Abstract

We present a simple, fast, and repeatable method for fabricating nano-fluidic channels based on two-photon absorption (TPA) polymerization. Since our method does not require any mask, it is relatively cheaper and faster than other conventional lithography techniques. We illustrate that SU-8 has pronounced photoinitiation threshold behavior, which linearly decreases as the repetition rate increases. If the pulse energy and the repetition rate are controlled, channel width can be easily controlled. We report fluidic channels up to 110 nm in width, between polymerized parallel ribs, utilizing TPA and the photoinitiation threshold properties of SU-8. Finally, we also show that high repetition rate laser presents greater controllability in size of the polymerized region by varying fluence.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single step self-enclosed fluidic channels via two photon absorption (TPA) polymerization

S. Jariwala, K. Venkatakrishnan, and B. Tan
Opt. Express 18(2) 1630-1636 (2010)

Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption

Hong-Bo Sun, Takeshi Kawakami, Ying Xu, Jia-Yu Ye, Shigeki Matuso, Hiroaki Misawa, Masafumi Miwa, and Reizo Kaneko
Opt. Lett. 25(15) 1110-1112 (2000)

Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser

Irène Wang, Michel Bouriau, Patrice L. Baldeck, Cécile Martineau, and Chantal Andraud
Opt. Lett. 27(15) 1348-1350 (2002)

References

  • View by:
  • |
  • |
  • |

  1. B. Ilic, D. Czaplewski, M. Zalalutdinov, B. Schmidt, and Craighead, “Fabrication of flexible polymer tubes for micro and nanofluidic applications,” H. G. J. Vac. Sci. Technol. B 20, 2459–2465 (2002).
    [Crossref]
  2. C. Wu, Z. Jin, H. Wang, H. Ma, and Y. Wang, “Design and Fabrication of a Nanofluidic Channel by Selective Thermal Oxidation and Etching Back of Silicon Dioxide made on a Silicon Substrate,” J. Micromech. Microeng. 17, 2393–2397 (2007).
    [Crossref]
  3. W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. Guntherodt, “Effect of Low Numerical-Aperture Femtosecond Two-Photon Absorption on (SU-8) Resist for Ultrahigh-Aspect-Ratio Microstereolithography,” J. Appl. Phys. 97, 1–11 (2005).
    [Crossref]
  4. T. Tanaka, H. Sun, and S. Kawata, “Rapid Sub-Diffraction-Limit Laser micro/nanoprocessing in a Threshold Material System,” Appl. Phys. Lett. 80, 312 (2002).
    [Crossref]
  5. B. Y. Kang, J. W. Wu, K. Lee, B. K. Rhee, and S. H. Han, “Fabrication of 3D Nano-Structures by using Two-Photon Absorption Polymerization,” J. Korean Phys. Soc. 45, 1154–1157 (2004).
  6. Z. R. Chowdhury and R. Fedosejevs, “Sub-Micron Resolution Three Dimensional Structure Writing using Two Photon Absorption Process,” Proc. SPIE 6343 I, Article number 634326 (2006).
    [Crossref]
  7. B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of Energy Above Laser-Induced Damage Thresholds in the Micromachining of Silicon by Femtosecond Pulse Laser,” Opt. Lasers Eng. 35, 361–369 (2001).
    [Crossref]
  8. L. Shah, L.A. Y. Arai, S. M. Eaton, and P. R. Herman, “Waveguide Writing in Fused Silica with a Femtosecond Fiber Laser at 522 Nm and 1 MHz Repetition Rate,” Opt. Express 13, 1999–2006 (2005).
    [Crossref] [PubMed]
  9. K. Venkatakrishnan, B. Tan, P. Stanley, L. E. N. Lim, and B. K. A. Ngoi, “Femtosecond Pulsed Laser Direct Writing System,” Opt. Eng. 41, 1441–1445 (2002).
    [Crossref]
  10. K. Venkatakrishnan, P. Stanley, N. R. Sivakumar, B. Tan, and L. E. N. Lim, “Effect of Scanning Resolution and Fluence Fluctuation on Femtosecond Laser Ablation of Thin Films,” Appl. Phys. A. 77, 655–658 (2003).
    [Crossref]
  11. T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond Laser Micromachining of Grooves in Silicon with 800 Nm Pulses,” Appl. Phys. A. 80, 1717–1724 (2005).
    [Crossref]
  12. P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The Effect of Damage Accumulation Behaviour on Ablation Thresholds and Damage Morphology in Ultrafast Laser Micro-Machining of Common Metals in Air,” Appl. Surf. Sci. 233, 275–287 (2004).
    [Crossref]

