Abstract

We numerically investigate counter-propagating beams in a one-dimensionally, periodic structure with non-instantaneous Kerr nonlinearity for the design of efficient optical limiters. The performance of the Photonic Band Gap optical limiter with different response times is compared with the instantaneous case. Dynamic range and the cutoff intensity can be improved over a range of relaxation times.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
One-dimensional photonic crystal optical limiter

Boon Yi Soon, Joseph W. Haus, Michael Scalora, and Concita Sibilia
Opt. Express 11(17) 2007-2018 (2003)

Nonlinear optical beam propagation for optical limiting

Dmitriy I. Kovsh, Sidney Yang, David J. Hagan, and Eric W. Van Stryland
Appl. Opt. 38(24) 5168-5180 (1999)

Nonlinear distributed-feedback structures as passive optical limiters

Lukasz Brzozowski and Edward H. Sargent
J. Opt. Soc. Am. B 17(8) 1360-1365 (2000)

References

  • View by:
  • |
  • |
  • |

  1. T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, and E. W. Van Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt.  36, 4110–4122 (1997).
    [Crossref] [PubMed]
  2. J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett.  63, 1880–1882 (1993).
    [Crossref]
  3. J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt.  5, 701–707 (1996).
    [Crossref]
  4. P. Tran, “All-optical switching with a nonlinear chiral photonic bandgap structure,” J. Opt. Soc. Am. B  16, 70–73 (1999).
    [Crossref]
  5. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.  75, 1896–1899 (1994).
    [Crossref]
  6. M. Scalora, J. P. Dowling, M. J. Bloemer, and C. M. Bowden, “The photonic band edge optical diode,” J. Appl. Phys.  76, 2023–2026 (1994).
    [Crossref]
  7. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett.  73, 1368–1371 (1994).
    [Crossref] [PubMed]
  8. M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: Ultrawide bandwidth optical limiting,” Phys. Rev. E  73, 016603 (2006).
  9. B. Y. Soon and J. W. Haus, “One-dimensional photonic crystal optical limiter,” Opt. Express 11, 2007–2018 (2003).
    [Crossref] [PubMed]
  10. B. J. Eggleton, C. M. deSterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on nonlinear fiber grating,” Electron. Lett.  32, 2341–2342 (1996).
    [Crossref]
  11. J. W. Haus, B. Y. Soon, M. Scalora, C. Sibilia, and I. Mel’nikov, “Coupled-mode equations for Kerr media with periodically modulated linear and nonlinear coefficients,” J. Opt. Soc. Am. B  19, 2282–2291 (2002).
    [Crossref]
  12. J. W. Haus, B. Y. Soon, M. Scalora, M. Bloemer, C. Bowden, C. Sibilia, and A. Zheltikov, “Spatiotemporal instabilities for counter-propagating waves in periodic media,” Opt. Express 10, 114–121 (2002).
    [PubMed]
  13. M. Mitchell, Z. Chen, M. F. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett.  77, 490–493 (1996).
    [Crossref] [PubMed]
  14. X. Liu, J. W. Haus, and S. M. Shahriar, “Modulation instability for a relaxational Kerr medium,” Opt. Commun.  281, 2907–2912 (2008).
    [Crossref]
  15. M.-F. Shih, C.-C. Jeng, F.-W. Sheu, and C.-Y. Lin, “Spatiotemporal Optical Modulation Instability of Coherent Light in Noninstantaneous Nonlinear Media,” Phys. Rev. Lett.  88, 133902 (2002).
    [Crossref] [PubMed]

2008 (1)

X. Liu, J. W. Haus, and S. M. Shahriar, “Modulation instability for a relaxational Kerr medium,” Opt. Commun.  281, 2907–2912 (2008).
[Crossref]

2006 (1)

M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: Ultrawide bandwidth optical limiting,” Phys. Rev. E  73, 016603 (2006).

