Abstract

An integrated optical modulator, which consists of a dual-sideband suppressed carrier (DSB-SC) modulator cascaded with a single-sideband (SSB) modulator, is proposed for signal up-conversion over Radio-on-Fiber. Utilizing a single-drive domain inverted structure in both modulators, balanced modulations were obtained without complicated radio frequency (RF) driving circuits and delicate RF phase adjustments. Intermediate frequency (IF) band signal was up-conversed to 60GHz band by using the fabricated device and was transmitted over optical fiber. Experiment results show that the proposed device enables millimeter wave generation and signal transmission without any power penalty caused by chromatic dispersion.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kamisaka, T. Kuri, and K. Kitayama, " Simultaeous modulation and fiber-optic transmission of 10Gb/s baseband and 60GHz band radio signals on a single wavelength," IEEE Trans. Microwave Theory Tech. 49,2013-2017 (2001).
    [CrossRef]
  2. A. Martinez, V. Polo, and J. Marti, "Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network," IEEE Trans. Microwave Theory and Tech. 49,2018-2024 (2001).
    [CrossRef]
  3. X. Wang, N. J. Gomes, L. Gomez-Rojaz, P. A. Davies, and D. Wake, "Indirect optically injection-locked oscillator for millimeter-wave communication system," IEEE Trans. Microwave Theory and Tech. 48,2596-2603 (2000).
    [CrossRef]
  4. A. Martinez, V. Polo, H. Pfrommer, and J. Marti, "Dispersion-tolerant transmission of QPSK and M-QAM signals simultaneously modulated at 1 and 38GHz over a hybrid fiber-radio link," IEEE Photon. Tech. Lett. 16, 659-661 (2004).
    [CrossRef]
  5. Q1. H. Furuta, M. Maeda, T. Nomoto, J. Kobayashi, and S. Kawasaki, "Optical Injection Locking of a 38-GHz-Band InP-Based HEMT Oscillator Using a 1.55-μm DSB-SC Modulated Lightwave," IEEE Microwave Wireless Components Lett. 11, 19-21 (2001).
    [CrossRef]
  6. F. Lucchi, D. Janner, M. Belmonte, S. Balsamo, M. Villa, S. Giurgiola, P. Vergani, and V. Pruneri., "Very low voltage single drive domain inverted LiNbO3 integrated electro-optic modulator," Opt. Express 15, 10739-10743 (2007).
    [CrossRef] [PubMed]
  7. W.-K. Kim, W.-J. Jeong, S.-W. Kwon, M.-K. Song, G.-S. Son, W.-S. Yang, H.-M. Lee, and H.-Y. Lee, "60GHz optical carrier generation using a domain reversed LiNbO3 optical modulator," J. Lightwave Technol. 26, 2269-2273 (2008).
    [CrossRef]
  8. R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, "Velocity-matching techniques for integrated optic traveling wave switch/modulators," IEEE J. Quantum Electron QE-20, 301-309 (1984).
    [CrossRef]
  9. W. Wang, R. Tavlykaev, and R. V. Ramaswamy, "Bandpass traveling-wave Mach-Zehnder modulator in LiNbO3 with Domain Reversal," IEEE Photon. Technol. Lett. 9, 610-612 (1997).
    [CrossRef]
  10. G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 22, 74-75 (1997).
    [CrossRef]
  11. R. A. Griffin, P. M. Lane, and J. J. O’Reilly, "Dispersion-tolerant subcarrier data modulation of optical millimeter-wave signals," Electron. Lett. 32, 2258-2260 (1999).
    [CrossRef]
  12. J. Yu, G. C. Kung, H. Muhammad, and J. Barry, "10 Gbit/s repeaterless transmission over 265 km SMF-28: using a modified duo-binary RZ signal generated by one dual-drive LiNbO3 modulator," Opt. Commun. 239, 99-101 (2004).
    [CrossRef]

2008

2007

2004

A. Martinez, V. Polo, H. Pfrommer, and J. Marti, "Dispersion-tolerant transmission of QPSK and M-QAM signals simultaneously modulated at 1 and 38GHz over a hybrid fiber-radio link," IEEE Photon. Tech. Lett. 16, 659-661 (2004).
[CrossRef]

