Abstract

A subwavelength annular aperture (SAA) made on metallic film and deposited on a glass substrate was fabricated by electron-beam lithography (EBL) and which was followed by a metal lift-off process to generate a long propagation range Bessel beam. We propose tuning the focal length and depth of focus (DOF) by changing the diameter of the SAA. We used finite-difference time domain (FDTD) simulations to verify our experimental data. We found that the position of the Bessel Beam focus spot (i.e. focal length) will be farther away from the SAA plane as the diameter of the SAA increases. In addition, the depth of focus (DOF) which is the length of the Bessel beam non-diffracting area, also increases as the diameter of the SAA expands.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, "Exact-solutions for nondiffracting beams.1. the scalar theory," J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 4, 651-654 (1987).
  2. J. Durnin, J. J. Miceli, and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987).
    [PubMed]
  3. J. H. McLeod, "The Axicon -a new type of optical element," J. Opt. Soc. Am. 44, 592-597 (1954).
  4. W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, "Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation," Appl. Phys. Lett. 87, 3 (2005).
  5. G. Indebetouw, "Nondiffracting optical-fields - some remarks on their analysis and synthesis," J. Opt. Soc. Am. A 6, 150-152 (1989).
  6. A. J. Cox, and D. C. Dibble, "Nondiffracting beam from a spatially filtered fabry-perot resonator," J. Opt. Soc. Am. A 9, 282-286 (1992).
  7. J. Turunen, A. Vasara, and A. T. Friberg, "Holographic generation of diffraction-free beams," Appl. Opt. 27, 3959-3962 (1988).
  8. S. H. Tao, W. M. Lee, and X. C. Yuan, "Experimental study of holographic generation of fractional Bessel beams," Appl. Opt. 43, 122-126 (2004).
    [PubMed]
  9. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
    [PubMed]
  10. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 7 (2006).
  11. C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett. 90, 3 (2007).
  12. D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, "Subwavelength nondiffraction beam generated by a plasmonic lens," Appl. Phys. Lett. 92, 3 (2008).
  13. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
    [PubMed]
  14. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [PubMed]
  15. D. McGloin, V. Garces-Chavez, and K. Dholakia, "Interfering Bessel beams for optical micromanipulation," Opt. Lett. 28, 657-659 (2003).
    [PubMed]
  16. D. McGloin, and K. Dholakia, "Bessel beams: diffraction in a new light," Contemp. Phys. 46, 15-28 (2005).
  17. M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, "Generation of diffraction-free beams for applications in optical microlithography," J. Vac. Sci. Technol. B 15, 287-292 (1997).
  18. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).
  19. M. Kohno, and Y. Matsuoka, "Microfabrication and drilling using diffraction-free pulsed laser beam generated with axicon lens," JSME Int. J. Ser. B-Fluids Therm. Eng. 47, 497-500 (2004).
  20. Y. Matsuoka, Y. Kizuka, and T. Inoue, "The characteristics of laser micro drilling using a Bessel beam," Appl. Phys. A-Mater. Sci. Process. 84, 423-430 (2006).
  21. M. I. Haftel, C. Schlockermann, and G. Blumberg, "Role of cylindrical surface plasmons in enhanced transmission," Appl. Phys. Lett. 88, 3 (2006).
  22. Y. Poujet, J. Salvi, and F. I. Baida, "90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays," Opt. Lett. 32, 2942-2944 (2007).
    [PubMed]
  23. P. B. Johnson, and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).

2008

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, "Subwavelength nondiffraction beam generated by a plasmonic lens," Appl. Phys. Lett. 92, 3 (2008).

2007

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett. 90, 3 (2007).

Y. Poujet, J. Salvi, and F. I. Baida, "90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays," Opt. Lett. 32, 2942-2944 (2007).
[PubMed]

2006

Y. Matsuoka, Y. Kizuka, and T. Inoue, "The characteristics of laser micro drilling using a Bessel beam," Appl. Phys. A-Mater. Sci. Process. 84, 423-430 (2006).

M. I. Haftel, C. Schlockermann, and G. Blumberg, "Role of cylindrical surface plasmons in enhanced transmission," Appl. Phys. Lett. 88, 3 (2006).

