Abstract

We report a new approach for the fabrication of nanowires: the direct drawing of optical fibers with air suspended nanoscale cores. The fibers were made from lead silicate glass using the extrusion technique for preform and jacket tube fabrication. Fibers with core diameters in the range of 420–720 nm and practical outer diameters of 110–200 μm were produced, the smallest core sizes produced to date within optical fibers without tapering. We explored the impact of the core size on the effective mode area and propagation loss of these suspended nanowires relative to circular nanowires reported to date. As for circular nanowires, the propagation loss of these suspended nanowires is dominated by surface roughness induced scattering.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
    [CrossRef]
  2. J. Lou, L. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-2135.
    [CrossRef] [PubMed]
  3. K. J. Rowland, S. Afshar V., and T. M. Monro, "Nonlinearity enhancement of filled microstructured fibers operating in the nanowire regime," in Proc. Optical Fiber Communication Conference (Anaheim, 2006), paper OTuH3.
  4. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16, 1300-1320 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1300.
    [CrossRef] [PubMed]
  5. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, "Detection of quantum-dot labeled proteins using soft glass microstructured optical fibers," Opt. Express 15, 17819-17826 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17819.
    [CrossRef] [PubMed]
  6. S. Afshar V., S. C. Warren-Smith, and T. M. Monro, "Enhancement of fluorescence-based sensing using microstructured optical fibers," Opt. Express 15, 17891-17901 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17891.
    [CrossRef]
  7. L. Dong, B. K. Thomas, and L. Fu, "Highly nonlinear silica suspended core fibers," Opt. Express 16, 16423-16430 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16423.
    [CrossRef] [PubMed]
  8. T. G. Euser, J. S. Y. Chen, M. Scharrer, and P. St. J. Russell, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008).
    [CrossRef]
  9. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, "Suspended core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503, (2007).
    [CrossRef]
  10. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E.  Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, "High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation," J. Lightwave Technol.  24, 183-190 (2006).
    [CrossRef]
  11. D.I. Yeon, E. C. Magi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B J. Eggleton, "Low-energy threshold supercontinuum generated in highly nonlinear As2Se3 chalcogenide submicron tapers," in Proc. CLEO/QELS Conference (San Jose, 2008), paper CMDD6.
  12. E. C. Magi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, "Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Express 15, 10324-10329 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-10324.
    [CrossRef] [PubMed]
  13. V. Finazzi, A theoretical study into the fundamental design limits of devices based on one- and two-dimensional structured fibres (PhD thesis, University of Southampton, 2003).
    [PubMed]
  14. G. Brambilla, V. Finazzi, and D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258-2263 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-10-2258.
    [CrossRef] [PubMed]
  15. G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2006).
    [CrossRef]
  16. G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterisation," Electron. Lett. 42, 517-519 (2006).
    [CrossRef]
  17. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature  426, 816-819 92003).
    [CrossRef] [PubMed]
  18. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-1-82.
    [CrossRef] [PubMed]
  19. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nanoletters 2, 259-262 (2005).
    [CrossRef]
  20. G. Vienne, Y. Li, and L. Tong, "Microfiber knot resonator in polymer matrix (Invited)," IEICE Trans. Electron.E 90-C, 415-421 (2007).
    [CrossRef]
  21. F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7888.
    [CrossRef] [PubMed]
  22. N. A. Wolchover, F. Luan, A. K. George, J. C. Knight, and F. G. Omenetto, "High nonlinearity glass photonic crystal nanowires," Opt. Express 15, 829-833 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-829.
    [CrossRef] [PubMed]
  23. Y. K. Lize, E. C. Magi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-14-3209.
    [CrossRef] [PubMed]
  24. X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson "Extruded single-mode, high-nonlinearity tellurite glass holey fiber," Electron. Lett. 41, 835-837 (2005).
    [CrossRef]
  25. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, D. J.  Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12, 5082-5087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5082.
    [CrossRef] [PubMed]
  26. H. Ebendorff-Heidepriem, and T. M. Monro, "Extrusion of complex preforms for microstructured optical fibers," Opt. Express 15, 15086-15092 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15086.
    [CrossRef] [PubMed]
  27. http://www.schott.com/advanced_optics/english/our_products/materials/optical_glass.html.
  28. W. Vogel, Glass Chemistry (Springer-Verlag Berlin Heidelberg New York, 1994), pp. 421-423.
  29. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, San Diego, 2000).
  30. H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced loss in extruded soft glass microstructured optical fibre," Electron. Lett. 43, 1343-1345 (2007).
    [CrossRef]
  31. M. Sumetsky, "How thin can a microfiber be and still guide light?," Opt. Lett. 31, 870-872 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-7-870.
    [CrossRef] [PubMed]
  32. M. Sumetsky, "How thin can a microfiber be and still guide light? Errata," Opt. Lett. 31, 3577-3578 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-24-3577.
    [CrossRef]
  33. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Loss in solid-core photonic crystal fibers due to interface roughness scattering," Opt. Express 13, 7779-7793 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-7779.
    [CrossRef] [PubMed]
  34. G. Zhai, and L. Tong, "Roughness-induced radiation losses in optical micro or nanofibers," Opt. Express 15, 13805-13816 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13805.
    [CrossRef]
  35. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Thomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibers," Opt. Express 13, 236-244, (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-236.
    [CrossRef] [PubMed]
  36. P. K. Gupta, D. Inniss, C. R. Kurkjian, and Q. Zhong, "Nanoscale roughness of oxide glass surfaces," J. Non-Cryst. Solids 262, 200-206 (2000).
    [CrossRef]
  37. E. Radlein, and G. H. Frischat, "Atomic force microscopy as a tool to correlate nanostructure to properties of glasses," J. Non-Cryst. Solids 222, 69-82 (1997)
  38. P. W. France, Fluoride glass optical fibres (CRC Press, 1990).
  39. N. P. Bansal, and R. H. Doremus, J. Am. Ceram. Soc. 67, C197-C197 (1984).
    [CrossRef]