J. Yu, G. C. Kung, H. Muhammad, and J. Barry, "10 Gbit/s repeaterless transmission over 265 km SMF-28: using a modified duo-binary RZ signal generated by one dual-drive LiNbO3 modulator," Opt. Commun. 239, 99-101 (2004).
[CrossRef]

2001

Q1. H. Furuta, M. Maeda, T. Nomoto, J. Kobayashi, and S. Kawasaki, "Optical Injection Locking of a 38-GHz-Band InP-Based HEMT Oscillator Using a 1.55-μm DSB-SC Modulated Lightwave," IEEE Microwave Wireless Components Lett. 11, 19-21 (2001).
[CrossRef]

T. Kamisaka, T. Kuri, and K. Kitayama, " Simultaeous modulation and fiber-optic transmission of 10Gb/s baseband and 60GHz band radio signals on a single wavelength," IEEE Trans. Microwave Theory Tech. 49,2013-2017 (2001).
[CrossRef]

A. Martinez, V. Polo, and J. Marti, "Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network," IEEE Trans. Microwave Theory and Tech. 49,2018-2024 (2001).
[CrossRef]

2000

X. Wang, N. J. Gomes, L. Gomez-Rojaz, P. A. Davies, and D. Wake, "Indirect optically injection-locked oscillator for millimeter-wave communication system," IEEE Trans. Microwave Theory and Tech. 48,2596-2603 (2000).
[CrossRef]

1999

R. A. Griffin, P. M. Lane, and J. J. O’Reilly, "Dispersion-tolerant subcarrier data modulation of optical millimeter-wave signals," Electron. Lett. 32, 2258-2260 (1999).
[CrossRef]

1997

W. Wang, R. Tavlykaev, and R. V. Ramaswamy, "Bandpass traveling-wave Mach-Zehnder modulator in LiNbO3 with Domain Reversal," IEEE Photon. Technol. Lett. 9, 610-612 (1997).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 22, 74-75 (1997).
[CrossRef]

1984

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, "Velocity-matching techniques for integrated optic traveling wave switch/modulators," IEEE J. Quantum Electron QE-20, 301-309 (1984).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 22, 74-75 (1997).
[CrossRef]

Alferness, R. C.

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, "Velocity-matching techniques for integrated optic traveling wave switch/modulators," IEEE J. Quantum Electron QE-20, 301-309 (1984).
[CrossRef]

Balsamo, S.

Barry, J.

J. Yu, G. C. Kung, H. Muhammad, and J. Barry, "10 Gbit/s repeaterless transmission over 265 km SMF-28: using a modified duo-binary RZ signal generated by one dual-drive LiNbO3 modulator," Opt. Commun. 239, 99-101 (2004).
[CrossRef]

Belmonte, M.

Davies, P. A.

X. Wang, N. J. Gomes, L. Gomez-Rojaz, P. A. Davies, and D. Wake, "Indirect optically injection-locked oscillator for millimeter-wave communication system," IEEE Trans. Microwave Theory and Tech. 48,2596-2603 (2000).
[CrossRef]

Furuta, H.

Q1. H. Furuta, M. Maeda, T. Nomoto, J. Kobayashi, and S. Kawasaki, "Optical Injection Locking of a 38-GHz-Band InP-Based HEMT Oscillator Using a 1.55-μm DSB-SC Modulated Lightwave," IEEE Microwave Wireless Components Lett. 11, 19-21 (2001).
[CrossRef]

Giurgiola, S.

Gomes, N. J.

X. Wang, N. J. Gomes, L. Gomez-Rojaz, P. A. Davies, and D. Wake, "Indirect optically injection-locked oscillator for millimeter-wave communication system," IEEE Trans. Microwave Theory and Tech. 48,2596-2603 (2000).
[CrossRef]

Gomez-Rojaz, L.

X. Wang, N. J. Gomes, L. Gomez-Rojaz, P. A. Davies, and D. Wake, "Indirect optically injection-locked oscillator for millimeter-wave communication system," IEEE Trans. Microwave Theory and Tech. 48,2596-2603 (2000).
[CrossRef]

Griffin, R. A.

R. A. Griffin, P. M. Lane, and J. J. O’Reilly, "Dispersion-tolerant subcarrier data modulation of optical millimeter-wave signals," Electron. Lett. 32, 2258-2260 (1999).
[CrossRef]

Janner, D.

Jeong, W.-J.

Kamisaka, T.