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 7 (2006).

2005

D. McGloin, and K. Dholakia, "Bessel beams: diffraction in a new light," Contemp. Phys. 46, 15-28 (2005).

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, "Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation," Appl. Phys. Lett. 87, 3 (2005).

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[PubMed]

2004

S. H. Tao, W. M. Lee, and X. C. Yuan, "Experimental study of holographic generation of fractional Bessel beams," Appl. Opt. 43, 122-126 (2004).
[PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).

M. Kohno, and Y. Matsuoka, "Microfabrication and drilling using diffraction-free pulsed laser beam generated with axicon lens," JSME Int. J. Ser. B-Fluids Therm. Eng. 47, 497-500 (2004).

2003

2002

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[PubMed]

1997

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, "Generation of diffraction-free beams for applications in optical microlithography," J. Vac. Sci. Technol. B 15, 287-292 (1997).

1992

1989

G. Indebetouw, "Nondiffracting optical-fields - some remarks on their analysis and synthesis," J. Opt. Soc. Am. A 6, 150-152 (1989).

1988

1987

J. Durnin, "Exact-solutions for nondiffracting beams.1. the scalar theory," J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 4, 651-654 (1987).

J. Durnin, J. J. Miceli, and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987).
[PubMed]

1972

P. B. Johnson, and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).

1954

Ahluwalia, B. P. S.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, "Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation," Appl. Phys. Lett. 87, 3 (2005).

Baida, F. I.

Y. Poujet, J. Salvi, and F. I. Baida, "90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays," Opt. Lett. 32, 2942-2944 (2007).
[PubMed]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 7 (2006).

Belkhir, A.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 7 (2006).

Blumberg, G.

M. I. Haftel, C. Schlockermann, and G. Blumberg, "Role of cylindrical surface plasmons in enhanced transmission," Appl. Phys. Lett. 88, 3 (2006).

Bor, Z.

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, "Generation of diffraction-free beams for applications in optical microlithography," J. Vac. Sci. Technol. B 15, 287-292 (1997).

Cavallaro, J. R.

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, "Generation of diffraction-free beams for applications in optical microlithography," J. Vac. Sci. Technol. B 15, 287-292 (1997).

Chang, C. K.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, "Subwavelength nondiffraction beam generated by a plasmonic lens," Appl. Phys. Lett. 92, 3 (2008).

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett. 90, 3 (2007).

Chang, Y. C.

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett. 90, 3 (2007).

Chen, C. H.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, "Subwavelength nondiffraction beam generated by a plasmonic lens," Appl. Phys. Lett. 92, 3 (2008).

Cheng, T. D.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, "Subwavelength nondiffraction beam generated by a plasmonic lens," Appl. Phys. Lett. 92, 3 (2008).

Cheong, W. C.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, "Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation," Appl. Phys. Lett. 87, 3 (2005).

Christy, R. W.

P. B. Johnson, and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).

Cox, A. J.

Dholakia, K.

D. McGloin, and K. Dholakia, "Bessel beams: diffraction in a new light," Contemp. Phys. 46, 15-28 (2005).

D. McGloin, V. Garces-Chavez, and K. Dholakia, "Interfering Bessel beams for optical micromanipulation," Opt. Lett. 28, 657-659 (2003).
[PubMed]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[PubMed]

Dibble, D. C.

Durnin, J.

J. Durnin, "Exact-solutions for nondiffracting beams.1. the scalar theory," J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 4, 651-654 (1987).

J. Durnin, J. J. Miceli, and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987).
[PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987).
[PubMed]

Erdelyi, M.

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, "Generation of diffraction-free beams for applications in optical microlithography," J. Vac. Sci. Technol. B 15, 287-292 (1997).

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).

Friberg, A. T.

Garces-Chavez, V.

D. McGloin, V. Garces-Chavez, and K. Dholakia, "Interfering Bessel beams for optical micromanipulation," Opt. Lett. 28, 657-659 (2003).
[PubMed]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[PubMed]

Grier, D. G.

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[PubMed]

Haftel, M. I.

