Abstract

The method of lines (MoL) has been developed to study coupling efficiency on hemispherical lens. In this paper, the physical shape of the lens is approximated by cascading a number of straight waveguide segments. The perfectly matched layer (PML) is applied as an absorber for the MoL to reduce numerical reflection in the simulation region. Analysis is done by calculating coupling efficiency at the plane of integration where the coupling efficiency is an overlap integral between laser diode field and fiber field. The result of coupling efficiency in this analysis is compared to the experiment and ABCD matrix. It is found that MoL gives good result accuracy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gangopadhyay and S. Sarkar, “ABCD matrix for reflection and refraction of Gaussian light beams at surfaces of hyperboloid of revolution and efficiency computation for laser diode to single-mode fiber coupling by way of a hyperbolic lens on the fiber tip,” Appl. Opt. 36, 8582–8586 (1997).
    [Crossref]
  2. K. Sambanthan and F. A. Rahman, “Method to improve the coupling efficiency of a hemispherically lensed asymmetric tapered-core fiber,” Opt. Commun. 254, 112–118 (2005).
    [Crossref]
  3. W. L. Emkey and C. A. Jack, “Analysis and evaluation of graded-index fiber-lenses,” J. Lightwave Technol. 12, 1156–1164 (1987).
    [Crossref]
  4. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Topics Quantum Electron. 6, 150–162 (2000).
    [Crossref]
  5. J. Yamauchi, K. Nishio, and H. Nakano, “Analysis of a lensed coreless fiber by a hybrid technique combining FD-BPM and FD-TDM,” J. Lightwave Technol. 16, 465–471 (1998).
    [Crossref]
  6. Z. Wang, B. Mikkelsen, B. Pedersen, K. E. Stubkjaer, and D. S. Olesen, “Coupling between angled-facet amplifiers and tapered lens-ended fibers,” J. Lightwave Technol. 9, 49–55 (1991).
    [Crossref]
  7. Y. He, S. K. Mondal, and F. G. Shi, “Design optimization of wedge-shaped lensed fibers for fiber-laser coupling: Fresnel reflection and non-Gaussian mode effects,” J. Lightwave Technol. 21, 2271–2275 (2003).
    [Crossref]
  8. K. Okamakoto, Fundamental of Optical Waveguides (Academic Press, California, 2000).
  9. T. Wongcharoen, B. M. A. Rahman, M. Rajarajan, and K. T. V. Grattan, “Spot-size conversion using uniform waveguide sections for efficient laser-fiber coupling,” J. Lightwave Technol. 19, 708–716 (2001).
    [Crossref]
  10. M. Rajarajan, B. M. A. Rahman, and K. T. V. Grattan, “Numerical study of spot-size expanders for an efficient OEIC to SMF coupling,” IEEE Photonics Technol. Lett. 10, 1082–1084 (1998).
    [Crossref]
  11. M. N. O. Sadiku and C. N. Obiozor, “A simple introduction to the method of lines,” Int. J. Electr. Eng. Educ.282–296 (2000).
  12. W. Huang and R. R. A. Syms, “Analysis of folded erbium-doped planar waveguide amplifiers by the method of lines,” J. Lightwave Technol. 17, 2658–2664 (1999).
    [Crossref]
