Abstract

Using an extended-cavity femtosecond oscillator, we investigated optical breakdown in BK7 glass caused by the accumulated action of many laser pulses. By using a pump-probe experiment and collecting the transmitted pump along with the reflected pump and the broadband light generated by the optical breakdown, we measured the build-up time to optical breakdown as a function of the pulse energy, and we also observed the instability of the plasma due to the effect of defocusing and shielding created by the electron gas. The spectrum of the broadband light emitted by the optical breakdown and the origin of the material modification in BK7 glass was studied. We developed a simple model of electromagnetic wave propagation in plasma that is consistent with the observed behavior of the reflection, absorption, and transmission of the laser light.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Korte, S. Adams, A. Egbert, C. Fallnich, and A. Ostendorf, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Express 7, 41 (2000).
    [CrossRef] [PubMed]
  2. A. Joglekar, H. Liu, G. Spooner, E. Meyhofer, G. Mourou, and A. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to micromachining," Appl. Phys. B 77, 25 (2003).
    [CrossRef]
  3. C. Schaffer, A. Brodeur, J. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93 (2001).
    [CrossRef]
  4. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "laser-induced breakdown by impact ionization on SiO2 with pulse width from 7 ns to 150fs," Appl. Phys. Lett. 64, 3071 (1994).
    [CrossRef]
  5. S. Nolte, M. Will, J. Burhoff, and A. Tuennermann, "Femtosecond waveguides writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A. 77, 109 (2003).
    [CrossRef]
  6. A. Streltsov and N. Borrelli, "study of femtosecond-laser-written waveguides in glasses," J. Opt. Soc. Am. B,  19, 2496 (2002).
    [CrossRef]
  7. M. Will, S Nolte, B. Chichkov, and A. Tunnermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opti. 41, 4360 (2002).
    [CrossRef]
  8. K. Hirao and K. Miura, "Writing waveguides and gratings in silica and related materials by femtosecond laser," J. Non-Crystalline Solids 239, 91 (1998).
    [CrossRef]
  9. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, "Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing," Opt. Lett. 27, 1938 (2002).
    [CrossRef]
  10. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
    [CrossRef]
  11. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, and P. Laporta, "Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator," Opt. Express 13, 612 (2005).
    [CrossRef] [PubMed]
  12. Y. Cheng, K. Sugioka, M. Masuda, K. Shihoyama, K. Toyoda, and K. Midorikawa, "Optical grating embedded in photosensitive glass by photochemical reaction using a femtosecond laser," Opt. Express 11, 1809 (2003).
    [CrossRef] [PubMed]
  13. Q. Zhao, J. Qiu, X. Jiang, C. Zhao, and C. Zhu, "Fabrication of internal diffraction gratings in calcium fluoride crystals by a focused femtosecond laser," Opt. Express 12, 742 (2004).
    [CrossRef] [PubMed]
  14. A. Streltsov, and N. Borrelli, "Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses," Opt. Lett. 26, 42 (2001).
    [CrossRef]
  15. K. Minoshima, A. Kowalevicz, E. Ippen, and J. Fujimoto, " Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing," Opt. Express 10, 645 (2002).
    [PubMed]
  16. E. Glezer, M. Milosavljevic, L. Huang, R. Finlay, T. Her, J. Callan, and E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023 (1996).
    [CrossRef] [PubMed]
  17. N. Nguyen, A. Saliminia, W. Liu, S. Chin, and R. Vallee, "Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses," Opt. Lett. 28, 1591 (2003).
    [CrossRef] [PubMed]
  18. A. Saliminia, N. Nguyen, M. Nadeau, S. Petit, S. Chin, and R. Vallee, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724 (2003).
    [CrossRef]
  19. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, "Femtosecond laser-induced damage and filamentary propagation in fused silica," Phys. Rev. Lett. 89, 186601 (2002).
    [CrossRef] [PubMed]
  20. K. Yamada, W. Watanabe, T. Toma, and K. Itoh, "In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses," Opt. Lett. 26, 19 (2001).
    [CrossRef]
  21. P. Audebert, Ph. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, "Space-time observation of an electron gas in SiO2," Phys. Rev. Letters,  73, 1990 (1994).
    [CrossRef]
  22. S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, "Low-repetition-rate high peak-power Kerr-lens mode-locked Ti-Al2O3 laser with multiple-pass cavity," Opt. Lett. 24, 417 (1999).
    [CrossRef]
  23. A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, in Conference on Laser and Electro-Optics (CLEO), "A 36 nJ - 15.5 MHz extended-cavity Ti-sapphire oscillator," 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CThR3.
  24. N. Bloembergen, "Laser-induced electric breakdown in solids," IEEE J. Quantum Electron. 10, 375 (1974).
    [CrossRef]
  25. C. B. Schaffer, A. O. Jamison, J. F. Garcia and E. Mazur, "Structural changes induced in transparent materials with ultrashort laser pulses," Ultrafast lasers: technology and applications, M. E. Fermann, A. Galvanauskas, and G. D. Sucha, eds., (Marcel Dekker, Inc., New York, 2002) pp. 395-417.
  26. E. Yablomovitch and N. Bloembergen, "Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media," Phys. Rev. Lett. 29, 907 (1972).
    [CrossRef]
  27. W. Liu, O. Kosareva, I. Golubtsov, A. Iwasaki, A. Becker, V. Kandidov, and S. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215 (2003).
    [CrossRef]
  28. P. Yang, G. Burns, J. Guo, T. Luk, and A. Vawter, "Direct-write embedded waveguides and integrated optics in bulk glass by femtosecond laser pulses," J. Appl. Phys. 95, 5280 (2004).
    [CrossRef]
  29. M. V. Fischetti and D. J. DiMaria, "Hot electrons in SiO2: Ballistic to steady-state transport," Solid-State Electronics 31, 629-636 (1988).
    [CrossRef]