2003 (1)

2002 (3)

M.-F. Shih, C.-C. Jeng, F.-W. Sheu, and C.-Y. Lin, “Spatiotemporal Optical Modulation Instability of Coherent Light in Noninstantaneous Nonlinear Media,” Phys. Rev. Lett.  88, 133902 (2002).
[Crossref] [PubMed]

J. W. Haus, B. Y. Soon, M. Scalora, M. Bloemer, C. Bowden, C. Sibilia, and A. Zheltikov, “Spatiotemporal instabilities for counter-propagating waves in periodic media,” Opt. Express 10, 114–121 (2002).
[PubMed]

J. W. Haus, B. Y. Soon, M. Scalora, C. Sibilia, and I. Mel’nikov, “Coupled-mode equations for Kerr media with periodically modulated linear and nonlinear coefficients,” J. Opt. Soc. Am. B  19, 2282–2291 (2002).
[Crossref]

1999 (1)

P. Tran, “All-optical switching with a nonlinear chiral photonic bandgap structure,” J. Opt. Soc. Am. B  16, 70–73 (1999).
[Crossref]

1997 (1)

T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, and E. W. Van Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt.  36, 4110–4122 (1997).
[Crossref] [PubMed]

1996 (3)

B. J. Eggleton, C. M. deSterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on nonlinear fiber grating,” Electron. Lett.  32, 2341–2342 (1996).
[Crossref]

M. Mitchell, Z. Chen, M. F. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett.  77, 490–493 (1996).
[Crossref] [PubMed]

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt.  5, 701–707 (1996).
[Crossref]

1994 (3)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.  75, 1896–1899 (1994).
[Crossref]

M. Scalora, J. P. Dowling, M. J. Bloemer, and C. M. Bowden, “The photonic band edge optical diode,” J. Appl. Phys.  76, 2023–2026 (1994).
[Crossref]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett.  73, 1368–1371 (1994).
[Crossref] [PubMed]

1993 (1)

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett.  63, 1880–1882 (1993).
[Crossref]

Bartoli, F.

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt.  5, 701–707 (1996).
[Crossref]

Bartoli, F. J.

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett.  63, 1880–1882 (1993).
[Crossref]

Bloemer, M.

Bloemer, M. J.

M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: Ultrawide bandwidth optical limiting,” Phys. Rev. E  73, 016603 (2006).

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett.  73, 1368–1371 (1994).
[Crossref] [PubMed]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.  75, 1896–1899 (1994).
[Crossref]

M. Scalora, J. P. Dowling, M. J. Bloemer, and C. M. Bowden, “The photonic band edge optical diode,” J. Appl. Phys.  76, 2023–2026 (1994).
[Crossref]

Bowden, C.

Bowden, C. M.

M. Scalora, J. P. Dowling, M. J. Bloemer, and C. M. Bowden, “The photonic band edge optical diode,” J. Appl. Phys.  76, 2023–2026 (1994).
[Crossref]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett.  73, 1368–1371 (1994).
[Crossref] [PubMed]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.  75, 1896–1899 (1994).
[Crossref]

Boyle, M.

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt.  5, 701–707 (1996).
[Crossref]

Chen, Z.

M. Mitchell, Z. Chen, M. F. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett.  77, 490–493 (1996).
[Crossref] [PubMed]

D’Aguanno, G.

M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: Ultrawide bandwidth optical limiting,” Phys. Rev. E  73, 016603 (2006).

deSterke, C. M.

B. J. Eggleton, C. M. deSterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on nonlinear fiber grating,” Electron. Lett.  32, 2341–2342 (1996).
[Crossref]

Dogariu, A.

T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, and E. W. Van Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt.  36, 4110–4122 (1997).
[Crossref] [PubMed]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.  75, 1896–1899 (1994).
[Crossref]

M. Scalora, J. P. Dowling, M. J. Bloemer, and C. M. Bowden, “The photonic band edge optical diode,” J. Appl. Phys.  76, 2023–2026 (1994).
[Crossref]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett.  73, 1368–1371 (1994).
[Crossref] [PubMed]

Eggleton, B. J.

B. J. Eggleton, C. M. deSterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on nonlinear fiber grating,” Electron. Lett.  32, 2341–2342 (1996).
[Crossref]

Flom, S.

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt.  5, 701–707 (1996).
[Crossref]

Hagan, D. J.

T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, and E. W. Van Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt.  36, 4110–4122 (1997).
[Crossref] [PubMed]

Haus, J. W.

