Abstract

We report nonlinear measurements on 80μm silicon photonic crystal waveguides that are designed to support dispersionless slow light with group velocities between c/20 and c/50. By launching picosecond pulses into the waveguides and comparing their output spectral signatures, we show how self phase modulation induced spectral broadening is enhanced due to slow light. Comparison of the measurements and numerical simulations of the pulse propagation elucidates the contribution of the various effects that determine the output pulse shape and the waveguide transfer function. In particular, both experimental and simulated results highlight the significant role of two photon absorption and free carriers in the silicon waveguides and their reinforcement in the slow light regime.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008).
    [Crossref]
  2. M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E., and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2052–2059 (2002).
    [Crossref]
  3. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [Crossref] [PubMed]
  4. E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13, 3037–3048 (2005).
    [Crossref] [PubMed]
  5. T.F. Krauss, “Why do we need slow light?,” Nature Photon. 2, 448–449 (2008).
    [Crossref]
  6. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D-Appl. Phys. 40, 2666–2670 (2007).
    [Crossref]
  7. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007).
    [Crossref] [PubMed]
  8. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 0339031–0339034 (2005).
    [Crossref]
  9. L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244, 3528–3539 (2007).
    [Crossref]
  10. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
    [Crossref] [PubMed]
  11. X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
    [Crossref]
  12. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021–2539024 (2001).
    [Crossref]
  13. H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90, 231102 (2007).
    [Crossref]
  14. H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93, 051114 (2008).
    [Crossref]
  15. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
    [Crossref] [PubMed]
  16. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007).
    [Crossref] [PubMed]
  17. J. Li, T. P. White, L. O. Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [Crossref] [PubMed]
  18. L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron Lett. 42, 1454–1455 (2006).
    [Crossref]
  19. J. P. Hugonin, P. Lalanne, T. P. White, and T. E. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32, 2638–2640 (2007).
    [Crossref] [PubMed]
  20. A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
    [Crossref]
  21. L. H. Yin and G. P. Agrawal “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007).
    [Crossref] [PubMed]
  22. N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 0566041–05660416 (2001).
    [Crossref]
  23. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
    [Crossref]
  24. N. Le Thomas, R. Houdré, L. H. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. I. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B 76, 035103 (2007).
    [Crossref]
  25. R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow light losses revealed by adiabatic reduction of group velocity” Phys. Rev. Lett. 101, 103901 (2008).
    [Crossref] [PubMed]
  26. V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum. Electron. 12, 360–370 (2006).
    [Crossref]
  27. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsequioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
    [Crossref]
  28. W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorel, and R. M. De La Rue, “Solitons and spectral broadening in long silicon-on-insulator photonic wires,” Opt. Express 16, 3310–3319 (2008).
    [Crossref] [PubMed]

2008 (7)

T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008).
[Crossref]

T.F. Krauss, “Why do we need slow light?,” Nature Photon. 2, 448–449 (2008).
[Crossref]

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93, 051114 (2008).
[Crossref]

J. Li, T. P. White, L. O. Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref] [PubMed]

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow light losses revealed by adiabatic reduction of group velocity” Phys. Rev. Lett. 101, 103901 (2008).
[Crossref] [PubMed]

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsequioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorel, and R. M. De La Rue, “Solitons and spectral broadening in long silicon-on-insulator photonic wires,” Opt. Express 16, 3310–3319 (2008).
[Crossref] [PubMed]

2007 (9)

N. Le Thomas, R. Houdré, L. H. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. I. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B 76, 035103 (2007).
[Crossref]

J. P. Hugonin, P. Lalanne, T. P. White, and T. E. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32, 2638–2640 (2007).
[Crossref] [PubMed]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[Crossref]

L. H. Yin and G. P. Agrawal “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007).
[Crossref] [PubMed]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90, 231102 (2007).
[Crossref]

S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007).
[Crossref] [PubMed]

L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244, 3528–3539 (2007).
[Crossref]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D-Appl. Phys. 40, 2666–2670 (2007).
[Crossref]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007).
[Crossref] [PubMed]