2005

2004

Q. Zhao, J. Qiu, X. Jiang, C. Zhao, and C. Zhu, "Fabrication of internal diffraction gratings in calcium fluoride crystals by a focused femtosecond laser," Opt. Express 12, 742 (2004).
[CrossRef] [PubMed]

P. Yang, G. Burns, J. Guo, T. Luk, and A. Vawter, "Direct-write embedded waveguides and integrated optics in bulk glass by femtosecond laser pulses," J. Appl. Phys. 95, 5280 (2004).
[CrossRef]

2003

W. Liu, O. Kosareva, I. Golubtsov, A. Iwasaki, A. Becker, V. Kandidov, and S. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215 (2003).
[CrossRef]

Y. Cheng, K. Sugioka, M. Masuda, K. Shihoyama, K. Toyoda, and K. Midorikawa, "Optical grating embedded in photosensitive glass by photochemical reaction using a femtosecond laser," Opt. Express 11, 1809 (2003).
[CrossRef] [PubMed]

N. Nguyen, A. Saliminia, W. Liu, S. Chin, and R. Vallee, "Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses," Opt. Lett. 28, 1591 (2003).
[CrossRef] [PubMed]

A. Saliminia, N. Nguyen, M. Nadeau, S. Petit, S. Chin, and R. Vallee, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burhoff, and A. Tuennermann, "Femtosecond waveguides writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A. 77, 109 (2003).
[CrossRef]

A. Joglekar, H. Liu, G. Spooner, E. Meyhofer, G. Mourou, and A. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to micromachining," Appl. Phys. B 77, 25 (2003).
[CrossRef]

2002

2001

2000

1999

1998

K. Hirao and K. Miura, "Writing waveguides and gratings in silica and related materials by femtosecond laser," J. Non-Crystalline Solids 239, 91 (1998).
[CrossRef]

1997

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

1996

1994

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "laser-induced breakdown by impact ionization on SiO2 with pulse width from 7 ns to 150fs," Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

P. Audebert, Ph. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, "Space-time observation of an electron gas in SiO2," Phys. Rev. Letters,  73, 1990 (1994).
[CrossRef]

1988

M. V. Fischetti and D. J. DiMaria, "Hot electrons in SiO2: Ballistic to steady-state transport," Solid-State Electronics 31, 629-636 (1988).
[CrossRef]

1974

N. Bloembergen, "Laser-induced electric breakdown in solids," IEEE J. Quantum Electron. 10, 375 (1974).
[CrossRef]

1972

E. Yablomovitch and N. Bloembergen, "Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media," Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

Adams, S.

Antonetti, A.

P. Audebert, Ph. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, "Space-time observation of an electron gas in SiO2," Phys. Rev. Letters,  73, 1990 (1994).
[CrossRef]

Audebert, P.

P. Audebert, Ph. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, "Space-time observation of an electron gas in SiO2," Phys. Rev. Letters,  73, 1990 (1994).
[CrossRef]

Becker, A.

W. Liu, O. Kosareva, I. Golubtsov, A. Iwasaki, A. Becker, V. Kandidov, and S. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215 (2003).
[CrossRef]

Bloembergen, N.

