Abstract

We obtain quantitative measurements of the oscillation amplitude of vibrating objects by using sideband digital holography. The frequency sidebands on the light scattered by the object, shifted by n times the vibration frequency, are selectively detected by heterodyne holography, and images of the object are calculated for different orders n. Orders up to n = 120 have been observed, allowing the measurement of amplitudes of oscillation that are significantly larger than the optical wavelength. Using the positions of the zeros of intensity for each value of n, we reconstruct the shape of vibration the object.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Powell and K. Stetson, "Interferometric vibration analysis by wavefront reconstruction," J. Opt. Soc. Am 55, 1593-1598 (1965).
    [CrossRef]
  2. P. Picart, J. Leval, D. Mounier, and S. Gougeon, "Time-averaged digital holography," Opt. Lett. 28, 1900-1902 (2003).
    [CrossRef] [PubMed]
  3. F. Zhang, J. Valera, I. Yamaguchi, M. Yokota, and G. Mills, "Vibration Analysis by Phase Shifting Digital Holography," Opt. Rev. 11, 297-299 (2004).
    [CrossRef]
  4. A. Asundi and V. Singh, "Time-averaged in-line digital holographic interferometry for vibration analysis," Appl. Opt. 45, 2391-2395 (2006),
    [CrossRef] [PubMed]
  5. V. Singh, J. Miao, Z. Wang, G. Hegde, and A. Asundi, "Dynamic characterization of MEMS diaphragm using time averaged in-line digital holography," Opt. Commun. 280, 285-290 (2007).
    [CrossRef]
  6. N. Demoli and D. Vukicevic, "Detection of hidden stationary deformations of vibrating surfaces by use of timeaveraged digital holographic interferometry," Opt. Lett. 29, 2423-2425 (2004).
    [CrossRef] [PubMed]
  7. N. Demoli, "Real-time monitoring of vibration fringe patterns by optical reconstruction of digital holograms: mode beating detection," Opt. Express 14, 2117-2122 (2006).
    [CrossRef] [PubMed]
  8. C. C. Aleksoff, "Temporally modulated holography," Appl. Opt. 10, 1329-1341 (1971).
    [PubMed]
  9. F. LeClerc, L. Collot, and M. Gross, "Numerical Heterodyne Holography Using 2D Photo-Detector Arrays," Opt. Lett. 25, 716-718 (2000).
  10. F. Pinard, B. Laine, and H. Vach, "Musical quality assessment of clarinet reeds using optical holography," J. Acoust. Soc. Am. 113, 1736-1742 (2003).
    [CrossRef] [PubMed]
  11. M. Facchinetti, X. Boutillon, and A. Constantinescu, "Numerical and experimental modal analysis of the reed and pipe of a clarinet," J. Acoust. Soc. Am. 113, 2874-2883 (2003).
    [CrossRef] [PubMed]
  12. I. Yamaguchi and T. Zhang, "Phase-Shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  13. M. Atlan, M. Gross, and E. Absil, "Accurate phase-shifting digital interferometry," Opt. Lett. 32, 1456-1458 (2007).
    [CrossRef] [PubMed]
  14. E. Cuche, P. Marquet, and C. Depeursinge, "Spatial filtering for zero-order and twin-image elimination in digital off-axis holography," Appl. Opt. 39, 4070-4075 (2000).
    [CrossRef]
  15. M. Gross and M. Atlan, "Digital holography with ultimate sensitivity," Opt. Lett. 32, 909-911 (2007).
    [CrossRef] [PubMed]
  16. M. Gross, M. Atlan, and E. Absil, "Noise and aliases in off-axis and phase-shifting holography," Appl. Opt. 47, 1757-1766 (2008).
    [CrossRef] [PubMed]
  17. U. Schnars and W. Juptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]

2008

2007

M. Gross and M. Atlan, "Digital holography with ultimate sensitivity," Opt. Lett. 32, 909-911 (2007).
[CrossRef] [PubMed]

M. Atlan, M. Gross, and E. Absil, "Accurate phase-shifting digital interferometry," Opt. Lett. 32, 1456-1458 (2007).
[CrossRef] [PubMed]

V. Singh, J. Miao, Z. Wang, G. Hegde, and A. Asundi, "Dynamic characterization of MEMS diaphragm using time averaged in-line digital holography," Opt. Commun. 280, 285-290 (2007).
[CrossRef]

2006

2004

N. Demoli and D. Vukicevic, "Detection of hidden stationary deformations of vibrating surfaces by use of timeaveraged digital holographic interferometry," Opt. Lett. 29, 2423-2425 (2004).
[CrossRef] [PubMed]