2008 (3)

2007 (9)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, "Suspended core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503, (2007).
[CrossRef]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, "Detection of quantum-dot labeled proteins using soft glass microstructured optical fibers," Opt. Express 15, 17819-17826 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17819.
[CrossRef] [PubMed]

S. Afshar V., S. C. Warren-Smith, and T. M. Monro, "Enhancement of fluorescence-based sensing using microstructured optical fibers," Opt. Express 15, 17891-17901 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17891.
[CrossRef]

G. Vienne, Y. Li, and L. Tong, "Microfiber knot resonator in polymer matrix (Invited)," IEICE Trans. Electron.E 90-C, 415-421 (2007).
[CrossRef]

F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7888.
[CrossRef] [PubMed]

N. A. Wolchover, F. Luan, A. K. George, J. C. Knight, and F. G. Omenetto, "High nonlinearity glass photonic crystal nanowires," Opt. Express 15, 829-833 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-829.
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, and T. M. Monro, "Extrusion of complex preforms for microstructured optical fibers," Opt. Express 15, 15086-15092 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15086.
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced loss in extruded soft glass microstructured optical fibre," Electron. Lett. 43, 1343-1345 (2007).
[CrossRef]

E. C. Magi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, "Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Express 15, 10324-10329 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-10324.
[CrossRef] [PubMed]

2006 (6)

2005 (6)

2004 (3)

2001 (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

2000 (1)

P. K. Gupta, D. Inniss, C. R. Kurkjian, and Q. Zhong, "Nanoscale roughness of oxide glass surfaces," J. Non-Cryst. Solids 262, 200-206 (2000).
[CrossRef]

1997 (1)

E. Radlein, and G. H. Frischat, "Atomic force microscopy as a tool to correlate nanostructure to properties of glasses," J. Non-Cryst. Solids 222, 69-82 (1997)

1984 (1)

N. P. Bansal, and R. H. Doremus, J. Am. Ceram. Soc. 67, C197-C197 (1984).
[CrossRef]

Asimakis, S.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Bansal, N. P.

N. P. Bansal, and R. H. Doremus, J. Am. Ceram. Soc. 67, C197-C197 (1984).
[CrossRef]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Birks, T. A.

Bolger, J. A.

Brambilla, G.

F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7888.
[CrossRef] [PubMed]

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2006).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterisation," Electron. Lett. 42, 517-519 (2006).
[CrossRef]

G. Brambilla, V. Finazzi, and D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258-2263 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-10-2258.
[CrossRef] [PubMed]

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Chen, J. S. Y.