2007 (1)

C. Wu, Z. Jin, H. Wang, H. Ma, and Y. Wang, “Design and Fabrication of a Nanofluidic Channel by Selective Thermal Oxidation and Etching Back of Silicon Dioxide made on a Silicon Substrate,” J. Micromech. Microeng. 17, 2393–2397 (2007).
[Crossref]

2006 (1)

Z. R. Chowdhury and R. Fedosejevs, “Sub-Micron Resolution Three Dimensional Structure Writing using Two Photon Absorption Process,” Proc. SPIE 6343 I, Article number 634326 (2006).
[Crossref]

2005 (3)

L. Shah, L.A. Y. Arai, S. M. Eaton, and P. R. Herman, “Waveguide Writing in Fused Silica with a Femtosecond Fiber Laser at 522 Nm and 1 MHz Repetition Rate,” Opt. Express 13, 1999–2006 (2005).
[Crossref] [PubMed]

W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. Guntherodt, “Effect of Low Numerical-Aperture Femtosecond Two-Photon Absorption on (SU-8) Resist for Ultrahigh-Aspect-Ratio Microstereolithography,” J. Appl. Phys. 97, 1–11 (2005).
[Crossref]

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond Laser Micromachining of Grooves in Silicon with 800 Nm Pulses,” Appl. Phys. A. 80, 1717–1724 (2005).
[Crossref]

2004 (2)

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The Effect of Damage Accumulation Behaviour on Ablation Thresholds and Damage Morphology in Ultrafast Laser Micro-Machining of Common Metals in Air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

B. Y. Kang, J. W. Wu, K. Lee, B. K. Rhee, and S. H. Han, “Fabrication of 3D Nano-Structures by using Two-Photon Absorption Polymerization,” J. Korean Phys. Soc. 45, 1154–1157 (2004).

2003 (1)

K. Venkatakrishnan, P. Stanley, N. R. Sivakumar, B. Tan, and L. E. N. Lim, “Effect of Scanning Resolution and Fluence Fluctuation on Femtosecond Laser Ablation of Thin Films,” Appl. Phys. A. 77, 655–658 (2003).
[Crossref]

2002 (3)

B. Ilic, D. Czaplewski, M. Zalalutdinov, B. Schmidt, and Craighead, “Fabrication of flexible polymer tubes for micro and nanofluidic applications,” H. G. J. Vac. Sci. Technol. B 20, 2459–2465 (2002).
[Crossref]

T. Tanaka, H. Sun, and S. Kawata, “Rapid Sub-Diffraction-Limit Laser micro/nanoprocessing in a Threshold Material System,” Appl. Phys. Lett. 80, 312 (2002).
[Crossref]

K. Venkatakrishnan, B. Tan, P. Stanley, L. E. N. Lim, and B. K. A. Ngoi, “Femtosecond Pulsed Laser Direct Writing System,” Opt. Eng. 41, 1441–1445 (2002).
[Crossref]

2001 (1)

B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of Energy Above Laser-Induced Damage Thresholds in the Micromachining of Silicon by Femtosecond Pulse Laser,” Opt. Lasers Eng. 35, 361–369 (2001).
[Crossref]

Arai, L.A. Y.

Borowiec, A.

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond Laser Micromachining of Grooves in Silicon with 800 Nm Pulses,” Appl. Phys. A. 80, 1717–1724 (2005).
[Crossref]

Chowdhury, Z. R.