N. Bloembergen, "Laser-induced electric breakdown in solids," IEEE J. Quantum Electron. 10, 375 (1974).
[CrossRef]

E. Yablomovitch and N. Bloembergen, "Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media," Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

Borrelli, N.

Bouma, B. E.

Brodeur, A.

Burhoff, J.

S. Nolte, M. Will, J. Burhoff, and A. Tuennermann, "Femtosecond waveguides writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A. 77, 109 (2003).
[CrossRef]

Burns, G.

P. Yang, G. Burns, J. Guo, T. Luk, and A. Vawter, "Direct-write embedded waveguides and integrated optics in bulk glass by femtosecond laser pulses," J. Appl. Phys. 95, 5280 (2004).
[CrossRef]

Callan, J.

Cerullo, G.

Cheng, Y.

Chichkov, B.

M. Will, S Nolte, B. Chichkov, and A. Tunnermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opti. 41, 4360 (2002).
[CrossRef]

Chin, S.

N. Nguyen, A. Saliminia, W. Liu, S. Chin, and R. Vallee, "Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses," Opt. Lett. 28, 1591 (2003).
[CrossRef] [PubMed]

A. Saliminia, N. Nguyen, M. Nadeau, S. Petit, S. Chin, and R. Vallee, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724 (2003).
[CrossRef]

W. Liu, O. Kosareva, I. Golubtsov, A. Iwasaki, A. Becker, V. Kandidov, and S. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215 (2003).
[CrossRef]

Chiodo, N.

Cho, S. H.

Couairon, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, "Femtosecond laser-induced damage and filamentary propagation in fused silica," Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Daguzan, Ph.

P. Audebert, Ph. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, "Space-time observation of an electron gas in SiO2," Phys. Rev. Letters,  73, 1990 (1994).
[CrossRef]

De Silvestri, S.

DiMaria, D. J.

M. V. Fischetti and D. J. DiMaria, "Hot electrons in SiO2: Ballistic to steady-state transport," Solid-State Electronics 31, 629-636 (1988).
[CrossRef]

Dos Santos, A.

P. Audebert, Ph. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, "Space-time observation of an electron gas in SiO2," Phys. Rev. Letters,  73, 1990 (1994).
[CrossRef]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "laser-induced breakdown by impact ionization on SiO2 with pulse width from 7 ns to 150fs," Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Egbert, A.

Fallnich, C.

Finlay, R.

Fischetti, M. V.

M. V. Fischetti and D. J. DiMaria, "Hot electrons in SiO2: Ballistic to steady-state transport," Solid-State Electronics 31, 629-636 (1988).
[CrossRef]

Franco, M.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, "Femtosecond laser-induced damage and filamentary propagation in fused silica," Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

Garcia, J.

Gauthier, J.

P. Audebert, Ph. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, "Space-time observation of an electron gas in SiO2," Phys. Rev. Letters,  73, 1990 (1994).
[CrossRef]

Geindre, J.

P. Audebert, Ph. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, "Space-time observation of an electron gas in SiO2," Phys. Rev. Letters,  73, 1990 (1994).
[CrossRef]

Glezer, E.

Golubtsov, I.

W. Liu, O. Kosareva, I. Golubtsov, A. Iwasaki, A. Becker, V. Kandidov, and S. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215 (2003).
[CrossRef]

Guizard, S.

P. Audebert, Ph. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, "Space-time observation of an electron gas in SiO2," Phys. Rev. Letters,  73, 1990 (1994).
[CrossRef]

Guo, J.

P. Yang, G. Burns, J. Guo, T. Luk, and A. Vawter, "Direct-write embedded waveguides and integrated optics in bulk glass by femtosecond laser pulses," J. Appl. Phys. 95, 5280 (2004).
[CrossRef]

Hamoniaux, G.

P. Audebert, Ph. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, "Space-time observation of an electron gas in SiO2," Phys. Rev. Letters,  73, 1990 (1994).
[CrossRef]

Her, T.

Hirao, K.

K. Hirao and K. Miura, "Writing waveguides and gratings in silica and related materials by femtosecond laser," J. Non-Crystalline Solids 239, 91 (1998).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Huang, L.

Hunt, A.

A. Joglekar, H. Liu, G. Spooner, E. Meyhofer, G. Mourou, and A. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to micromachining," Appl. Phys. B 77, 25 (2003).
[CrossRef]

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Ippen, E.