T. G. Euser, J. S. Y. Chen, M. Scharrer, and P. St. J. Russell, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

Chen, X.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nanoletters 2, 259-262 (2005).
[CrossRef]

Couny, F.

Dong, L.

Doremus, R. H.

N. P. Bansal, and R. H. Doremus, J. Am. Ceram. Soc. 67, C197-C197 (1984).
[CrossRef]

Ebendorff-Heidepriem, H.

Eggleton, B. J.

Euser, T. G.

T. G. Euser, J. S. Y. Chen, M. Scharrer, and P. St. J. Russell, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

Farr, L.

Feng, X.

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E.  Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, "High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation," J. Lightwave Technol.  24, 183-190 (2006).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterisation," Electron. Lett. 42, 517-519 (2006).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2006).
[CrossRef]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson "Extruded single-mode, high-nonlinearity tellurite glass holey fiber," Electron. Lett. 41, 835-837 (2005).
[CrossRef]

Finazzi, V.

Foster, M. A.

Frampton, K.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson "Extruded single-mode, high-nonlinearity tellurite glass holey fiber," Electron. Lett. 41, 835-837 (2005).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, D. J.  Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12, 5082-5087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5082.
[CrossRef] [PubMed]

Frampton, K. E.

Frischat, G. H.

E. Radlein, and G. H. Frischat, "Atomic force microscopy as a tool to correlate nanostructure to properties of glasses," J. Non-Cryst. Solids 222, 69-82 (1997)

Fu, L.

Fu, L. B.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Gaeta, A. L.

Gattass, R. R.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nanoletters 2, 259-262 (2005).
[CrossRef]

George, A. K.

Gupta, P. K.

P. K. Gupta, D. Inniss, C. R. Kurkjian, and Q. Zhong, "Nanoscale roughness of oxide glass surfaces," J. Non-Cryst. Solids 262, 200-206 (2000).
[CrossRef]

He, J.

He, S.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nanoletters 2, 259-262 (2005).
[CrossRef]

Hoffmann, P.

Horak, P.

Hu, L.

Inniss, D.

P. K. Gupta, D. Inniss, C. R. Kurkjian, and Q. Zhong, "Nanoscale roughness of oxide glass surfaces," J. Non-Cryst. Solids 262, 200-206 (2000).
[CrossRef]

Knight, J. C.

Koizumi, F.

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2006).
[CrossRef]

Kurkjian, C. R.

P. K. Gupta, D. Inniss, C. R. Kurkjian, and Q. Zhong, "Nanoscale roughness of oxide glass surfaces," J. Non-Cryst. Solids 262, 200-206 (2000).
[CrossRef]

Lamont, M. R. E.

Leong, J. Y. Y.

Li, Y.

G. Vienne, Y. Li, and L. Tong, "Microfiber knot resonator in polymer matrix (Invited)," IEICE Trans. Electron.E 90-C, 415-421 (2007).
[CrossRef]

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced loss in extruded soft glass microstructured optical fibre," Electron. Lett. 43, 1343-1345 (2007).
[CrossRef]

Lipson, M.

Liu, L.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nanoletters 2, 259-262 (2005).
[CrossRef]

Lize, Y. K.

Lou, J.

Luan, F.

Magi, E. C.

Mangan, B. J.

Mason, M. W.

Mazur, E.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nanoletters 2, 259-262 (2005).
[CrossRef]

Monro, T. M.

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, "Detection of quantum-dot labeled proteins using soft glass microstructured optical fibers," Opt. Express 15, 17819-17826 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17819.
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, and T. M. Monro, "Extrusion of complex preforms for microstructured optical fibers," Opt. Express 15, 15086-15092 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15086.
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced loss in extruded soft glass microstructured optical fibre," Electron. Lett. 43, 1343-1345 (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E.  Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, "High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation," J. Lightwave Technol.  24, 183-190 (2006).
[CrossRef]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson "Extruded single-mode, high-nonlinearity tellurite glass holey fiber," Electron. Lett. 41, 835-837 (2005).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, D. J.  Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12, 5082-5087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5082.
[CrossRef] [PubMed]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Moore, R. C.

Nguyen, H. C.

Omenetto, F. G.

Petropoulos, P.