  13. H. A. Jamid, M. Z. M. Khan, and M. Ameeruddin, “A compact 90° three-branch beam splitter based on resonant coupling,” J. Lightwave Technol. 23, 3900–3906 (2005).
    [Crossref]
  14. A. Abdullah and M. A. Majid, “Analysis of multi-layer ARROW,” J. Microwaves and Optoelectronics 3, 1–8 (2003).
  15. A. Dreher and R. Pregla, “Analysis of planar waveguides with the method of lines and absorbing boundary conditions,” IEEE Microwave Guided Wave Lett. 1, 138–140 (1991).
    [Crossref]
  16. B. Engquist and A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comp. 31, 629–651 (1977).
    [Crossref]
  17. G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363–370 (1992).
    [Crossref]
  18. D. Weiping and Z. Linchang, “An improvement algorithm of Mur’s First-Order absorbing boundary condition,” in IEEE 1997 International Symposium on Electromagnetic Compatibility, (Austin,USA1997), pp. 592–595.
  19. C. Vassallo and F. Collino, “Highly efficient absorbing boundary conditions for the beam propagation method,” J. Lightwave Technol. 14, 1570–1577 (1996).
    [Crossref]
  20. H. A. Jamid, “Enhanced PML performance using higher order approximation,” IEEE Trans. Microwave Theory Tech. 52, 1166–1174 (2004).
    [Crossref]
  21. M. Z. M. Khan, “Analysis of one and two dimensional bandgap structures using automated method of lines with arbitrary longitudinal discontinuities,” Master dissertation, (King Fahd University of Petroleum and Minerals, Saudi Arabia, 2004).
  22. A. A. Shittu, “Study of periodic waveguides by the finite-difference time domain method and the method of lines,” PhD dissertation, (King Fahd University of Petroleum and Minerals, Saudi Arabia, 1994).
  23. J. John, T. S. M. Maclean, H. Ghafouri-Shiraz, and J. Niblett, “Matching of single-mode fibre to laser diode by microlenses at 1.5 μm wavelength,” IEE Proc.-Optoelectron. 141, 178–184 (1994).
    [Crossref]
  24. W. T. Chen and L. A. Wang, “Out-of-plane optical coupling between an elliptical Gaussian beam and an angled single-mode fiber,” J. Lightwave Technol. 16, 1589–1595 (1998).
    [Crossref]
  25. F. A. Rahman, K. Takahashi, and C. H. Teik, “A scheme to improve the coupling efficiency and working distance between laser diode and single mode fiber,” Opt. Commun. 208, 103–110 (2002).
    [Crossref]
  26. J. Alda, “Laser and Gaussian beam propagation and transformation,” in Encyclopedia of Optical Engineering, R. G. Driggers (Marcel Dekker, New York, 2003), pp. 999–1013.
  27. T. Saitoh, T. Mukai, and O. Mikami, “Theoretical analysis and fabrication of antireflection coatings on laser-diode facets,” J. Lightwave Technol. LT-3, 288–293 (1985).
    [Crossref]
  28. C. A. Edwards, H. M. Presby, and L. W. Stulz, “Effective reflectivity of hyperbolic microlenses,” Appl. Opt. 32, 2099–2103 (1993).
    [Crossref] [PubMed]
  29. H. Kuwahara, Y. Onoda, M. Goto, and T. Nakagami, “Reflected light in the coupling of semiconductor lasers with tapered hemispherical end fibers,” Appl. Opt. 22, 2732–2738 (1983).
    [Crossref] [PubMed]