Z. R. Chowdhury and R. Fedosejevs, “Sub-Micron Resolution Three Dimensional Structure Writing using Two Photon Absorption Process,” Proc. SPIE 6343 I, Article number 634326 (2006).
[Crossref]

Coyne, E.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The Effect of Damage Accumulation Behaviour on Ablation Thresholds and Damage Morphology in Ultrafast Laser Micro-Machining of Common Metals in Air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

Craighead,

B. Ilic, D. Czaplewski, M. Zalalutdinov, B. Schmidt, and Craighead, “Fabrication of flexible polymer tubes for micro and nanofluidic applications,” H. G. J. Vac. Sci. Technol. B 20, 2459–2465 (2002).
[Crossref]

Crawford, T. H. R.

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond Laser Micromachining of Grooves in Silicon with 800 Nm Pulses,” Appl. Phys. A. 80, 1717–1724 (2005).
[Crossref]

Czaplewski, D.

B. Ilic, D. Czaplewski, M. Zalalutdinov, B. Schmidt, and Craighead, “Fabrication of flexible polymer tubes for micro and nanofluidic applications,” H. G. J. Vac. Sci. Technol. B 20, 2459–2465 (2002).
[Crossref]

Drechsler, U.

W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. Guntherodt, “Effect of Low Numerical-Aperture Femtosecond Two-Photon Absorption on (SU-8) Resist for Ultrahigh-Aspect-Ratio Microstereolithography,” J. Appl. Phys. 97, 1–11 (2005).
[Crossref]

Durig, U.

W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. Guntherodt, “Effect of Low Numerical-Aperture Femtosecond Two-Photon Absorption on (SU-8) Resist for Ultrahigh-Aspect-Ratio Microstereolithography,” J. Appl. Phys. 97, 1–11 (2005).
[Crossref]

Eaton, S. M.

Fedosejevs, R.

Z. R. Chowdhury and R. Fedosejevs, “Sub-Micron Resolution Three Dimensional Structure Writing using Two Photon Absorption Process,” Proc. SPIE 6343 I, Article number 634326 (2006).
[Crossref]

Glynn, T. J.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The Effect of Damage Accumulation Behaviour on Ablation Thresholds and Damage Morphology in Ultrafast Laser Micro-Machining of Common Metals in Air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

Guntherodt, H.

W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. Guntherodt, “Effect of Low Numerical-Aperture Femtosecond Two-Photon Absorption on (SU-8) Resist for Ultrahigh-Aspect-Ratio Microstereolithography,” J. Appl. Phys. 97, 1–11 (2005).
[Crossref]

Han, S. H.

B. Y. Kang, J. W. Wu, K. Lee, B. K. Rhee, and S. H. Han, “Fabrication of 3D Nano-Structures by using Two-Photon Absorption Polymerization,” J. Korean Phys. Soc. 45, 1154–1157 (2004).

Haugen, H. K.

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond Laser Micromachining of Grooves in Silicon with 800 Nm Pulses,” Appl. Phys. A. 80, 1717–1724 (2005).
[Crossref]

Herman, P. R.

Ilic, B.

B. Ilic, D. Czaplewski, M. Zalalutdinov, B. Schmidt, and Craighead, “Fabrication of flexible polymer tubes for micro and nanofluidic applications,” H. G. J. Vac. Sci. Technol. B 20, 2459–2465 (2002).
[Crossref]

Jin, Z.

C. Wu, Z. Jin, H. Wang, H. Ma, and Y. Wang, “Design and Fabrication of a Nanofluidic Channel by Selective Thermal Oxidation and Etching Back of Silicon Dioxide made on a Silicon Substrate,” J. Micromech. Microeng. 17, 2393–2397 (2007).
[Crossref]

Kang, B. Y.

B. Y. Kang, J. W. Wu, K. Lee, B. K. Rhee, and S. H. Han, “Fabrication of 3D Nano-Structures by using Two-Photon Absorption Polymerization,” J. Korean Phys. Soc. 45, 1154–1157 (2004).

Kawata, S.

T. Tanaka, H. Sun, and S. Kawata, “Rapid Sub-Diffraction-Limit Laser micro/nanoprocessing in a Threshold Material System,” Appl. Phys. Lett. 80, 312 (2002).
[Crossref]

Koh, L. H. K.

B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of Energy Above Laser-Induced Damage Thresholds in the Micromachining of Silicon by Femtosecond Pulse Laser,” Opt. Lasers Eng. 35, 361–369 (2001).
[Crossref]

Lee, K.