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, "Suspended core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503, (2007).
[CrossRef]

Price, J. H. V.

Qiu, J.

Radlein, E.

E. Radlein, and G. H. Frischat, "Atomic force microscopy as a tool to correlate nanostructure to properties of glasses," J. Non-Cryst. Solids 222, 69-82 (1997)

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, "Suspended core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503, (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E.  Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, "High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation," J. Lightwave Technol.  24, 183-190 (2006).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2006).
[CrossRef]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson "Extruded single-mode, high-nonlinearity tellurite glass holey fiber," Electron. Lett. 41, 835-837 (2005).
[CrossRef]

G. Brambilla, V. Finazzi, and D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258-2263 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-10-2258.
[CrossRef] [PubMed]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Richardson, D. J.

Roberts, P. J.

Ruan, Y.

Russell, P. St. J.

Sabert, H.

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, "Suspended core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503, (2007).
[CrossRef]

Scharrer, M.

T. G. Euser, J. S. Y. Chen, M. Scharrer, and P. St. J. Russell, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

Schartner, E. P.

Shen, Y.

Steinvurzel, P.

Sumetsky, M.

Ta’eed, V. G.

Thomas, B. K.

Thomlinson, A.

Tong, L.

Turner, A. C.

Vienne, G.

G. Vienne, Y. Li, and L. Tong, "Microfiber knot resonator in polymer matrix (Invited)," IEICE Trans. Electron.E 90-C, 415-421 (2007).
[CrossRef]

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, "Suspended core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503, (2007).
[CrossRef]

Williams, D. P.

Wolchover, N. A.

Xu, F.

F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7888.
[CrossRef] [PubMed]

G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterisation," Electron. Lett. 42, 517-519 (2006).
[CrossRef]

Yang, Q.

Ye, Z.

Yeom, D. I.

Zhai, G.

Zhang, J.

Zhong, Q.

P. K. Gupta, D. Inniss, C. R. Kurkjian, and Q. Zhong, "Nanoscale roughness of oxide glass surfaces," J. Non-Cryst. Solids 262, 200-206 (2000).
[CrossRef]

E (1)

G. Vienne, Y. Li, and L. Tong, "Microfiber knot resonator in polymer matrix (Invited)," IEICE Trans. Electron.E 90-C, 415-421 (2007).
[CrossRef]

Electron. Lett. (4)

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced loss in extruded soft glass microstructured optical fibre," Electron. Lett. 43, 1343-1345 (2007).
[CrossRef]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson "Extruded single-mode, high-nonlinearity tellurite glass holey fiber," Electron. Lett. 41, 835-837 (2005).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2006).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterisation," Electron. Lett. 42, 517-519 (2006).
[CrossRef]

J. Am. Ceram. Soc. (1)

N. P. Bansal, and R. H. Doremus, J. Am. Ceram. Soc. 67, C197-C197 (1984).
[CrossRef]

J. Appl. Phys. (1)

T. G. Euser, J. S. Y. Chen, M. Scharrer, and P. St. J. Russell, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (2)

P. K. Gupta, D. Inniss, C. R. Kurkjian, and Q. Zhong, "Nanoscale roughness of oxide glass surfaces," J. Non-Cryst. Solids 262, 200-206 (2000).
[CrossRef]

E. Radlein, and G. H. Frischat, "Atomic force microscopy as a tool to correlate nanostructure to properties of glasses," J. Non-Cryst. Solids 222, 69-82 (1997)

Meas. Sci. Technol. (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Nanoletters (1)

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nanoletters 2, 259-262 (2005).
[CrossRef]

Opt. Eng. (1)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, "Suspended core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503, (2007).
[CrossRef]

Opt. Express (16)

G. Brambilla, V. Finazzi, and D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258-2263 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-10-2258.
[CrossRef] [PubMed]

Y. K. Lize, E. C. Magi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-14-3209.
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, D. J.  Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12, 5082-5087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5082.
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Thomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibers," Opt. Express 13, 236-244, (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-236.
[CrossRef] [PubMed]

J. Lou, L. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-2135.
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Loss in solid-core photonic crystal fibers due to interface roughness scattering," Opt. Express 13, 7779-7793 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-7779.
[CrossRef] [PubMed]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-1-82.
[CrossRef] [PubMed]