2005 (2)

K. Sambanthan and F. A. Rahman, “Method to improve the coupling efficiency of a hemispherically lensed asymmetric tapered-core fiber,” Opt. Commun. 254, 112–118 (2005).
[Crossref]

H. A. Jamid, M. Z. M. Khan, and M. Ameeruddin, “A compact 90° three-branch beam splitter based on resonant coupling,” J. Lightwave Technol. 23, 3900–3906 (2005).
[Crossref]

2004 (1)

H. A. Jamid, “Enhanced PML performance using higher order approximation,” IEEE Trans. Microwave Theory Tech. 52, 1166–1174 (2004).
[Crossref]

2003 (2)

2002 (1)

F. A. Rahman, K. Takahashi, and C. H. Teik, “A scheme to improve the coupling efficiency and working distance between laser diode and single mode fiber,” Opt. Commun. 208, 103–110 (2002).
[Crossref]

2001 (1)

2000 (2)

M. N. O. Sadiku and C. N. Obiozor, “A simple introduction to the method of lines,” Int. J. Electr. Eng. Educ.282–296 (2000).

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Topics Quantum Electron. 6, 150–162 (2000).
[Crossref]

1999 (1)

1998 (3)

1997 (1)

1996 (1)

C. Vassallo and F. Collino, “Highly efficient absorbing boundary conditions for the beam propagation method,” J. Lightwave Technol. 14, 1570–1577 (1996).
[Crossref]

1994 (1)

J. John, T. S. M. Maclean, H. Ghafouri-Shiraz, and J. Niblett, “Matching of single-mode fibre to laser diode by microlenses at 1.5 μm wavelength,” IEE Proc.-Optoelectron. 141, 178–184 (1994).
[Crossref]

1993 (1)

1992 (1)

G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363–370 (1992).
[Crossref]

1991 (2)

A. Dreher and R. Pregla, “Analysis of planar waveguides with the method of lines and absorbing boundary conditions,” IEEE Microwave Guided Wave Lett. 1, 138–140 (1991).
[Crossref]

Z. Wang, B. Mikkelsen, B. Pedersen, K. E. Stubkjaer, and D. S. Olesen, “Coupling between angled-facet amplifiers and tapered lens-ended fibers,” J. Lightwave Technol. 9, 49–55 (1991).
[Crossref]

1987 (1)

W. L. Emkey and C. A. Jack, “Analysis and evaluation of graded-index fiber-lenses,” J. Lightwave Technol. 12, 1156–1164 (1987).
[Crossref]

1985 (1)

T. Saitoh, T. Mukai, and O. Mikami, “Theoretical analysis and fabrication of antireflection coatings on laser-diode facets,” J. Lightwave Technol. LT-3, 288–293 (1985).
[Crossref]

1983 (1)

1977 (1)

B. Engquist and A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comp. 31, 629–651 (1977).
[Crossref]

Abdullah, A.

A. Abdullah and M. A. Majid, “Analysis of multi-layer ARROW,” J. Microwaves and Optoelectronics 3, 1–8 (2003).

Alda, J.

J. Alda, “Laser and Gaussian beam propagation and transformation,” in Encyclopedia of Optical Engineering, R. G. Driggers (Marcel Dekker, New York, 2003), pp. 999–1013.

Ameeruddin, M.

Chen, W. T.

Collino, F.

C. Vassallo and F. Collino, “Highly efficient absorbing boundary conditions for the beam propagation method,” J. Lightwave Technol. 14, 1570–1577 (1996).
[Crossref]

Dreher, A.

A. Dreher and R. Pregla, “Analysis of planar waveguides with the method of lines and absorbing boundary conditions,” IEEE Microwave Guided Wave Lett. 1, 138–140 (1991).
[Crossref]

Edwards, C. A.

Emkey, W. L.

W. L. Emkey and C. A. Jack, “Analysis and evaluation of graded-index fiber-lenses,” J. Lightwave Technol. 12, 1156–1164 (1987).
[Crossref]

Engquist, B.

B. Engquist and A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comp. 31, 629–651 (1977).
[Crossref]

Gangopadhyay, S.

Ghafouri-Shiraz, H.

J. John, T. S. M. Maclean, H. Ghafouri-Shiraz, and J. Niblett, “Matching of single-mode fibre to laser diode by microlenses at 1.5 μm wavelength,” IEE Proc.-Optoelectron. 141, 178–184 (1994).
[Crossref]

Gopinath, A.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Topics Quantum Electron. 6, 150–162 (2000).
[Crossref]

Goto, M.

Grattan, K. T. V.

T. Wongcharoen, B. M. A. Rahman, M. Rajarajan, and K. T. V. Grattan, “Spot-size conversion using uniform waveguide sections for efficient laser-fiber coupling,” J. Lightwave Technol. 19, 708–716 (2001).
[Crossref]

M. Rajarajan, B. M. A. Rahman, and K. T. V. Grattan, “Numerical study of spot-size expanders for an efficient OEIC to SMF coupling,” IEEE Photonics Technol. Lett. 10, 1082–1084 (1998).
[Crossref]

Hadley, G. R.

