

Nat. Photonics (2)

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

E. Walker, and P. M. Rentzepis, "Two-photon technology: a new dimension," Nat. Photonics 2, 406-408 (2008).
[CrossRef]

Nature (3)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals," Nature 404, 59-61 (2000).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

X. Chen, A. Nazzal, D. Goorskey, M. Xiao, Z. Adam Peng, and X. Peng, "Polarization spectroscopy of single CdSe quantum rods," Phys. Rev. B 64, 2453041-2453044 (2001).
[CrossRef]

Science (3)

A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," Science 271, 933-937 (1996).
[CrossRef]

D. A. Parthenopoulos, and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-845 (1989).
[CrossRef] [PubMed]

J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, and A. P. Alivisatos, "Linearly polarized emission from colloidal semiconductor quantum rods," Science 292, 2060-2063 (2001).
[CrossRef] [PubMed]

Other (2)

X. Li, J. Van Embden, J. W. M. Chon, and M. Gu, "Enhanced two-photon absorption of CdS nanocrystal rods," to be submitted.

J. R. Lakowicz, Principles of fluorescence spectroscopy (Kluwer Academic/Plenum, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Principle of polarization modulated energy transfer. (a) Fluorescent QRs and azo dyes are randomly dispersed in the polymer matrix. (b) When a laser beam is parallely polarized to the orientation of QRs efficient 2P excitation and ET occur, which drives the re-orientation of azo dyes to the perpendicular direction to the laser polarization. (c) 2P excitation is shut off when the laser beam is perpendicularly polarized.

Fig. 2.
Fig. 2.

(a). TEM images of as-prepared CdS rods. (b) Absorption and emission spectra of CdS rods as well as sufficient spectral overlapping with the absorption spectra of DR1-EH. (c) The angular-selective excitation of two emission spots of QRs prepared on the glass slide. The normalized FL intensity is plotted as a function of excitation polarization angles.

Fig. 3.
Fig. 3.

(a). Schematic illustration when donors are far away from acceptors, no ET occurs and FL is emitted from QRs. If donors and acceptors are close in the proximity of Förster distance, azo dyes are excited by ET. (b). FL intensity of the QR-dispersed PS sample is plotted as a function of the inter-molecule separation of DR1-EH. The inset is the FL images for different azo dye concentrations. (c). Readout bit intensity of pure ET-driven isomerization induced recording is plotted as a function of the writing power. DIC images are shown in the inset. (d) .The readout bit intensity of pure ET-driven isomerization induced recording at 30 mW in samples blended with azo dye of different concentrations.

Fig. 4.
Fig. 4.

(a). Pure ET-driven angular hole burning absorption in QR-sensitized sample after baselined to DR1-EH to subtract the background. The irradiance intensity is 15 GW/cm 2. Blue squares and red circles are data when the beam is parallely and perpendicularly polarized to the probe beam, respectively. Solid lines are fitting with a linear dependence to give early isomerization rates. (b) Anisotropy evolution of the QR-sensitized sample under linearly polarized illumination. The solid line is the guide for eyes. (c) Anisotropy enhancement of QR-sensitized sample compared to the QD-sensitized sample is plotted as a a function of time. The solid line is the guide for eyes. (d) Plot of ET-preserved polarization ratio of recorded bits as a function of reading polarization angle after baseline the bit intensity at each reading polarization angle with DR1-EH itself. Red circles and blue squares are data from QDs- and QRs-sensitized sample respectively. Solid curves are fitting with cos(4θ).

Fig. 5.
Fig. 5.

Photonic applications of localized polarization control. (a) DIC images of polarization multiplexed patternings. Top-view images of distinct patterns are retrieved by rotating the polarization direction of the reading beam at 45 (b) and 0 (c) degrees, respectively. (d) DIC images of polarization controlled waveguide fabrication. Top-view images of upper and lower arms are readout at a polarization angle of 45 (e) and 0 (f) degrees, respectively. g-l are the demonstration of polarization-multiplexed 4D optical memory. Letters I/J (g/h), E/F (i/j) and C/D (k/l) were recorded in the first, second and third layers, respectively, in the polarization direction of 0 and 45 degrees and retrieved back using corresponding polarized reading beams.

Metrics