T. Kamisaka, T. Kuri, and K. Kitayama, " Simultaeous modulation and fiber-optic transmission of 10Gb/s baseband and 60GHz band radio signals on a single wavelength," IEEE Trans. Microwave Theory Tech. 49,2013-2017 (2001).
[CrossRef]

Kawasaki, S.

Q1. H. Furuta, M. Maeda, T. Nomoto, J. Kobayashi, and S. Kawasaki, "Optical Injection Locking of a 38-GHz-Band InP-Based HEMT Oscillator Using a 1.55-μm DSB-SC Modulated Lightwave," IEEE Microwave Wireless Components Lett. 11, 19-21 (2001).
[CrossRef]

Kim, W.-K.

Kitayama, K.

T. Kamisaka, T. Kuri, and K. Kitayama, " Simultaeous modulation and fiber-optic transmission of 10Gb/s baseband and 60GHz band radio signals on a single wavelength," IEEE Trans. Microwave Theory Tech. 49,2013-2017 (2001).
[CrossRef]

Kobayashi, J.

Q1. H. Furuta, M. Maeda, T. Nomoto, J. Kobayashi, and S. Kawasaki, "Optical Injection Locking of a 38-GHz-Band InP-Based HEMT Oscillator Using a 1.55-μm DSB-SC Modulated Lightwave," IEEE Microwave Wireless Components Lett. 11, 19-21 (2001).
[CrossRef]

Korotky, S. K.

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, "Velocity-matching techniques for integrated optic traveling wave switch/modulators," IEEE J. Quantum Electron QE-20, 301-309 (1984).
[CrossRef]

Kung, G. C.

J. Yu, G. C. Kung, H. Muhammad, and J. Barry, "10 Gbit/s repeaterless transmission over 265 km SMF-28: using a modified duo-binary RZ signal generated by one dual-drive LiNbO3 modulator," Opt. Commun. 239, 99-101 (2004).
[CrossRef]

Kuri, T.

T. Kamisaka, T. Kuri, and K. Kitayama, " Simultaeous modulation and fiber-optic transmission of 10Gb/s baseband and 60GHz band radio signals on a single wavelength," IEEE Trans. Microwave Theory Tech. 49,2013-2017 (2001).
[CrossRef]

Kwon, S.-W.

Lane, P. M.

R. A. Griffin, P. M. Lane, and J. J. O’Reilly, "Dispersion-tolerant subcarrier data modulation of optical millimeter-wave signals," Electron. Lett. 32, 2258-2260 (1999).
[CrossRef]

Lee, H.-M.

Lee, H.-Y.

Lucchi, F.

Maeda, M.

Q1. H. Furuta, M. Maeda, T. Nomoto, J. Kobayashi, and S. Kawasaki, "Optical Injection Locking of a 38-GHz-Band InP-Based HEMT Oscillator Using a 1.55-μm DSB-SC Modulated Lightwave," IEEE Microwave Wireless Components Lett. 11, 19-21 (2001).
[CrossRef]

Marcatili, E. A. J.

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, "Velocity-matching techniques for integrated optic traveling wave switch/modulators," IEEE J. Quantum Electron QE-20, 301-309 (1984).
[CrossRef]

Marti, J.

A. Martinez, V. Polo, H. Pfrommer, and J. Marti, "Dispersion-tolerant transmission of QPSK and M-QAM signals simultaneously modulated at 1 and 38GHz over a hybrid fiber-radio link," IEEE Photon. Tech. Lett. 16, 659-661 (2004).
[CrossRef]

A. Martinez, V. Polo, and J. Marti, "Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network," IEEE Trans. Microwave Theory and Tech. 49,2018-2024 (2001).
[CrossRef]

Martinez, A.

A. Martinez, V. Polo, H. Pfrommer, and J. Marti, "Dispersion-tolerant transmission of QPSK and M-QAM signals simultaneously modulated at 1 and 38GHz over a hybrid fiber-radio link," IEEE Photon. Tech. Lett. 16, 659-661 (2004).
[CrossRef]

A. Martinez, V. Polo, and J. Marti, "Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network," IEEE Trans. Microwave Theory and Tech. 49,2018-2024 (2001).
[CrossRef]

Muhammad, H.