G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363–370 (1992).
[Crossref]

He, Y.

Helfert, S.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Topics Quantum Electron. 6, 150–162 (2000).
[Crossref]

Huang, W.

Jack, C. A.

W. L. Emkey and C. A. Jack, “Analysis and evaluation of graded-index fiber-lenses,” J. Lightwave Technol. 12, 1156–1164 (1987).
[Crossref]

Jamid, H. A.

H. A. Jamid, M. Z. M. Khan, and M. Ameeruddin, “A compact 90° three-branch beam splitter based on resonant coupling,” J. Lightwave Technol. 23, 3900–3906 (2005).
[Crossref]

H. A. Jamid, “Enhanced PML performance using higher order approximation,” IEEE Trans. Microwave Theory Tech. 52, 1166–1174 (2004).
[Crossref]

John, J.

J. John, T. S. M. Maclean, H. Ghafouri-Shiraz, and J. Niblett, “Matching of single-mode fibre to laser diode by microlenses at 1.5 μm wavelength,” IEE Proc.-Optoelectron. 141, 178–184 (1994).
[Crossref]

Khan, M. Z. M.

H. A. Jamid, M. Z. M. Khan, and M. Ameeruddin, “A compact 90° three-branch beam splitter based on resonant coupling,” J. Lightwave Technol. 23, 3900–3906 (2005).
[Crossref]

M. Z. M. Khan, “Analysis of one and two dimensional bandgap structures using automated method of lines with arbitrary longitudinal discontinuities,” Master dissertation, (King Fahd University of Petroleum and Minerals, Saudi Arabia, 2004).

Kuwahara, H.

Linchang, Z.

D. Weiping and Z. Linchang, “An improvement algorithm of Mur’s First-Order absorbing boundary condition,” in IEEE 1997 International Symposium on Electromagnetic Compatibility, (Austin,USA1997), pp. 592–595.

Maclean, T. S. M.

J. John, T. S. M. Maclean, H. Ghafouri-Shiraz, and J. Niblett, “Matching of single-mode fibre to laser diode by microlenses at 1.5 μm wavelength,” IEE Proc.-Optoelectron. 141, 178–184 (1994).
[Crossref]

Majda, A.

B. Engquist and A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comp. 31, 629–651 (1977).
[Crossref]

Majid, M. A.

A. Abdullah and M. A. Majid, “Analysis of multi-layer ARROW,” J. Microwaves and Optoelectronics 3, 1–8 (2003).

Mikami, O.

T. Saitoh, T. Mukai, and O. Mikami, “Theoretical analysis and fabrication of antireflection coatings on laser-diode facets,” J. Lightwave Technol. LT-3, 288–293 (1985).
[Crossref]

Mikkelsen, B.

Z. Wang, B. Mikkelsen, B. Pedersen, K. E. Stubkjaer, and D. S. Olesen, “Coupling between angled-facet amplifiers and tapered lens-ended fibers,” J. Lightwave Technol. 9, 49–55 (1991).
[Crossref]

Mondal, S. K.

Mukai, T.

T. Saitoh, T. Mukai, and O. Mikami, “Theoretical analysis and fabrication of antireflection coatings on laser-diode facets,” J. Lightwave Technol. LT-3, 288–293 (1985).
[Crossref]

Nakagami, T.

Nakano, H.

Niblett, J.

J. John, T. S. M. Maclean, H. Ghafouri-Shiraz, and J. Niblett, “Matching of single-mode fibre to laser diode by microlenses at 1.5 μm wavelength,” IEE Proc.-Optoelectron. 141, 178–184 (1994).
[Crossref]

Nishio, K.

Obiozor, C. N.