B. Y. Kang, J. W. Wu, K. Lee, B. K. Rhee, and S. H. Han, “Fabrication of 3D Nano-Structures by using Two-Photon Absorption Polymerization,” J. Korean Phys. Soc. 45, 1154–1157 (2004).

Lim, E. N. L.

B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of Energy Above Laser-Induced Damage Thresholds in the Micromachining of Silicon by Femtosecond Pulse Laser,” Opt. Lasers Eng. 35, 361–369 (2001).
[Crossref]

Lim, L. E. N.

K. Venkatakrishnan, P. Stanley, N. R. Sivakumar, B. Tan, and L. E. N. Lim, “Effect of Scanning Resolution and Fluence Fluctuation on Femtosecond Laser Ablation of Thin Films,” Appl. Phys. A. 77, 655–658 (2003).
[Crossref]

K. Venkatakrishnan, B. Tan, P. Stanley, L. E. N. Lim, and B. K. A. Ngoi, “Femtosecond Pulsed Laser Direct Writing System,” Opt. Eng. 41, 1441–1445 (2002).
[Crossref]

Ma, H.

C. Wu, Z. Jin, H. Wang, H. Ma, and Y. Wang, “Design and Fabrication of a Nanofluidic Channel by Selective Thermal Oxidation and Etching Back of Silicon Dioxide made on a Silicon Substrate,” J. Micromech. Microeng. 17, 2393–2397 (2007).
[Crossref]

Magee, J.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The Effect of Damage Accumulation Behaviour on Ablation Thresholds and Damage Morphology in Ultrafast Laser Micro-Machining of Common Metals in Air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

Mannion, P. T.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The Effect of Damage Accumulation Behaviour on Ablation Thresholds and Damage Morphology in Ultrafast Laser Micro-Machining of Common Metals in Air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

Ngoi, B. K. A.

K. Venkatakrishnan, B. Tan, P. Stanley, L. E. N. Lim, and B. K. A. Ngoi, “Femtosecond Pulsed Laser Direct Writing System,” Opt. Eng. 41, 1441–1445 (2002).
[Crossref]

B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of Energy Above Laser-Induced Damage Thresholds in the Micromachining of Silicon by Femtosecond Pulse Laser,” Opt. Lasers Eng. 35, 361–369 (2001).
[Crossref]

O’Connor, G. M.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The Effect of Damage Accumulation Behaviour on Ablation Thresholds and Damage Morphology in Ultrafast Laser Micro-Machining of Common Metals in Air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

Rhee, B. K.

B. Y. Kang, J. W. Wu, K. Lee, B. K. Rhee, and S. H. Han, “Fabrication of 3D Nano-Structures by using Two-Photon Absorption Polymerization,” J. Korean Phys. Soc. 45, 1154–1157 (2004).

Schmidt, B.

B. Ilic, D. Czaplewski, M. Zalalutdinov, B. Schmidt, and Craighead, “Fabrication of flexible polymer tubes for micro and nanofluidic applications,” H. G. J. Vac. Sci. Technol. B 20, 2459–2465 (2002).
[Crossref]

Shah, L.

Sivakumar, N. R.

K. Venkatakrishnan, P. Stanley, N. R. Sivakumar, B. Tan, and L. E. N. Lim, “Effect of Scanning Resolution and Fluence Fluctuation on Femtosecond Laser Ablation of Thin Films,” Appl. Phys. A. 77, 655–658 (2003).
[Crossref]

Smith, C. G.

W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. Guntherodt, “Effect of Low Numerical-Aperture Femtosecond Two-Photon Absorption on (SU-8) Resist for Ultrahigh-Aspect-Ratio Microstereolithography,” J. Appl. Phys. 97, 1–11 (2005).
[Crossref]

Stanley, P.

K. Venkatakrishnan, P. Stanley, N. R. Sivakumar, B. Tan, and L. E. N. Lim, “Effect of Scanning Resolution and Fluence Fluctuation on Femtosecond Laser Ablation of Thin Films,” Appl. Phys. A. 77, 655–658 (2003).
[Crossref]

K. Venkatakrishnan, B. Tan, P. Stanley, L. E. N. Lim, and B. K. A. Ngoi, “Femtosecond Pulsed Laser Direct Writing System,” Opt. Eng. 41, 1441–1445 (2002).
[Crossref]

Sun, H.