Ippen, E. P.

Itoh, K.

Iwasaki, A.

W. Liu, O. Kosareva, I. Golubtsov, A. Iwasaki, A. Becker, V. Kandidov, and S. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215 (2003).
[CrossRef]

Jiang, X.

Joglekar, A.

A. Joglekar, H. Liu, G. Spooner, E. Meyhofer, G. Mourou, and A. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to micromachining," Appl. Phys. B 77, 25 (2003).
[CrossRef]

Kandidov, V.

W. Liu, O. Kosareva, I. Golubtsov, A. Iwasaki, A. Becker, V. Kandidov, and S. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215 (2003).
[CrossRef]

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "laser-induced breakdown by impact ionization on SiO2 with pulse width from 7 ns to 150fs," Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Korte, F.

Kosareva, O.

W. Liu, O. Kosareva, I. Golubtsov, A. Iwasaki, A. Becker, V. Kandidov, and S. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215 (2003).
[CrossRef]

Kowalevicz, A.

Krastev, K.

P. Audebert, Ph. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, "Space-time observation of an electron gas in SiO2," Phys. Rev. Letters,  73, 1990 (1994).
[CrossRef]

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, "Femtosecond laser-induced damage and filamentary propagation in fused silica," Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Laporta, P.

Liu, H.

A. Joglekar, H. Liu, G. Spooner, E. Meyhofer, G. Mourou, and A. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to micromachining," Appl. Phys. B 77, 25 (2003).
[CrossRef]

Liu, W.

N. Nguyen, A. Saliminia, W. Liu, S. Chin, and R. Vallee, "Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses," Opt. Lett. 28, 1591 (2003).
[CrossRef] [PubMed]

W. Liu, O. Kosareva, I. Golubtsov, A. Iwasaki, A. Becker, V. Kandidov, and S. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215 (2003).
[CrossRef]

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "laser-induced breakdown by impact ionization on SiO2 with pulse width from 7 ns to 150fs," Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Luk, T.

P. Yang, G. Burns, J. Guo, T. Luk, and A. Vawter, "Direct-write embedded waveguides and integrated optics in bulk glass by femtosecond laser pulses," J. Appl. Phys. 95, 5280 (2004).
[CrossRef]

Marangoni, M.

Martin, P.

P. Audebert, Ph. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, "Space-time observation of an electron gas in SiO2," Phys. Rev. Letters,  73, 1990 (1994).
[CrossRef]

Maselli, V.

Masuda, M.

Mazur, E.

Meyhofer, E.

A. Joglekar, H. Liu, G. Spooner, E. Meyhofer, G. Mourou, and A. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to micromachining," Appl. Phys. B 77, 25 (2003).
[CrossRef]

Midorikawa, K.

Milosavljevic, M.

Minoshima, K.

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Miura, K.

K. Hirao and K. Miura, "Writing waveguides and gratings in silica and related materials by femtosecond laser," J. Non-Crystalline Solids 239, 91 (1998).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Mourou, G.

A. Joglekar, H. Liu, G. Spooner, E. Meyhofer, G. Mourou, and A. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to micromachining," Appl. Phys. B 77, 25 (2003).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "laser-induced breakdown by impact ionization on SiO2 with pulse width from 7 ns to 150fs," Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Mysyrowicz, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, "Femtosecond laser-induced damage and filamentary propagation in fused silica," Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Nadeau, M.

A. Saliminia, N. Nguyen, M. Nadeau, S. Petit, S. Chin, and R. Vallee, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724 (2003).
[CrossRef]

Nguyen, N.

A. Saliminia, N. Nguyen, M. Nadeau, S. Petit, S. Chin, and R. Vallee, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724 (2003).
[CrossRef]

N. Nguyen, A. Saliminia, W. Liu, S. Chin, and R. Vallee, "Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses," Opt. Lett. 28, 1591 (2003).
[CrossRef] [PubMed]

Nolte, S

M. Will, S Nolte, B. Chichkov, and A. Tunnermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opti. 41, 4360 (2002).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burhoff, and A. Tuennermann, "Femtosecond waveguides writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A. 77, 109 (2003).
[CrossRef]

Osellame, R.

Ostendorf, A.

Petit, S.

A. Saliminia, N. Nguyen, M. Nadeau, S. Petit, S. Chin, and R. Vallee, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724 (2003).
[CrossRef]

Petite, G.

P. Audebert, Ph. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, "Space-time observation of an electron gas in SiO2," Phys. Rev. Letters,  73, 1990 (1994).
[CrossRef]

Polli, D.