M. N. O. Sadiku and C. N. Obiozor, “A simple introduction to the method of lines,” Int. J. Electr. Eng. Educ.282–296 (2000).

Okamakoto, K.

K. Okamakoto, Fundamental of Optical Waveguides (Academic Press, California, 2000).

Olesen, D. S.

Z. Wang, B. Mikkelsen, B. Pedersen, K. E. Stubkjaer, and D. S. Olesen, “Coupling between angled-facet amplifiers and tapered lens-ended fibers,” J. Lightwave Technol. 9, 49–55 (1991).
[Crossref]

Onoda, Y.

Pedersen, B.

Z. Wang, B. Mikkelsen, B. Pedersen, K. E. Stubkjaer, and D. S. Olesen, “Coupling between angled-facet amplifiers and tapered lens-ended fibers,” J. Lightwave Technol. 9, 49–55 (1991).
[Crossref]

Pregla, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Topics Quantum Electron. 6, 150–162 (2000).
[Crossref]

A. Dreher and R. Pregla, “Analysis of planar waveguides with the method of lines and absorbing boundary conditions,” IEEE Microwave Guided Wave Lett. 1, 138–140 (1991).
[Crossref]

Presby, H. M.

Rahman, B. M. A.

T. Wongcharoen, B. M. A. Rahman, M. Rajarajan, and K. T. V. Grattan, “Spot-size conversion using uniform waveguide sections for efficient laser-fiber coupling,” J. Lightwave Technol. 19, 708–716 (2001).
[Crossref]

M. Rajarajan, B. M. A. Rahman, and K. T. V. Grattan, “Numerical study of spot-size expanders for an efficient OEIC to SMF coupling,” IEEE Photonics Technol. Lett. 10, 1082–1084 (1998).
[Crossref]

Rahman, F. A.

K. Sambanthan and F. A. Rahman, “Method to improve the coupling efficiency of a hemispherically lensed asymmetric tapered-core fiber,” Opt. Commun. 254, 112–118 (2005).
[Crossref]

F. A. Rahman, K. Takahashi, and C. H. Teik, “A scheme to improve the coupling efficiency and working distance between laser diode and single mode fiber,” Opt. Commun. 208, 103–110 (2002).
[Crossref]

Rajarajan, M.

T. Wongcharoen, B. M. A. Rahman, M. Rajarajan, and K. T. V. Grattan, “Spot-size conversion using uniform waveguide sections for efficient laser-fiber coupling,” J. Lightwave Technol. 19, 708–716 (2001).
[Crossref]

M. Rajarajan, B. M. A. Rahman, and K. T. V. Grattan, “Numerical study of spot-size expanders for an efficient OEIC to SMF coupling,” IEEE Photonics Technol. Lett. 10, 1082–1084 (1998).
[Crossref]

Sadiku, M. N. O.

M. N. O. Sadiku and C. N. Obiozor, “A simple introduction to the method of lines,” Int. J. Electr. Eng. Educ.282–296 (2000).

Saitoh, T.

T. Saitoh, T. Mukai, and O. Mikami, “Theoretical analysis and fabrication of antireflection coatings on laser-diode facets,” J. Lightwave Technol. LT-3, 288–293 (1985).
[Crossref]

Sambanthan, K.

K. Sambanthan and F. A. Rahman, “Method to improve the coupling efficiency of a hemispherically lensed asymmetric tapered-core fiber,” Opt. Commun. 254, 112–118 (2005).
[Crossref]

Sarkar, S.

Scarmozzino, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Topics Quantum Electron. 6, 150–162 (2000).
[Crossref]

Shi, F. G.

Shittu, A. A.

A. A. Shittu, “Study of periodic waveguides by the finite-difference time domain method and the method of lines,” PhD dissertation, (King Fahd University of Petroleum and Minerals, Saudi Arabia, 1994).

Stubkjaer, K. E.