2006 (4)

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
[Crossref] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[Crossref] [PubMed]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron Lett. 42, 1454–1455 (2006).
[Crossref]

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum. Electron. 12, 360–370 (2006).
[Crossref]

2005 (3)

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 0339031–0339034 (2005).
[Crossref]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13, 3037–3048 (2005).
[Crossref] [PubMed]

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

2002 (1)

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E., and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2052–2059 (2002).
[Crossref]

2001 (3)

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021–2539024 (2001).
[Crossref]

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 0566041–05660416 (2001).
[Crossref]

Agrawal, G. P.

Andreani, L. C.

L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244, 3528–3539 (2007).
[Crossref]

Asakawa, K.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93, 051114 (2008).
[Crossref]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90, 231102 (2007).
[Crossref]

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
[Crossref] [PubMed]

Baba, T.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow light losses revealed by adiabatic reduction of group velocity” Phys. Rev. Lett. 101, 103901 (2008).
[Crossref] [PubMed]

T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008).
[Crossref]

S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007).
[Crossref] [PubMed]

Benton, C.

Bhat, N. A. R.

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 0566041–05660416 (2001).
[Crossref]

Borel, P. I.

N. Le Thomas, R. Houdré, L. H. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. I. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B 76, 035103 (2007).
[Crossref]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[Crossref] [PubMed]

Cassagne, D.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Chong, H.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron Lett. 42, 1454–1455 (2006).
[Crossref]

d’Yerville, M. L.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Ding, W.

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Drouard, E.

E.,

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E., and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2052–2059 (2002).
[Crossref]

Eggleton, B. J.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum. Electron. 12, 360–370 (2006).
[Crossref]

Engelen, R. J. P.

Fage-Pedersen, J.

N. Le Thomas, R. Houdré, L. H. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. I. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B 76, 035103 (2007).
[Crossref]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[Crossref] [PubMed]

Fan, S. H.

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E., and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2052–2059 (2002).
[Crossref]

Faolain, L. O.

Frandsen, L. H.

N. Le Thomas, R. Houdré, L. H. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. I. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B 76, 035103 (2007).
[Crossref]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[Crossref] [PubMed]

Fu, L.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum. Electron. 12, 360–370 (2006).
[Crossref]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Gerace, D.

L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244, 3528–3539 (2007).
[Crossref]

Gnan, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsequioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorel, and R. M. De La Rue, “Solitons and spectral broadening in long silicon-on-insulator photonic wires,” Opt. Express 16, 3310–3319 (2008).
[Crossref] [PubMed]

Gomez-Iglesias, A.

J. Li, T. P. White, L. O. Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref] [PubMed]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[Crossref]

Gorbach, A. V.

Grillet, C.

E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13, 3037–3048 (2005).
[Crossref] [PubMed]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Hattori, H.

Houdré, R.

N. Le Thomas, R. Houdré, L. H. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. I. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B 76, 035103 (2007).
[Crossref]

Hughes, S.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 0339031–0339034 (2005).
[Crossref]

Hugonin, J. P.

Hulst, N. F. van

Ibanescu, M.

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E., and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2052–2059 (2002).
[Crossref]

Ikeda, N.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93, 051114 (2008).
[Crossref]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90, 231102 (2007).
[Crossref]

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
[Crossref] [PubMed]

Inoue, K.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93, 051114 (2008).
[Crossref]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90, 231102 (2007).
[Crossref]

Ishikawa, H.

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90, 231102 (2007).
[Crossref]

Joannopoulos, J. D.

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E., and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2052–2059 (2002).
[Crossref]

Johnson, S. G.

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E., and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2052–2059 (2002).
[Crossref]

Jouanin, C.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Kazmierczak, A.

Knight, J. C.

Korterik, J. P.

Krauss, T. E.

Krauss, T. F.