J. Yu, G. C. Kung, H. Muhammad, and J. Barry, "10 Gbit/s repeaterless transmission over 265 km SMF-28: using a modified duo-binary RZ signal generated by one dual-drive LiNbO3 modulator," Opt. Commun. 239, 99-101 (2004).
[CrossRef]

Nomoto, T.

Q1. H. Furuta, M. Maeda, T. Nomoto, J. Kobayashi, and S. Kawasaki, "Optical Injection Locking of a 38-GHz-Band InP-Based HEMT Oscillator Using a 1.55-μm DSB-SC Modulated Lightwave," IEEE Microwave Wireless Components Lett. 11, 19-21 (2001).
[CrossRef]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 22, 74-75 (1997).
[CrossRef]

O’Reilly, J. J.

R. A. Griffin, P. M. Lane, and J. J. O’Reilly, "Dispersion-tolerant subcarrier data modulation of optical millimeter-wave signals," Electron. Lett. 32, 2258-2260 (1999).
[CrossRef]

Pfrommer, H.

A. Martinez, V. Polo, H. Pfrommer, and J. Marti, "Dispersion-tolerant transmission of QPSK and M-QAM signals simultaneously modulated at 1 and 38GHz over a hybrid fiber-radio link," IEEE Photon. Tech. Lett. 16, 659-661 (2004).
[CrossRef]

Polo, V.

A. Martinez, V. Polo, H. Pfrommer, and J. Marti, "Dispersion-tolerant transmission of QPSK and M-QAM signals simultaneously modulated at 1 and 38GHz over a hybrid fiber-radio link," IEEE Photon. Tech. Lett. 16, 659-661 (2004).
[CrossRef]

A. Martinez, V. Polo, and J. Marti, "Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network," IEEE Trans. Microwave Theory and Tech. 49,2018-2024 (2001).
[CrossRef]

Pruneri, V.

Ramaswamy, R. V.

W. Wang, R. Tavlykaev, and R. V. Ramaswamy, "Bandpass traveling-wave Mach-Zehnder modulator in LiNbO3 with Domain Reversal," IEEE Photon. Technol. Lett. 9, 610-612 (1997).
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 22, 74-75 (1997).
[CrossRef]

Son, G.-S.

Song, M.-K.

Tavlykaev, R.

W. Wang, R. Tavlykaev, and R. V. Ramaswamy, "Bandpass traveling-wave Mach-Zehnder modulator in LiNbO3 with Domain Reversal," IEEE Photon. Technol. Lett. 9, 610-612 (1997).
[CrossRef]

Vergani, P.

Villa, M.

Wake, D.

X. Wang, N. J. Gomes, L. Gomez-Rojaz, P. A. Davies, and D. Wake, "Indirect optically injection-locked oscillator for millimeter-wave communication system," IEEE Trans. Microwave Theory and Tech. 48,2596-2603 (2000).
[CrossRef]

Wang, W.

W. Wang, R. Tavlykaev, and R. V. Ramaswamy, "Bandpass traveling-wave Mach-Zehnder modulator in LiNbO3 with Domain Reversal," IEEE Photon. Technol. Lett. 9, 610-612 (1997).
[CrossRef]

Wang, X.

X. Wang, N. J. Gomes, L. Gomez-Rojaz, P. A. Davies, and D. Wake, "Indirect optically injection-locked oscillator for millimeter-wave communication system," IEEE Trans. Microwave Theory and Tech. 48,2596-2603 (2000).
[CrossRef]

Yang, W.-S.

Yu, J.

J. Yu, G. C. Kung, H. Muhammad, and J. Barry, "10 Gbit/s repeaterless transmission over 265 km SMF-28: using a modified duo-binary RZ signal generated by one dual-drive LiNbO3 modulator," Opt. Commun. 239, 99-101 (2004).
[CrossRef]

Electron. Lett.

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 22, 74-75 (1997).
[CrossRef]

R. A. Griffin, P. M. Lane, and J. J. O’Reilly, "Dispersion-tolerant subcarrier data modulation of optical millimeter-wave signals," Electron. Lett. 32, 2258-2260 (1999).
[CrossRef]

IEEE J. Quantum Electron

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, "Velocity-matching techniques for integrated optic traveling wave switch/modulators," IEEE J. Quantum Electron QE-20, 301-309 (1984).
[CrossRef]

IEEE Microwave Wireless Components Lett.