F. Zhang, J. Valera, I. Yamaguchi, M. Yokota, and G. Mills, "Vibration Analysis by Phase Shifting Digital Holography," Opt. Rev. 11, 297-299 (2004).
[CrossRef]

2003

F. Pinard, B. Laine, and H. Vach, "Musical quality assessment of clarinet reeds using optical holography," J. Acoust. Soc. Am. 113, 1736-1742 (2003).
[CrossRef] [PubMed]

M. Facchinetti, X. Boutillon, and A. Constantinescu, "Numerical and experimental modal analysis of the reed and pipe of a clarinet," J. Acoust. Soc. Am. 113, 2874-2883 (2003).
[CrossRef] [PubMed]

P. Picart, J. Leval, D. Mounier, and S. Gougeon, "Time-averaged digital holography," Opt. Lett. 28, 1900-1902 (2003).
[CrossRef] [PubMed]

2000

1997

1994

1971

1965

R. Powell and K. Stetson, "Interferometric vibration analysis by wavefront reconstruction," J. Opt. Soc. Am 55, 1593-1598 (1965).
[CrossRef]

Absil, E.

Aleksoff, C. C.

Asundi, A.

V. Singh, J. Miao, Z. Wang, G. Hegde, and A. Asundi, "Dynamic characterization of MEMS diaphragm using time averaged in-line digital holography," Opt. Commun. 280, 285-290 (2007).
[CrossRef]

A. Asundi and V. Singh, "Time-averaged in-line digital holographic interferometry for vibration analysis," Appl. Opt. 45, 2391-2395 (2006),
[CrossRef] [PubMed]

Atlan, M.

Boutillon, X.

M. Facchinetti, X. Boutillon, and A. Constantinescu, "Numerical and experimental modal analysis of the reed and pipe of a clarinet," J. Acoust. Soc. Am. 113, 2874-2883 (2003).
[CrossRef] [PubMed]

Collot, L.

Constantinescu, A.

M. Facchinetti, X. Boutillon, and A. Constantinescu, "Numerical and experimental modal analysis of the reed and pipe of a clarinet," J. Acoust. Soc. Am. 113, 2874-2883 (2003).
[CrossRef] [PubMed]

Cuche, E.

Demoli, N.

Depeursinge, C.

Facchinetti, M.

M. Facchinetti, X. Boutillon, and A. Constantinescu, "Numerical and experimental modal analysis of the reed and pipe of a clarinet," J. Acoust. Soc. Am. 113, 2874-2883 (2003).
[CrossRef] [PubMed]

Gougeon, S.

Gross, M.

Hegde, G.

V. Singh, J. Miao, Z. Wang, G. Hegde, and A. Asundi, "Dynamic characterization of MEMS diaphragm using time averaged in-line digital holography," Opt. Commun. 280, 285-290 (2007).
[CrossRef]

J¨uptner, W.

Laine, B.

F. Pinard, B. Laine, and H. Vach, "Musical quality assessment of clarinet reeds using optical holography," J. Acoust. Soc. Am. 113, 1736-1742 (2003).
[CrossRef] [PubMed]

LeClerc, F.

Leval, J.

Marquet, P.

Miao, J.

V. Singh, J. Miao, Z. Wang, G. Hegde, and A. Asundi, "Dynamic characterization of MEMS diaphragm using time averaged in-line digital holography," Opt. Commun. 280, 285-290 (2007).
[CrossRef]

Mills, G.

F. Zhang, J. Valera, I. Yamaguchi, M. Yokota, and G. Mills, "Vibration Analysis by Phase Shifting Digital Holography," Opt. Rev. 11, 297-299 (2004).
[CrossRef]

Mounier, D.

Picart, P.

Pinard, F.

F. Pinard, B. Laine, and H. Vach, "Musical quality assessment of clarinet reeds using optical holography," J. Acoust. Soc. Am. 113, 1736-1742 (2003).
[CrossRef] [PubMed]

Powell, R.

R. Powell and K. Stetson, "Interferometric vibration analysis by wavefront reconstruction," J. Opt. Soc. Am 55, 1593-1598 (1965).
[CrossRef]

Schnars, U.

Singh, V.

V. Singh, J. Miao, Z. Wang, G. Hegde, and A. Asundi, "Dynamic characterization of MEMS diaphragm using time averaged in-line digital holography," Opt. Commun. 280, 285-290 (2007).
[CrossRef]

A. Asundi and V. Singh, "Time-averaged in-line digital holographic interferometry for vibration analysis," Appl. Opt. 45, 2391-2395 (2006),
[CrossRef] [PubMed]

Stetson, K.