J. Li, T. P. White, L. O. Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref] [PubMed]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007).
[Crossref] [PubMed]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[Crossref]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D-Appl. Phys. 40, 2666–2670 (2007).
[Crossref]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron Lett. 42, 1454–1455 (2006).
[Crossref]

Krauss, T.F.

T.F. Krauss, “Why do we need slow light?,” Nature Photon. 2, 448–449 (2008).
[Crossref]

Kubo, S.

Kuipers, L.

Lalanne, P.

Lavrinenko, A.

N. Le Thomas, R. Houdré, L. H. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. I. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B 76, 035103 (2007).
[Crossref]

Lavrinenko, A. V.

Letartre, X.

E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13, 3037–3048 (2005).
[Crossref] [PubMed]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Li, J.

Littler, I. C. M.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum. Electron. 12, 360–370 (2006).
[Crossref]

Luther-Davies, B.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum. Electron. 12, 360–370 (2006).
[Crossref]

Macintyre, D. S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsequioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

McIntyre, D.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron Lett. 42, 1454–1455 (2006).
[Crossref]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Michaeli, A.

Miller, A.

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[Crossref]

Mori, D.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow light losses revealed by adiabatic reduction of group velocity” Phys. Rev. Lett. 101, 103901 (2008).
[Crossref] [PubMed]

S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007).
[Crossref] [PubMed]

Moss, D. J.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum. Electron. 12, 360–370 (2006).
[Crossref]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021–2539024 (2001).
[Crossref]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

O’Brien, D.

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[Crossref]

O’Faolain, L.

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[Crossref]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron Lett. 42, 1454–1455 (2006).
[Crossref]

Oda, H.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93, 051114 (2008).
[Crossref]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90, 231102 (2007).
[Crossref]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Ramunno, L.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 0339031–0339034 (2005).
[Crossref]

Rochette, M.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum. Electron. 12, 360–370 (2006).
[Crossref]

Rojo-Romeo, P.

E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13, 3037–3048 (2005).
[Crossref] [PubMed]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Ruan, Y.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum. Electron. 12, 360–370 (2006).
[Crossref]

Rue, R. M. De La

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsequioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorel, and R. M. De La Rue, “Solitons and spectral broadening in long silicon-on-insulator photonic wires,” Opt. Express 16, 3310–3319 (2008).
[Crossref] [PubMed]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron Lett. 42, 1454–1455 (2006).
[Crossref]

Salib, M.

Seassal, C.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Settle, M. D.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021–2539024 (2001).
[Crossref]

Shokooh-Saremi, M.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum. Electron. 12, 360–370 (2006).
[Crossref]

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 0339031–0339034 (2005).
[Crossref]

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 0566041–05660416 (2001).
[Crossref]

Skryabin, D. V.

Soljacic, M.

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E., and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2052–2059 (2002).
[Crossref]

Sorel, M.

W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorel, and R. M. De La Rue, “Solitons and spectral broadening in long silicon-on-insulator photonic wires,” Opt. Express 16, 3310–3319 (2008).
[Crossref] [PubMed]

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsequioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Sugimoto, Y.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93, 051114 (2008).
[Crossref]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90, 231102 (2007).
[Crossref]

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
[Crossref] [PubMed]

Ta’eed, V. G.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum. Electron. 12, 360–370 (2006).
[Crossref]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021–2539024 (2001).
[Crossref]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021–2539024 (2001).
[Crossref]

Tanaka, Y.

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90, 231102 (2007).
[Crossref]

Thomas, N. Le

N. Le Thomas, R. Houdré, L. H. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. I. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B 76, 035103 (2007).
[Crossref]

Thoms, S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsequioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron Lett. 42, 1454–1455 (2006).
[Crossref]

Viktorovitch, P.

E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13, 3037–3048 (2005).
[Crossref] [PubMed]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Wadsworth, W. J.

Watanabe, Y.

White, T. P.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021–2539024 (2001).
[Crossref]

Yamanaka, A.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93, 051114 (2008).
[Crossref]

Yin, L. H.