T. Tanaka, H. Sun, and S. Kawata, “Rapid Sub-Diffraction-Limit Laser micro/nanoprocessing in a Threshold Material System,” Appl. Phys. Lett. 80, 312 (2002).
[Crossref]

Tan, B.

K. Venkatakrishnan, P. Stanley, N. R. Sivakumar, B. Tan, and L. E. N. Lim, “Effect of Scanning Resolution and Fluence Fluctuation on Femtosecond Laser Ablation of Thin Films,” Appl. Phys. A. 77, 655–658 (2003).
[Crossref]

K. Venkatakrishnan, B. Tan, P. Stanley, L. E. N. Lim, and B. K. A. Ngoi, “Femtosecond Pulsed Laser Direct Writing System,” Opt. Eng. 41, 1441–1445 (2002).
[Crossref]

B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of Energy Above Laser-Induced Damage Thresholds in the Micromachining of Silicon by Femtosecond Pulse Laser,” Opt. Lasers Eng. 35, 361–369 (2001).
[Crossref]

Tanaka, T.

T. Tanaka, H. Sun, and S. Kawata, “Rapid Sub-Diffraction-Limit Laser micro/nanoprocessing in a Threshold Material System,” Appl. Phys. Lett. 80, 312 (2002).
[Crossref]

Teh, W. H.

W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. Guntherodt, “Effect of Low Numerical-Aperture Femtosecond Two-Photon Absorption on (SU-8) Resist for Ultrahigh-Aspect-Ratio Microstereolithography,” J. Appl. Phys. 97, 1–11 (2005).
[Crossref]

Venkatakrishnan, K.

K. Venkatakrishnan, P. Stanley, N. R. Sivakumar, B. Tan, and L. E. N. Lim, “Effect of Scanning Resolution and Fluence Fluctuation on Femtosecond Laser Ablation of Thin Films,” Appl. Phys. A. 77, 655–658 (2003).
[Crossref]

K. Venkatakrishnan, B. Tan, P. Stanley, L. E. N. Lim, and B. K. A. Ngoi, “Femtosecond Pulsed Laser Direct Writing System,” Opt. Eng. 41, 1441–1445 (2002).
[Crossref]

B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of Energy Above Laser-Induced Damage Thresholds in the Micromachining of Silicon by Femtosecond Pulse Laser,” Opt. Lasers Eng. 35, 361–369 (2001).
[Crossref]

Wang, H.

C. Wu, Z. Jin, H. Wang, H. Ma, and Y. Wang, “Design and Fabrication of a Nanofluidic Channel by Selective Thermal Oxidation and Etching Back of Silicon Dioxide made on a Silicon Substrate,” J. Micromech. Microeng. 17, 2393–2397 (2007).
[Crossref]

Wang, Y.

C. Wu, Z. Jin, H. Wang, H. Ma, and Y. Wang, “Design and Fabrication of a Nanofluidic Channel by Selective Thermal Oxidation and Etching Back of Silicon Dioxide made on a Silicon Substrate,” J. Micromech. Microeng. 17, 2393–2397 (2007).
[Crossref]

Wu, C.

C. Wu, Z. Jin, H. Wang, H. Ma, and Y. Wang, “Design and Fabrication of a Nanofluidic Channel by Selective Thermal Oxidation and Etching Back of Silicon Dioxide made on a Silicon Substrate,” J. Micromech. Microeng. 17, 2393–2397 (2007).
[Crossref]

Wu, J. W.

B. Y. Kang, J. W. Wu, K. Lee, B. K. Rhee, and S. H. Han, “Fabrication of 3D Nano-Structures by using Two-Photon Absorption Polymerization,” J. Korean Phys. Soc. 45, 1154–1157 (2004).

Zalalutdinov, M.