N. A. Wolchover, F. Luan, A. K. George, J. C. Knight, and F. G. Omenetto, "High nonlinearity glass photonic crystal nanowires," Opt. Express 15, 829-833 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-829.
[CrossRef] [PubMed]

F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7888.
[CrossRef] [PubMed]

E. C. Magi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, "Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Express 15, 10324-10329 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-10324.
[CrossRef] [PubMed]

G. Zhai, and L. Tong, "Roughness-induced radiation losses in optical micro or nanofibers," Opt. Express 15, 13805-13816 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13805.
[CrossRef]

H. Ebendorff-Heidepriem, and T. M. Monro, "Extrusion of complex preforms for microstructured optical fibers," Opt. Express 15, 15086-15092 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15086.
[CrossRef] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, "Detection of quantum-dot labeled proteins using soft glass microstructured optical fibers," Opt. Express 15, 17819-17826 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17819.
[CrossRef] [PubMed]

S. Afshar V., S. C. Warren-Smith, and T. M. Monro, "Enhancement of fluorescence-based sensing using microstructured optical fibers," Opt. Express 15, 17891-17901 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17891.
[CrossRef]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16, 1300-1320 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1300.
[CrossRef] [PubMed]

L. Dong, B. K. Thomas, and L. Fu, "Highly nonlinear silica suspended core fibers," Opt. Express 16, 16423-16430 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16423.
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (8)

D.I. Yeon, E. C. Magi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B J. Eggleton, "Low-energy threshold supercontinuum generated in highly nonlinear As2Se3 chalcogenide submicron tapers," in Proc. CLEO/QELS Conference (San Jose, 2008), paper CMDD6.

V. Finazzi, A theoretical study into the fundamental design limits of devices based on one- and two-dimensional structured fibres (PhD thesis, University of Southampton, 2003).
[PubMed]

K. J. Rowland, S. Afshar V., and T. M. Monro, "Nonlinearity enhancement of filled microstructured fibers operating in the nanowire regime," in Proc. Optical Fiber Communication Conference (Anaheim, 2006), paper OTuH3.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature  426, 816-819 92003).
[CrossRef] [PubMed]

P. W. France, Fluoride glass optical fibres (CRC Press, 1990).

http://www.schott.com/advanced_optics/english/our_products/materials/optical_glass.html.

W. Vogel, Glass Chemistry (Springer-Verlag Berlin Heidelberg New York, 1994), pp. 421-423.

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, San Diego, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Cross sectional images of preform and fiber, cross sectional structure of JASR configuration and definition of several cross sectional features.

Fig. 2.
Fig. 2.

Cross sectional images of preforms, canes and fibers made using F2 glass. The outer diameter of all three fibers is 125 μm. The measured core diameter for fibers #1, #2a and #2b is 1.6 μm, 1.4 μm and 0.48 μm, respectively.

Fig. 3.
Fig. 3.

Cross sectional images of the four fiber bands of fiber #2b. The values for the core size refer to the measured core diameter.

Fig. 4.
Fig. 4.

Effective mode area (Aeff) of an air suspended rod (ASR) made of F2 glass [27] with a circular core and suspended core fiber (SCF) with a triangular core: (a) as a function of the effective core diameter, (b) as a function of the ratio of effective core diameter to wavelength.

Fig. 5.
Fig. 5.

Loss spectra for the bare fiber and suspended core fibers #2a and #2b made using F2 glass. The data points refer to the bulk glass loss calculated using the transmission data given in the Schott catalogue [27]. Modeled confinement loss for the two smallest core diameter fibers are shown by dashed lines.

Fig. 6.
Fig. 6.

(a) Contour plot of the JASR rair/reff ratios for which the confinement loss is <0.1 dB/m as a function of effective core diameter and wavelength. (b) JASR rair/reff ratios for which the confinement loss is <0.1 dB/m as a function of deff/λ, within the wavelength range of 500–1500 nm.

Fig. 7.
Fig. 7.

(a) Loss at 633 nm and 1550 nm for a range of nanowires (free-standing and suspended) having different size and made using different glasses. (b) Selected data sets for linear regression of the logarithm of the loss as a function of the logarithm of the effective core diameter.

Tables (1)

Tables Icon

Table 1: Dimensions of the cross sectional features of preforms, canes and fibers made from F2 glass.

Metrics