Z. Wang, B. Mikkelsen, B. Pedersen, K. E. Stubkjaer, and D. S. Olesen, “Coupling between angled-facet amplifiers and tapered lens-ended fibers,” J. Lightwave Technol. 9, 49–55 (1991).
[Crossref]

Stulz, L. W.

Syms, R. R. A.

Takahashi, K.

F. A. Rahman, K. Takahashi, and C. H. Teik, “A scheme to improve the coupling efficiency and working distance between laser diode and single mode fiber,” Opt. Commun. 208, 103–110 (2002).
[Crossref]

Teik, C. H.

F. A. Rahman, K. Takahashi, and C. H. Teik, “A scheme to improve the coupling efficiency and working distance between laser diode and single mode fiber,” Opt. Commun. 208, 103–110 (2002).
[Crossref]

Vassallo, C.

C. Vassallo and F. Collino, “Highly efficient absorbing boundary conditions for the beam propagation method,” J. Lightwave Technol. 14, 1570–1577 (1996).
[Crossref]

Wang, L. A.

Wang, Z.

Z. Wang, B. Mikkelsen, B. Pedersen, K. E. Stubkjaer, and D. S. Olesen, “Coupling between angled-facet amplifiers and tapered lens-ended fibers,” J. Lightwave Technol. 9, 49–55 (1991).
[Crossref]

Weiping, D.

D. Weiping and Z. Linchang, “An improvement algorithm of Mur’s First-Order absorbing boundary condition,” in IEEE 1997 International Symposium on Electromagnetic Compatibility, (Austin,USA1997), pp. 592–595.

Wongcharoen, T.

Yamauchi, J.

Appl. Opt. (3)

IEE Proc.-Optoelectron. (1)

J. John, T. S. M. Maclean, H. Ghafouri-Shiraz, and J. Niblett, “Matching of single-mode fibre to laser diode by microlenses at 1.5 μm wavelength,” IEE Proc.-Optoelectron. 141, 178–184 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363–370 (1992).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Topics Quantum Electron. 6, 150–162 (2000).
[Crossref]

IEEE Microwave Guided Wave Lett. (1)

A. Dreher and R. Pregla, “Analysis of planar waveguides with the method of lines and absorbing boundary conditions,” IEEE Microwave Guided Wave Lett. 1, 138–140 (1991).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Rajarajan, B. M. A. Rahman, and K. T. V. Grattan, “Numerical study of spot-size expanders for an efficient OEIC to SMF coupling,” IEEE Photonics Technol. Lett. 10, 1082–1084 (1998).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

H. A. Jamid, “Enhanced PML performance using higher order approximation,” IEEE Trans. Microwave Theory Tech. 52, 1166–1174 (2004).
[Crossref]

Int. J. Electr. Eng. Educ. (1)

M. N. O. Sadiku and C. N. Obiozor, “A simple introduction to the method of lines,” Int. J. Electr. Eng. Educ.282–296 (2000).

J. Lightwave Technol. (10)

W. Huang and R. R. A. Syms, “Analysis of folded erbium-doped planar waveguide amplifiers by the method of lines,” J. Lightwave Technol. 17, 2658–2664 (1999).
[Crossref]

H. A. Jamid, M. Z. M. Khan, and M. Ameeruddin, “A compact 90° three-branch beam splitter based on resonant coupling,” J. Lightwave Technol. 23, 3900–3906 (2005).
[Crossref]

J. Yamauchi, K. Nishio, and H. Nakano, “Analysis of a lensed coreless fiber by a hybrid technique combining FD-BPM and FD-TDM,” J. Lightwave Technol. 16, 465–471 (1998).
[Crossref]

Z. Wang, B. Mikkelsen, B. Pedersen, K. E. Stubkjaer, and D. S. Olesen, “Coupling between angled-facet amplifiers and tapered lens-ended fibers,” J. Lightwave Technol. 9, 49–55 (1991).
[Crossref]