B. Ilic, D. Czaplewski, M. Zalalutdinov, B. Schmidt, and Craighead, “Fabrication of flexible polymer tubes for micro and nanofluidic applications,” H. G. J. Vac. Sci. Technol. B 20, 2459–2465 (2002).
[Crossref]

Appl. Phys. A. (2)

K. Venkatakrishnan, P. Stanley, N. R. Sivakumar, B. Tan, and L. E. N. Lim, “Effect of Scanning Resolution and Fluence Fluctuation on Femtosecond Laser Ablation of Thin Films,” Appl. Phys. A. 77, 655–658 (2003).
[Crossref]

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond Laser Micromachining of Grooves in Silicon with 800 Nm Pulses,” Appl. Phys. A. 80, 1717–1724 (2005).
[Crossref]

Appl. Phys. Lett. (1)

T. Tanaka, H. Sun, and S. Kawata, “Rapid Sub-Diffraction-Limit Laser micro/nanoprocessing in a Threshold Material System,” Appl. Phys. Lett. 80, 312 (2002).
[Crossref]

Appl. Surf. Sci. (1)

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The Effect of Damage Accumulation Behaviour on Ablation Thresholds and Damage Morphology in Ultrafast Laser Micro-Machining of Common Metals in Air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

H. G. J. Vac. Sci. Technol. B (1)

B. Ilic, D. Czaplewski, M. Zalalutdinov, B. Schmidt, and Craighead, “Fabrication of flexible polymer tubes for micro and nanofluidic applications,” H. G. J. Vac. Sci. Technol. B 20, 2459–2465 (2002).
[Crossref]

J. Appl. Phys. (1)

W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. Guntherodt, “Effect of Low Numerical-Aperture Femtosecond Two-Photon Absorption on (SU-8) Resist for Ultrahigh-Aspect-Ratio Microstereolithography,” J. Appl. Phys. 97, 1–11 (2005).
[Crossref]

J. Korean Phys. Soc. (1)

B. Y. Kang, J. W. Wu, K. Lee, B. K. Rhee, and S. H. Han, “Fabrication of 3D Nano-Structures by using Two-Photon Absorption Polymerization,” J. Korean Phys. Soc. 45, 1154–1157 (2004).

J. Micromech. Microeng. (1)

C. Wu, Z. Jin, H. Wang, H. Ma, and Y. Wang, “Design and Fabrication of a Nanofluidic Channel by Selective Thermal Oxidation and Etching Back of Silicon Dioxide made on a Silicon Substrate,” J. Micromech. Microeng. 17, 2393–2397 (2007).
[Crossref]

Opt. Eng. (1)

K. Venkatakrishnan, B. Tan, P. Stanley, L. E. N. Lim, and B. K. A. Ngoi, “Femtosecond Pulsed Laser Direct Writing System,” Opt. Eng. 41, 1441–1445 (2002).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (1)

B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of Energy Above Laser-Induced Damage Thresholds in the Micromachining of Silicon by Femtosecond Pulse Laser,” Opt. Lasers Eng. 35, 361–369 (2001).
[Crossref]

Proc. SPIE (1)

Z. R. Chowdhury and R. Fedosejevs, “Sub-Micron Resolution Three Dimensional Structure Writing using Two Photon Absorption Process,” Proc. SPIE 6343 I, Article number 634326 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. TPA process for fabricating fluidic channels. (a) During exposure, femtosecond laser is focused inside SU-8 resist. (b) After development, exposed resist turns into parallel ribs. (c) SEM image of two parallel ribs. (d) Magnification of channel between two ribs
Fig. 2.
Fig. 2. Experimental setup
Fig. 3.
Fig. 3. Parallel fluidic channels
Fig. 4.
Fig. 4. Threshold fluence and number of effective pulse for a for various repetition rates; inset figure represents average threshold power for given repetition rates
Fig. 5.
Fig. 5. Channel width for respective fluence for various rates
Fig. 6.
Fig. 6. For a given fluence, the effective machining spot diameter increases with increasing Neff
Fig. 7.
Fig. 7. Scanning pattern
Fig. 8.
Fig. 8. Fluidic channels obtained for 26 MHz. (a) Change in Channels width due to change of pulse energy of 26 MHz from left to right: 1.23 μm, 0.62 μm, 0.42 μm, 0.69 μm and 0.93 μm. (b) fluidic channels left to right: 110 nm, 150 nm.

Metrics