Q1. H. Furuta, M. Maeda, T. Nomoto, J. Kobayashi, and S. Kawasaki, "Optical Injection Locking of a 38-GHz-Band InP-Based HEMT Oscillator Using a 1.55-μm DSB-SC Modulated Lightwave," IEEE Microwave Wireless Components Lett. 11, 19-21 (2001).
[CrossRef]

IEEE Photon. Tech. Lett.

A. Martinez, V. Polo, H. Pfrommer, and J. Marti, "Dispersion-tolerant transmission of QPSK and M-QAM signals simultaneously modulated at 1 and 38GHz over a hybrid fiber-radio link," IEEE Photon. Tech. Lett. 16, 659-661 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Wang, R. Tavlykaev, and R. V. Ramaswamy, "Bandpass traveling-wave Mach-Zehnder modulator in LiNbO3 with Domain Reversal," IEEE Photon. Technol. Lett. 9, 610-612 (1997).
[CrossRef]

IEEE Trans. Microwave Theory and Tech.

A. Martinez, V. Polo, and J. Marti, "Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network," IEEE Trans. Microwave Theory and Tech. 49,2018-2024 (2001).
[CrossRef]

X. Wang, N. J. Gomes, L. Gomez-Rojaz, P. A. Davies, and D. Wake, "Indirect optically injection-locked oscillator for millimeter-wave communication system," IEEE Trans. Microwave Theory and Tech. 48,2596-2603 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

T. Kamisaka, T. Kuri, and K. Kitayama, " Simultaeous modulation and fiber-optic transmission of 10Gb/s baseband and 60GHz band radio signals on a single wavelength," IEEE Trans. Microwave Theory Tech. 49,2013-2017 (2001).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

J. Yu, G. C. Kung, H. Muhammad, and J. Barry, "10 Gbit/s repeaterless transmission over 265 km SMF-28: using a modified duo-binary RZ signal generated by one dual-drive LiNbO3 modulator," Opt. Commun. 239, 99-101 (2004).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

A schematic of the integrated modulator with polarization reversed structures.

Fig. 2.
Fig. 2.

Block diagram and modulated optical spectra.

Fig. 3.
Fig. 3.

Interaction region of a SSB modulator with locally domain-inverted structure.

Fig. 4.
Fig. 4.

Measured optical frequency spectra from the fabricated integrated modulator. The DC bias voltage in SSB modulator was 1.9 V for (a), and -10.6 V for (b).

Fig. 5.
Fig. 5.

RF spectra generated from modulated optical signal as shown in Fig. 4.

Fig. 6.
Fig. 6.

Experiment setup for investigating the effects of fiber chromatic dispersion.

Fig. 7.
Fig. 7.

Measured RF power penalties for optical DSB modulation versus transmittance length.

Fig. 8.
Fig. 8.

Measured RF power penalties for optical SSB modulation versus transmittance length.

Tables (1)

Tables Icon

Table 1. Parameters of the fabricated modulator

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( t , z ) = e j ( 2 π f 0 ( t n 0 c ) z )
V ( t , z ) = A e α IF z sin ( 2 π f IF ( t n IF c z ) )
V eff 1 = 0 Λ IF V ( t + n 0 c z , z ) dz
= A α IF 2 + k 2 [ α IF · ( 1 + e α IF Λ IF ) sin ( 2 π f IF t ) ] k · ( 1 + e α IF Λ IF ) cos ( 2 π f IF t ) ]
V eff 2 = 0 Λ IF 2 V ( t + n 0 c z , z ) dz + Λ IF 2 Λ IF V ( t + n 0 c z , z ) dz
= A α IF 2 + k 2 [ ( k k · e α IF Λ IF 2 α IF · e α IF Λ IF 2 ) cos ( 2 π f IF t )
( 2 k · e α IF Λ IF 2 + α IF α IF · e α IF Λ IF ) sin ( 2 π f IF t ) ]
, where Λ I F = c 2 f I F ( n I F n 0 ) , k = π Λ I F , c : light velocity in vacuum
V eff 1 = 2 A k cos ( 2 π f IF t )
V eff 2 = 2 A k sin ( 2 π f IF t )
P LSB cos 2 [ π ( 2 f c f IF f IF 2 ) λ 2 DC / c ] + φ
P USB cos 2 [ π ( 2 f c f IF f IF 2 ) λ 2 DC / c ] + φ ,

Metrics