Y. He, S. K. Mondal, and F. G. Shi, “Design optimization of wedge-shaped lensed fibers for fiber-laser coupling: Fresnel reflection and non-Gaussian mode effects,” J. Lightwave Technol. 21, 2271–2275 (2003).
[Crossref]

W. L. Emkey and C. A. Jack, “Analysis and evaluation of graded-index fiber-lenses,” J. Lightwave Technol. 12, 1156–1164 (1987).
[Crossref]

T. Wongcharoen, B. M. A. Rahman, M. Rajarajan, and K. T. V. Grattan, “Spot-size conversion using uniform waveguide sections for efficient laser-fiber coupling,” J. Lightwave Technol. 19, 708–716 (2001).
[Crossref]

C. Vassallo and F. Collino, “Highly efficient absorbing boundary conditions for the beam propagation method,” J. Lightwave Technol. 14, 1570–1577 (1996).
[Crossref]

T. Saitoh, T. Mukai, and O. Mikami, “Theoretical analysis and fabrication of antireflection coatings on laser-diode facets,” J. Lightwave Technol. LT-3, 288–293 (1985).
[Crossref]

W. T. Chen and L. A. Wang, “Out-of-plane optical coupling between an elliptical Gaussian beam and an angled single-mode fiber,” J. Lightwave Technol. 16, 1589–1595 (1998).
[Crossref]

J. Microwaves and Optoelectronics (1)

A. Abdullah and M. A. Majid, “Analysis of multi-layer ARROW,” J. Microwaves and Optoelectronics 3, 1–8 (2003).

Math. Comp. (1)

B. Engquist and A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comp. 31, 629–651 (1977).
[Crossref]

Opt. Commun. (2)

K. Sambanthan and F. A. Rahman, “Method to improve the coupling efficiency of a hemispherically lensed asymmetric tapered-core fiber,” Opt. Commun. 254, 112–118 (2005).
[Crossref]

F. A. Rahman, K. Takahashi, and C. H. Teik, “A scheme to improve the coupling efficiency and working distance between laser diode and single mode fiber,” Opt. Commun. 208, 103–110 (2002).
[Crossref]

Other (5)

J. Alda, “Laser and Gaussian beam propagation and transformation,” in Encyclopedia of Optical Engineering, R. G. Driggers (Marcel Dekker, New York, 2003), pp. 999–1013.

M. Z. M. Khan, “Analysis of one and two dimensional bandgap structures using automated method of lines with arbitrary longitudinal discontinuities,” Master dissertation, (King Fahd University of Petroleum and Minerals, Saudi Arabia, 2004).

A. A. Shittu, “Study of periodic waveguides by the finite-difference time domain method and the method of lines,” PhD dissertation, (King Fahd University of Petroleum and Minerals, Saudi Arabia, 1994).

K. Okamakoto, Fundamental of Optical Waveguides (Academic Press, California, 2000).

D. Weiping and Z. Linchang, “An improvement algorithm of Mur’s First-Order absorbing boundary condition,” in IEEE 1997 International Symposium on Electromagnetic Compatibility, (Austin,USA1997), pp. 592–595.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Discretization of simulation region.

Fig. 2.
Fig. 2.

Discretization of PML region [20].

Fig. 3.
Fig. 3.

Transformation of lens from a) continuous form to b) discretized form.

Fig. 4.
Fig. 4.

Discretization of the lens in z axis with waveguide discontinuities [22]

Fig. 5.
Fig. 5.

Physical structure of hemispherical lens.

Fig. 6.
Fig. 6.

Coupling efficiency as a function of working distance.

Fig. 7.
Fig. 7.

Spotsize and radius of curvature in x-axis at plane P1.

Fig. 8.
Fig. 8.

Phase image and spotsize of the laser field at the working distance, d = 7 μm

Fig. 9.
Fig. 9.

Coupling efficiency for different radius of lens.