X. Liu, J. W. Haus, and S. M. Shahriar, “Modulation instability for a relaxational Kerr medium,” Opt. Commun.  281, 2907–2912 (2008).
[Crossref]

B. Y. Soon and J. W. Haus, “One-dimensional photonic crystal optical limiter,” Opt. Express 11, 2007–2018 (2003).
[Crossref] [PubMed]

J. W. Haus, B. Y. Soon, M. Scalora, C. Sibilia, and I. Mel’nikov, “Coupled-mode equations for Kerr media with periodically modulated linear and nonlinear coefficients,” J. Opt. Soc. Am. B  19, 2282–2291 (2002).
[Crossref]

J. W. Haus, B. Y. Soon, M. Scalora, M. Bloemer, C. Bowden, C. Sibilia, and A. Zheltikov, “Spatiotemporal instabilities for counter-propagating waves in periodic media,” Opt. Express 10, 114–121 (2002).
[PubMed]

Jeng, C.-C.

M.-F. Shih, C.-C. Jeng, F.-W. Sheu, and C.-Y. Lin, “Spatiotemporal Optical Modulation Instability of Coherent Light in Noninstantaneous Nonlinear Media,” Phys. Rev. Lett.  88, 133902 (2002).
[Crossref] [PubMed]

Larciprete, M. C.

M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: Ultrawide bandwidth optical limiting,” Phys. Rev. E  73, 016603 (2006).

Lin, C.-Y.

M.-F. Shih, C.-C. Jeng, F.-W. Sheu, and C.-Y. Lin, “Spatiotemporal Optical Modulation Instability of Coherent Light in Noninstantaneous Nonlinear Media,” Phys. Rev. Lett.  88, 133902 (2002).
[Crossref] [PubMed]

Liu, X.

X. Liu, J. W. Haus, and S. M. Shahriar, “Modulation instability for a relaxational Kerr medium,” Opt. Commun.  281, 2907–2912 (2008).
[Crossref]

Mattiucci, N.

M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: Ultrawide bandwidth optical limiting,” Phys. Rev. E  73, 016603 (2006).

Mel’nikov, I.

J. W. Haus, B. Y. Soon, M. Scalora, C. Sibilia, and I. Mel’nikov, “Coupled-mode equations for Kerr media with periodically modulated linear and nonlinear coefficients,” J. Opt. Soc. Am. B  19, 2282–2291 (2002).
[Crossref]

Mitchell, M.

M. Mitchell, Z. Chen, M. F. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett.  77, 490–493 (1996).
[Crossref] [PubMed]

Pong, R.

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt.  5, 701–707 (1996).
[Crossref]

Pong, R. G. S.

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett.  63, 1880–1882 (1993).
[Crossref]

Said, A. A.

T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, and E. W. Van Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt.  36, 4110–4122 (1997).
[Crossref] [PubMed]

Scalora, M.

M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: Ultrawide bandwidth optical limiting,” Phys. Rev. E  73, 016603 (2006).

J. W. Haus, B. Y. Soon, M. Scalora, M. Bloemer, C. Bowden, C. Sibilia, and A. Zheltikov, “Spatiotemporal instabilities for counter-propagating waves in periodic media,” Opt. Express 10, 114–121 (2002).
[PubMed]

J. W. Haus, B. Y. Soon, M. Scalora, C. Sibilia, and I. Mel’nikov, “Coupled-mode equations for Kerr media with periodically modulated linear and nonlinear coefficients,” J. Opt. Soc. Am. B  19, 2282–2291 (2002).
[Crossref]

M. Scalora, J. P. Dowling, M. J. Bloemer, and C. M. Bowden, “The photonic band edge optical diode,” J. Appl. Phys.  76, 2023–2026 (1994).
[Crossref]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett.  73, 1368–1371 (1994).
[Crossref] [PubMed]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.  75, 1896–1899 (1994).
[Crossref]

Segev, M.

M. Mitchell, Z. Chen, M. F. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett.  77, 490–493 (1996).
[Crossref] [PubMed]

Shahriar, S. M.

X. Liu, J. W. Haus, and S. M. Shahriar, “Modulation instability for a relaxational Kerr medium,” Opt. Commun.  281, 2907–2912 (2008).
[Crossref]

Sheu, F.-W.