R. Powell and K. Stetson, "Interferometric vibration analysis by wavefront reconstruction," J. Opt. Soc. Am 55, 1593-1598 (1965).
[CrossRef]

Vach, H.

F. Pinard, B. Laine, and H. Vach, "Musical quality assessment of clarinet reeds using optical holography," J. Acoust. Soc. Am. 113, 1736-1742 (2003).
[CrossRef] [PubMed]

Valera, J.

F. Zhang, J. Valera, I. Yamaguchi, M. Yokota, and G. Mills, "Vibration Analysis by Phase Shifting Digital Holography," Opt. Rev. 11, 297-299 (2004).
[CrossRef]

Vukicevic, D.

Wang, Z.

V. Singh, J. Miao, Z. Wang, G. Hegde, and A. Asundi, "Dynamic characterization of MEMS diaphragm using time averaged in-line digital holography," Opt. Commun. 280, 285-290 (2007).
[CrossRef]

Yamaguchi, I.

F. Zhang, J. Valera, I. Yamaguchi, M. Yokota, and G. Mills, "Vibration Analysis by Phase Shifting Digital Holography," Opt. Rev. 11, 297-299 (2004).
[CrossRef]

I. Yamaguchi and T. Zhang, "Phase-Shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
[CrossRef] [PubMed]

Yokota, M.

F. Zhang, J. Valera, I. Yamaguchi, M. Yokota, and G. Mills, "Vibration Analysis by Phase Shifting Digital Holography," Opt. Rev. 11, 297-299 (2004).
[CrossRef]

Zhang, F.

F. Zhang, J. Valera, I. Yamaguchi, M. Yokota, and G. Mills, "Vibration Analysis by Phase Shifting Digital Holography," Opt. Rev. 11, 297-299 (2004).
[CrossRef]

Zhang, T.

Appl. Opt.

J. Acoust. Soc. Am.

F. Pinard, B. Laine, and H. Vach, "Musical quality assessment of clarinet reeds using optical holography," J. Acoust. Soc. Am. 113, 1736-1742 (2003).
[CrossRef] [PubMed]

M. Facchinetti, X. Boutillon, and A. Constantinescu, "Numerical and experimental modal analysis of the reed and pipe of a clarinet," J. Acoust. Soc. Am. 113, 2874-2883 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am

R. Powell and K. Stetson, "Interferometric vibration analysis by wavefront reconstruction," J. Opt. Soc. Am 55, 1593-1598 (1965).
[CrossRef]

Opt. Commun.

V. Singh, J. Miao, Z. Wang, G. Hegde, and A. Asundi, "Dynamic characterization of MEMS diaphragm using time averaged in-line digital holography," Opt. Commun. 280, 285-290 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

F. Zhang, J. Valera, I. Yamaguchi, M. Yokota, and G. Mills, "Vibration Analysis by Phase Shifting Digital Holography," Opt. Rev. 11, 297-299 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Setup. L: main laser; AOM1, AOM2: acousto-optic modulators; M: mirror; BS: beam splitter; BE: beam expander; CCD: CCD camera; LS: loud-speaker exiting the clarinet reed at frequency ωA /2π.

Fig. 2.
Fig. 2.

Reconstructed holographic images of a clarinet reed vibrating at frequency ωA /2π= 2143 Hz perpendicularly to the plane of the figure. Fig. (a) shows the carrier image obtained for n = 0; Fig. (b)–(d) show the frequency sideband images respectively for n = 1, n = 10, and n = 100. A logarithmic grey scale has been used.

Fig. 3.
Fig. 3.

A slice of the data along the y = 174 line is used in this figure; the x horizontal axis gives the pixel index (100 pixels correspond to 3.68 mm.), the vertical axis the phase modulation amplitude z. The lower part of the figure shows the normalized signal ∣En (x)∣2/∣E(x)∣2 for a particular sideband order n = 5, with a downwards axis; the left part shows the corresponding square of the Bessel function ∣J 5(z)∣2 with a leftward axis. The zeroes of the two curves are put in correspondence, which provides the points in the central figure; a different color is used for each harmonic order n = 0,1,5,10…100; the crosses correspond to n = 5. The juxtaposition of the points for all values of n gives an accurate representation of the amplitude of vibration A as a function of x.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = e j ω I t e jz sin ( ω A t ) = n = E n ( t )
E n ( t ) = J n ( z ) e j ω L t e j ( ω AOM 2 + n ω A ) t
ω AOM 2 ω AOM 1 n ω A = ω CCD / 4
H n = ( I 0 I 2 ) + j ( I 1 I 3 )

Metrics