Fig. 10.
Fig. 10.

Effective reflectivity as a function of working distance.

Tables (2)

Tables Icon

Table 1. Simulation parameter for MoL and PML.

Tables Icon

Table 2. Parameter for LD and SMF [23].

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

2 E x z z 2 + 2 E x z x 2 + k 0 2 n ( x ) 2 E x z = 0
2 E z 2 + Q 2 E = 0
E = ( E 1 E 2 E 3 . . E u . . E m ) t u = 1,2 m
Q 2 = 1 Δ x 2 ( 2 1 0 . . . . 0 1 2 1 0 . . 0 0 1 2 1 . . 0 . . . . . . . . . . . . 0 . . 0 1 2 1 0 0 . . 0 1 2 ) + k 0 2 ( n 1 2 0 0 . . . . 0 0 n 2 2 0 . . . . 0 . . . . . . . . . . . . 0 0 . . n u 2 . . 0 . . . . . . . . . . . . 0 0 0 0 . . n m 2 )
x ¯ i = i ( π 2 ) ( p + 1 )
h i = h 0 + j ( ε p ) f ( x ¯ i )
Q 2 = ( a 33 p a 32 p a 31 p . . . . 0 a 34 p 1 a 33 p 1 a 32 p 1 a 31 p 1 . . 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 a 31 p 1 a 32 p 1 a 33 p 1 a 34 p 1 0 0 0 a 31 p a 32 p a 33 p ) + k 0 2 ( n 1 2 0 0 . . . . 0 0 n 2 2 0 . . . . 0 . . . . . . . . . . . . 0 0 . . n u 2 . . 0 . . . . . . . . . . . . 0 0 0 0 . . n m 2 )
( . . . . . . . . . . . . . . . . . . . . a 31 i a 32 i a 33 i a 34 i a 35 i . . . . . . . . . . . . . . . . . . . . ) = ( . . . . q i 1 p i . . . . . . . . q i . . . . 1 0 0 0 0 . . . . q i + 1 + . . . . . . . . q i + 2 + p i + 1 + . . . . ) 1
q i ± = ( 1 ± h i h i 2 2 ! ± h i 3 3 ! h i 4 4 ! )
p i ± = ( 1 ± h i h i 2 2 ! ± h i 3 3 ! h i 4 4 ! 0 1 ± h i h i 2 2 ! ± h i 3 3 ! 0 0 1 ± h i h i 2 2 ! 0 0 0 1 ± h i 0 0 0 0 1 )
Γ i = [ ( I U i 1 U i + 1 ) + ( I + U i 1 U i + 1 ) D i + 1 Γ i + 1 D i + 1 ] ×
[ ( I + U i 1 U i + 1 ) + ( I U i 1 U i + 1 ) D i + 1 Γ i + 1 D i + 1 ] 1
A i + 1 = 0.5 [ ( I + U i + 1 1 U i ) D i A i + ( I U i + 1 1 U i ) B i ]
E l 0 x y = ( 2 π ω ox ω oy ) 1 2 exp ( x 2 ω ox 2 y 2 ω oy 2 )
η = E l x y E f 0 x y * d x d y 2 E l x y 2 d x d y E f 0 x y 2 d x d y
η = η x η y
ω x , y ( z ) = ω ox , oy [ 1 + ( λz π ω ox , oy 2 ) 2 ] 0.5
R x , y ( z ) = z [ 1 + ( λz π ω ox , oy 2 ) 2 ]
ω x = 2 E lx 2 x 2 dx E lx 2 dx [ E lx 2 xdx E lx 2 dx ] 2
1 R x = π ω x 2 E lx 2 dx × [ E lx x E lx * E lx E lx * x ] × [ x E lx 2 xdx E lx 2 dx ] dx
R e = 10 log 10 [ E inc x y E ref x y dxdy 2 E inc x y 2 dxdy 2 ]

Metrics