M.-F. Shih, C.-C. Jeng, F.-W. Sheu, and C.-Y. Lin, “Spatiotemporal Optical Modulation Instability of Coherent Light in Noninstantaneous Nonlinear Media,” Phys. Rev. Lett.  88, 133902 (2002).
[Crossref] [PubMed]

Shih, M. F.

M. Mitchell, Z. Chen, M. F. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett.  77, 490–493 (1996).
[Crossref] [PubMed]

Shih, M.-F.

M.-F. Shih, C.-C. Jeng, F.-W. Sheu, and C.-Y. Lin, “Spatiotemporal Optical Modulation Instability of Coherent Light in Noninstantaneous Nonlinear Media,” Phys. Rev. Lett.  88, 133902 (2002).
[Crossref] [PubMed]

Shirk, J.

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt.  5, 701–707 (1996).
[Crossref]

Shirk, J. S.

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett.  63, 1880–1882 (1993).
[Crossref]

Sibilia, C.

J. W. Haus, B. Y. Soon, M. Scalora, C. Sibilia, and I. Mel’nikov, “Coupled-mode equations for Kerr media with periodically modulated linear and nonlinear coefficients,” J. Opt. Soc. Am. B  19, 2282–2291 (2002).
[Crossref]

J. W. Haus, B. Y. Soon, M. Scalora, M. Bloemer, C. Bowden, C. Sibilia, and A. Zheltikov, “Spatiotemporal instabilities for counter-propagating waves in periodic media,” Opt. Express 10, 114–121 (2002).
[PubMed]

Sipe, J. E.

B. J. Eggleton, C. M. deSterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on nonlinear fiber grating,” Electron. Lett.  32, 2341–2342 (1996).
[Crossref]

Slusher, R. E.

B. J. Eggleton, C. M. deSterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on nonlinear fiber grating,” Electron. Lett.  32, 2341–2342 (1996).
[Crossref]

Snow, A.

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt.  5, 701–707 (1996).
[Crossref]

Snow, A. W.

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett.  63, 1880–1882 (1993).
[Crossref]

Soon, B. Y.

Tran, P.

P. Tran, “All-optical switching with a nonlinear chiral photonic bandgap structure,” J. Opt. Soc. Am. B  16, 70–73 (1999).
[Crossref]

Van Stryland, E. W.

T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, and E. W. Van Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt.  36, 4110–4122 (1997).
[Crossref] [PubMed]

Xia, T.

T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, and E. W. Van Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt.  36, 4110–4122 (1997).
[Crossref] [PubMed]

Zheltikov, A.

Appl. Opt (1)

T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, and E. W. Van Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt.  36, 4110–4122 (1997).
[Crossref] [PubMed]

Appl. Phys. Lett (1)

J. S. Shirk, R. G. S. Pong, F. J. Bartoli, and A. W. Snow, “Optical limiter using a lead phthalocyanine,” Appl. Phys. Lett.  63, 1880–1882 (1993).
[Crossref]

Electron. Lett (1)

B. J. Eggleton, C. M. deSterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on nonlinear fiber grating,” Electron. Lett.  32, 2341–2342 (1996).
[Crossref]

J. Appl. Phys (2)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.  75, 1896–1899 (1994).
[Crossref]

M. Scalora, J. P. Dowling, M. J. Bloemer, and C. M. Bowden, “The photonic band edge optical diode,” J. Appl. Phys.  76, 2023–2026 (1994).
[Crossref]

J. Opt. Soc. Am (2)

J. W. Haus, B. Y. Soon, M. Scalora, C. Sibilia, and I. Mel’nikov, “Coupled-mode equations for Kerr media with periodically modulated linear and nonlinear coefficients,” J. Opt. Soc. Am. B  19, 2282–2291 (2002).
[Crossref]

P. Tran, “All-optical switching with a nonlinear chiral photonic bandgap structure,” J. Opt. Soc. Am. B  16, 70–73 (1999).
[Crossref]

Opt. Commun (1)

X. Liu, J. W. Haus, and S. M. Shahriar, “Modulation instability for a relaxational Kerr medium,” Opt. Commun.  281, 2907–2912 (2008).
[Crossref]

Opt. Express (2)

Phys. Rev (1)

M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: Ultrawide bandwidth optical limiting,” Phys. Rev. E  73, 016603 (2006).