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, "Femtosecond laser-induced damage and filamentary propagation in fused silica," Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Qiu, J.

Q. Zhao, J. Qiu, X. Jiang, C. Zhao, and C. Zhu, "Fabrication of internal diffraction gratings in calcium fluoride crystals by a focused femtosecond laser," Opt. Express 12, 742 (2004).
[CrossRef] [PubMed]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Ramponi, R.

Saliminia, A.

A. Saliminia, N. Nguyen, M. Nadeau, S. Petit, S. Chin, and R. Vallee, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724 (2003).
[CrossRef]

N. Nguyen, A. Saliminia, W. Liu, S. Chin, and R. Vallee, "Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses," Opt. Lett. 28, 1591 (2003).
[CrossRef] [PubMed]

Schaffer, C.

Shihoyama, K.

Spooner, G.

A. Joglekar, H. Liu, G. Spooner, E. Meyhofer, G. Mourou, and A. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to micromachining," Appl. Phys. B 77, 25 (2003).
[CrossRef]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "laser-induced breakdown by impact ionization on SiO2 with pulse width from 7 ns to 150fs," Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Streltsov, A.

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, "Femtosecond laser-induced damage and filamentary propagation in fused silica," Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Sugioka, K.

Taccheo, S.

Toma, T.

Toyoda, K.

Tuennermann, A.

S. Nolte, M. Will, J. Burhoff, and A. Tuennermann, "Femtosecond waveguides writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A. 77, 109 (2003).
[CrossRef]

Tunnermann, A.

M. Will, S Nolte, B. Chichkov, and A. Tunnermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opti. 41, 4360 (2002).
[CrossRef]

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, "Femtosecond laser-induced damage and filamentary propagation in fused silica," Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Vallee, R.

N. Nguyen, A. Saliminia, W. Liu, S. Chin, and R. Vallee, "Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses," Opt. Lett. 28, 1591 (2003).
[CrossRef] [PubMed]

A. Saliminia, N. Nguyen, M. Nadeau, S. Petit, S. Chin, and R. Vallee, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724 (2003).
[CrossRef]

Vawter, A.

P. Yang, G. Burns, J. Guo, T. Luk, and A. Vawter, "Direct-write embedded waveguides and integrated optics in bulk glass by femtosecond laser pulses," J. Appl. Phys. 95, 5280 (2004).
[CrossRef]

Watanabe, W.

Will, M.

S. Nolte, M. Will, J. Burhoff, and A. Tuennermann, "Femtosecond waveguides writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A. 77, 109 (2003).
[CrossRef]

M. Will, S Nolte, B. Chichkov, and A. Tunnermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opti. 41, 4360 (2002).
[CrossRef]

Yablomovitch, E.

E. Yablomovitch and N. Bloembergen, "Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media," Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

Yamada, K.

Yang, P.

P. Yang, G. Burns, J. Guo, T. Luk, and A. Vawter, "Direct-write embedded waveguides and integrated optics in bulk glass by femtosecond laser pulses," J. Appl. Phys. 95, 5280 (2004).
[CrossRef]

Yin, A.

Zavelani-Rossi, M.

Zhao, C.

Zhao, Q.

Zhu, C.

Appl. Opti.

M. Will, S Nolte, B. Chichkov, and A. Tunnermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opti. 41, 4360 (2002).
[CrossRef]

Appl. Phys. A.

S. Nolte, M. Will, J. Burhoff, and A. Tuennermann, "Femtosecond waveguides writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A. 77, 109 (2003).
[CrossRef]

Appl. Phys. B

A. Joglekar, H. Liu, G. Spooner, E. Meyhofer, G. Mourou, and A. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to micromachining," Appl. Phys. B 77, 25 (2003).
[CrossRef]

W. Liu, O. Kosareva, I. Golubtsov, A. Iwasaki, A. Becker, V. Kandidov, and S. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215 (2003).
[CrossRef]

Appl. Phys. Lett.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "laser-induced breakdown by impact ionization on SiO2 with pulse width from 7 ns to 150fs," Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

IEEE J. Quantum Electron.