M. I. Haftel, C. Schlockermann, and G. Blumberg, "Role of cylindrical surface plasmons in enhanced transmission," Appl. Phys. Lett. 88, 3 (2006).

Horvath, Z. L.

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, "Generation of diffraction-free beams for applications in optical microlithography," J. Vac. Sci. Technol. B 15, 287-292 (1997).

Indebetouw, G.

G. Indebetouw, "Nondiffracting optical-fields - some remarks on their analysis and synthesis," J. Opt. Soc. Am. A 6, 150-152 (1989).

Inoue, T.

Y. Matsuoka, Y. Kizuka, and T. Inoue, "The characteristics of laser micro drilling using a Bessel beam," Appl. Phys. A-Mater. Sci. Process. 84, 423-430 (2006).

Johnson, P. B.

P. B. Johnson, and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).

Kizuka, Y.

Y. Matsuoka, Y. Kizuka, and T. Inoue, "The characteristics of laser micro drilling using a Bessel beam," Appl. Phys. A-Mater. Sci. Process. 84, 423-430 (2006).

Kohno, M.

M. Kohno, and Y. Matsuoka, "Microfabrication and drilling using diffraction-free pulsed laser beam generated with axicon lens," JSME Int. J. Ser. B-Fluids Therm. Eng. 47, 497-500 (2004).

Lamrous, O.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 7 (2006).

Lee, C. K.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, "Subwavelength nondiffraction beam generated by a plasmonic lens," Appl. Phys. Lett. 92, 3 (2008).

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett. 90, 3 (2007).

Lee, W. M.

Lin, D. Z.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, "Subwavelength nondiffraction beam generated by a plasmonic lens," Appl. Phys. Lett. 92, 3 (2008).

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett. 90, 3 (2007).

Lin, M. W.

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett. 90, 3 (2007).

Liu, J. M.

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett. 90, 3 (2007).

Liu, Z. W.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[PubMed]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).

Matsuoka, Y.

Y. Matsuoka, Y. Kizuka, and T. Inoue, "The characteristics of laser micro drilling using a Bessel beam," Appl. Phys. A-Mater. Sci. Process. 84, 423-430 (2006).

M. Kohno, and Y. Matsuoka, "Microfabrication and drilling using diffraction-free pulsed laser beam generated with axicon lens," JSME Int. J. Ser. B-Fluids Therm. Eng. 47, 497-500 (2004).

McGloin, D.

D. McGloin, and K. Dholakia, "Bessel beams: diffraction in a new light," Contemp. Phys. 46, 15-28 (2005).

D. McGloin, V. Garces-Chavez, and K. Dholakia, "Interfering Bessel beams for optical micromanipulation," Opt. Lett. 28, 657-659 (2003).
[PubMed]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[PubMed]

McLeod, J. H.

Melville, H.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[PubMed]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987).
[PubMed]

Niu, H. B.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, "Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation," Appl. Phys. Lett. 87, 3 (2005).

Peng, X.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, "Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation," Appl. Phys. Lett. 87, 3 (2005).

Pikus, Y.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[PubMed]

Poujet, Y.

Salvi, J.

Schlockermann, C.

M. I. Haftel, C. Schlockermann, and G. Blumberg, "Role of cylindrical surface plasmons in enhanced transmission," Appl. Phys. Lett. 88, 3 (2006).

Sibbett, W.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[PubMed]

Smayling, M. C.

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, "Generation of diffraction-free beams for applications in optical microlithography," J. Vac. Sci. Technol. B 15, 287-292 (1997).

Srituravanich, W.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).

Steele, J. M.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[PubMed]

Sun, C.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).

Szabo, G.

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, "Generation of diffraction-free beams for applications in optical microlithography," J. Vac. Sci. Technol. B 15, 287-292 (1997).

Tao, S. H.

Tittel, F. K.

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, "Generation of diffraction-free beams for applications in optical microlithography," J. Vac. Sci. Technol. B 15, 287-292 (1997).

Turunen, J.

Van Labeke, D.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 7 (2006).

Vasara, A.

Wang, H.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, "Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation," Appl. Phys. Lett. 87, 3 (2005).

Yeh, C. S.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, "Subwavelength nondiffraction beam generated by a plasmonic lens," Appl. Phys. Lett. 92, 3 (2008).