Phys. Rev. Lett (3)

M.-F. Shih, C.-C. Jeng, F.-W. Sheu, and C.-Y. Lin, “Spatiotemporal Optical Modulation Instability of Coherent Light in Noninstantaneous Nonlinear Media,” Phys. Rev. Lett.  88, 133902 (2002).
[Crossref] [PubMed]

M. Mitchell, Z. Chen, M. F. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett.  77, 490–493 (1996).
[Crossref] [PubMed]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett.  73, 1368–1371 (1994).
[Crossref] [PubMed]

Pure Appl. Opt (1)

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt.  5, 701–707 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Transmission curve of the PBG structure and the spectrum of the input pulse.

Fig. 2(a).
Fig. 2(a).

A snapshot of the pulse evolution through an instantaneous nonlinear medium placed in a PBG. Top frame is the initial pulse, which is launched outside the medium. The central frame and bottom frame are the forward propagating and backward propagating pulse, respectively. The initial amplitude of the wave is A = 0.75.

Fig. 2(b).
Fig. 2(b).

A snapshot of the forward- and backward waves with a non-instantaneous nonlinear medium embedded in the PBG. The relaxation time is τ 1 = 0.1 and the amplitude is the same as in Fig. 2(a).

Fig. 2(c).
Fig. 2(c).

A snapshot of the forward- and backward waves with a non-instantaneous nonlinear medium embedded in the PBG. The relaxation time is τ 2 = 1 and the amplitude is the same as in Fig. (2a).

Fig. 2(d).
Fig. 2(d).

A snapshot of the forward- and backward waves with a non-instantaneous nonlinear medium embedded in the PBG. The relaxation time is τ 3 = 4 and the amplitude is the same as in Fig. 2(a).

Fig. 3.
Fig. 3.

3-D plot of the forward propagating pulse.

Fig. 4.
Fig. 4.

Aperture placed in the Fraunhofer regime to block out energy flow (A = 0.75,τ = 1). The Fresnel number is F =107.

Fig. 5.
Fig. 5.

Transmission curves for PBG structures with different response time.

Tables (1)

Tables Icon

Table 1, The figures of merit for instantaneous and non-instantaneous nonlinear media embedded in a PBG optical limiter.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

1 v E f t = E f z + i F Δ 2 E f + E f + E b + N f E f ,
1 v E b t = E b z + i F Δ 2 E b + E b + E f + N b E b ,
N f t = 1 τ ( N f + E f 2 + 2 E b 2 ) ,
N b t = 1 τ ( N b + E b 2 + 2 E f 2 ) ,
E f ( x , 0 , t ) = E f ( x , t )
E b ( x , L , t ) = 0
dU dt = ( L ˜ + N ˜ ) U ,
U = ( E f , E b ) T ,
L ˜ = z + i F Δ 2 + 0 0 z + i F Δ 2 + + ( 0 0 ) = V ˜ + K ˜ ,
N ˜ = N f 0 0 N b .
U L ( t + dt 2 ) = exp ( V dt 2 ) exp ( K dt 2 ) U ( t )
N f ( x , z , t ) = 1 τ t e ( t t ' ) τ ( 2 E b ( x , z , t ' ) 2 + E f ( x , z , t ' ) 2 ) dt '
N b ( x , z , t ) = 1 τ t e ( t t ' ) τ ( 2 E f ( x , z , t ' ) 2 + E b ( x , z , t ' ) 2 ) dt '
U N ( t + dt 2 ) = exp ( Ndt ) U ( t ) .
U ( t + dt ) = exp ( V dt 2 ) exp ( K dt 2 ) exp ( Ndt ) exp ( V dt 2 ) exp ( K dt 2 ) U ( t )
E f ( x , z , 0 ) = A exp ( ( z z 0 ) 2 / σ z 2 ) exp ( x 2 / σ x 2 )
E b ( x , z , 0 ) = 0
TDR = ψ = T max T min
TCO = T 80 % T 20 % T 80 % + T 20 %

Metrics