N. Bloembergen, "Laser-induced electric breakdown in solids," IEEE J. Quantum Electron. 10, 375 (1974).
[CrossRef]

J. Appl. Phys.

P. Yang, G. Burns, J. Guo, T. Luk, and A. Vawter, "Direct-write embedded waveguides and integrated optics in bulk glass by femtosecond laser pulses," J. Appl. Phys. 95, 5280 (2004).
[CrossRef]

A. Saliminia, N. Nguyen, M. Nadeau, S. Petit, S. Chin, and R. Vallee, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724 (2003).
[CrossRef]

J. Non-Crystalline Solids

K. Hirao and K. Miura, "Writing waveguides and gratings in silica and related materials by femtosecond laser," J. Non-Crystalline Solids 239, 91 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

E. Yablomovitch and N. Bloembergen, "Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media," Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, "Femtosecond laser-induced damage and filamentary propagation in fused silica," Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Phys. Rev. Letters

P. Audebert, Ph. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, "Space-time observation of an electron gas in SiO2," Phys. Rev. Letters,  73, 1990 (1994).
[CrossRef]

Solid-State Electronics

M. V. Fischetti and D. J. DiMaria, "Hot electrons in SiO2: Ballistic to steady-state transport," Solid-State Electronics 31, 629-636 (1988).
[CrossRef]

Other

C. B. Schaffer, A. O. Jamison, J. F. Garcia and E. Mazur, "Structural changes induced in transparent materials with ultrashort laser pulses," Ultrafast lasers: technology and applications, M. E. Fermann, A. Galvanauskas, and G. D. Sucha, eds., (Marcel Dekker, Inc., New York, 2002) pp. 395-417.

A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, in Conference on Laser and Electro-Optics (CLEO), "A 36 nJ - 15.5 MHz extended-cavity Ti-sapphire oscillator," 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CThR3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

The schematic of an extended-cavity Ti-Sapphire oscillator

Fig. 2.
Fig. 2.

Experimental set-up

Fig. 3.
Fig. 3.

Powers of (a) the broadband light emitted by the plasma, (b) the transmitted pump pulses, (c) the back-reflected pump pulses, and (d) the transmitted probe beam in the first 1.7 μsec after the optical switch was open. The pump pulse energy was 14 nJ.

Fig. 4.
Fig. 4.

Powers of (a) the broadband light emitted by the plasma, (b) the transmitted pump pulses, and (c) the back reflected pump pulses in the first 2 μsec after the optical switch was opened. The incident pulse energy was 8 nJ.

Fig. 5.
Fig. 5.

Time to optical breakdown as a function of pulse energy for BK7 glass. Each data point is an average of ten data acquisitions.

Fig. 6.
Fig. 6.

Powers of (a) the broadband light emitted by plasma, (b) the transmitted pump pulses, and (c) the reflected pump pulses, where the optical switch was open for about 170 μs. The incident pulse energy was 6.7 nJ.

Fig. 7.
Fig. 7.

Powers of (a) the broadband light emitted by plasma, (b) the transmitted pump pulses, and (c) the transmitted probe beam. The incident pulse energy was 15 nJ.

Fig. 8.
Fig. 8.

The positive phase contrast image of the modified region. The incident pulse energy was 8nJ; the optical breakdown lasted for 1.5 μs (a) and 847 μs (b).

Fig. 9.
Fig. 9.

Diameters of the modified regions at five different time durations of the optical breakdown. The pulse energy was 8 nJ. It showed that the modified region reached its maximum size of 18.3 μm after the optical breakdown lasted for 277 μs.

Fig. 10.
Fig. 10.

The positive phase contrast image of the modified region, where the pump pulse energy was 15 nJ and the optical switch was opened for 15 seconds.

Fig. 11.
Fig. 11.

Broadband emission spectrum from optical breakdown in BK7 glass generated by 9.4 nJ pulses.

Fig. 12.
Fig. 12.

Schematic representation of an electromagnetic wave interacts with plasma. The solid curve is the normalized, time-averaged electric field magnitude. The dashed curve is the normalized electron density, which is assumed parabolic in shape, two wavelengths in extent at the base. The standing-wave oscillations in field at the left indicate the presence of forward-going and reflected EM waves.

Fig. 13.
Fig. 13.

Computed laser power transmission (top), reflection (middle) and absorption (bottom) for a range of plasma sizes and densities. For all cases the plasma was parabolic in shape with v/ω = 0.2. The dots in the center graph show a possible trajectory for the growth of the plasma electron density and plasma size with repeated pulsing of the laser. The dashed line shows a possible trajectory for the relaxation of the plasma once it grows too big for the laser power to support.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d 2 E ( z ) d z 2 + ω 2 c 2 [ 1 ω p 2 ( z ) / ω 2 1 jv / ω ] E ( z ) = 0

Metrics