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021–2539024 (2001).
[Crossref]

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 0339031–0339034 (2005).
[Crossref]

Yuan, X.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron Lett. 42, 1454–1455 (2006).
[Crossref]

Appl. Phys. Lett. (5)

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[Crossref]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90, 231102 (2007).
[Crossref]

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93, 051114 (2008).
[Crossref]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[Crossref]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Electron Lett. (1)

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron Lett. 42, 1454–1455 (2006).
[Crossref]

Electron. Lett. (1)

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsequioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum. Electron. (1)

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum. Electron. 12, 360–370 (2006).
[Crossref]

J. Opt. Soc. Am. B-Opt. Phys. (1)

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E., and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2052–2059 (2002).
[Crossref]

J. Phys. D-Appl. Phys. (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D-Appl. Phys. 40, 2666–2670 (2007).
[Crossref]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Nature Photon. (2)

T.F. Krauss, “Why do we need slow light?,” Nature Photon. 2, 448–449 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. B (1)

N. Le Thomas, R. Houdré, L. H. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. I. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B 76, 035103 (2007).
[Crossref]

Phys. Rev. E (1)

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 0566041–05660416 (2001).
[Crossref]

Phys. Rev. Lett. (3)

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow light losses revealed by adiabatic reduction of group velocity” Phys. Rev. Lett. 101, 103901 (2008).
[Crossref] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 0339031–0339034 (2005).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021–2539024 (2001).
[Crossref]

Phys. Status Solidi B (1)

L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244, 3528–3539 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the silicon waveguide with the 80μm PhC waveguide in the middle. (b) Scanning electron microscope image of a silicon PhC waveguide connected to the tapered ridge access waveguide. (c) Measured group index dispersion of the four engineered PhC waveguides (see Table 1). The inset shows the principle of the engineered PhC waveguide design where the two first rows of holes are shifted toward or away from the waveguide axis.

Fig. 2.
Fig. 2.

Output spectra at different coupled powers of 1.2ps pulses propagating through the reference ridge waveguide (a), the reference 80 μm long nanowire (b) and the slow waveguides with group indices between 20 and 50 (c–f).

Fig. 3.
Fig. 3.

2D plots showing the output pulse spectra versus coupled peak power for 3 slow light waveguides with a group index of 30 (a,d), 40 (b,e) and 50 (c,f) as measured experimentally (a–c) and calculated using the SSFM (d–f).

Fig. 4.
Fig. 4.

(a) Spectral shift of the averaged wavelength of the output pulses versus group index (including the reference nanowire) for a coupled peak power of 15W, from both experiments (red stars) and simulations (dotted red line). The blue dotted line represents the calculated shift in the absence of free carriers. (b) Average output power versus coupled peak power for the different waveguides as derived from the measurements (dots) and the simulations (dotted lines).

Fig. 5.
Fig. 5.

(a) Averaged spectral broadening Δλ=<|λ-λ0|> of the output pulse versus coupled peak power as measured experimentally for the series of waveguides on Fig 2. The values are normalized to the spectral broadening of the pulse at low power. (b) Equivalent figures from the calculations. (c) Normalized averaged spectral broadening <|λ-λ0|> versus group index from both experiments (red stars) and the simulations (dotted lines) in the presence of both TPA and FCs (red line), only TPA (blue line) and no TPA nor FCs (brown line).

Tables (2)

Tables Icon

Table 1. Summary of the parameters of the four dispersion engineered PhC waveguides that are optimized for displaying a dispersionless slow light propagation window. The positive and negative shifts indicated correspond to a displacement perpendicular to the waveguide direction, away from the waveguide axis and toward it, respectively.

Tables Icon

Table 2. Summary of the parameters used in Equations (1) and (2) for silicon around 1550nm, mostly from [21] and [23].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 A + i β 2 2 2 A T 2 β 3 6 3 A T 3 = ( A 2 A ) β TPA 2 A eff A 2 A N c ( σ 2 + 2 k c λ 0 ) A
N c ( t ) t = β TPA 2 h v 0 A eff 2 A 4 N c τ recomb

Metrics