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett. 90, 3 (2007).

Yeh, J. T.

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett. 90, 3 (2007).

Yuan, X. C.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, "Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation," Appl. Phys. Lett. 87, 3 (2005).

S. H. Tao, W. M. Lee, and X. C. Yuan, "Experimental study of holographic generation of fractional Bessel beams," Appl. Opt. 43, 122-126 (2004).
[PubMed]

Zhang, L. S.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, "Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation," Appl. Phys. Lett. 87, 3 (2005).

Zhang, X.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).

Appl. Opt.

Appl. Phys. A-Mater. Sci. Process.

Y. Matsuoka, Y. Kizuka, and T. Inoue, "The characteristics of laser micro drilling using a Bessel beam," Appl. Phys. A-Mater. Sci. Process. 84, 423-430 (2006).

Appl. Phys. Lett.

M. I. Haftel, C. Schlockermann, and G. Blumberg, "Role of cylindrical surface plasmons in enhanced transmission," Appl. Phys. Lett. 88, 3 (2006).

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, "Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation," Appl. Phys. Lett. 87, 3 (2005).

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett. 90, 3 (2007).

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, "Subwavelength nondiffraction beam generated by a plasmonic lens," Appl. Phys. Lett. 92, 3 (2008).

Contemp. Phys.

D. McGloin, and K. Dholakia, "Bessel beams: diffraction in a new light," Contemp. Phys. 46, 15-28 (2005).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. A-Opt. Image Sci. Vis.

J. Durnin, "Exact-solutions for nondiffracting beams.1. the scalar theory," J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 4, 651-654 (1987).

J. Opt. Soc. Am. A.

G. Indebetouw, "Nondiffracting optical-fields - some remarks on their analysis and synthesis," J. Opt. Soc. Am. A 6, 150-152 (1989).

J. Vac. Sci. Technol. B

M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, "Generation of diffraction-free beams for applications in optical microlithography," J. Vac. Sci. Technol. B 15, 287-292 (1997).

Nano Lett.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[PubMed]

Nature

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[PubMed]

Opt. Lett.

Phys. Rev. B

P. B. Johnson, and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 7 (2006).

Phys. Rev. Lett.

J. Durnin, J. J. Miceli, and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987).
[PubMed]

Therm. Eng.

M. Kohno, and Y. Matsuoka, "Microfabrication and drilling using diffraction-free pulsed laser beam generated with axicon lens," JSME Int. J. Ser. B-Fluids Therm. Eng. 47, 497-500 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.1.
Fig.1.

Schematic diagram for Bessel beam generation by a silver SAA structure.

Fig. 2.
Fig. 2.

Fabrication process and SEM image of the large size SAA structure (30μm) used for the exposure experiment. The large SAA structure was constructed on a 200nm thick Ag layer. SAA rings with the same slit width (200nm) and different diameters (30μm, 36μm, 42μm) were tested.

Fig. 3.
Fig. 3.

Transmission intensity distributions at different propagation distances from the SAA structure (e.g. Bessel beam intensity profiles obtained from a silver SAA structure with a 30μm diameter and 200nm ring in width and thickness, as illuminated by a linearly polarized 442 nm He-Cd laser as the light source)

Fig. 4.
Fig. 4.

(a) Intensity distribution in a y-z plane of the transmitted electric fields of a 30μm SAA structure. The inset shows the theoretical and the experimental results at the x-y cross-section of z = 30μm above the silver SAA structure. (b) FDTD simulation of SAA structures with different diameters (parameters of SAA structure set to 200nm thick silver film, 200nm slit width, and dielectric constant of silver at εm=-5.735+j0.7536.)

Fig. 5.
Fig. 5.

Experimental results for long propagation range Bessel beam generated by silver SAA structures. The focal length and DOF vary with the diameter (D) of the SAA structures. The inset shows the focal length and DOF which increased proportionally to the diameters of the SAA structure.

Fig. 6.
Fig. 6.

Relationship between the ratio of the longitudinal to transverse transmitted intensity (Izmax/Irmax) and the half cone angle (θ) of the diffracted light in a SAA structure with different diameters.

Metrics