Abstract

Nanoimprint lithography is gaining rapid acceptance in fields as diverse as microelectronics and microfluidics due to its simplicity high resolution and low cost. These properties are critically important for the fabrication of photonic devices, where cost is often the major inhibiting deployment factor for high volume applications. We report here on the use of nanoimprint technology to fabricate low loss broadband high index contrast waveguides in a Polysiloxane polymer system for the first time.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and Devices,” Adv. Materials 14, 1339–1365 (2002).
    [Crossref]
  2. R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Muller-Fiedler, and O. Rosch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. and Tech. 20, 181–186 (2001).
    [Crossref]
  3. M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
    [Crossref]
  4. T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, and S. Imamura, “Polymeric Optical Waveguide Circuits Formed Using Silicone Resin,” J. Lightwave Technol. 16, 1049–1055 (1998).
    [Crossref]
  5. T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, and T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with a wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
    [Crossref]
  6. A. W. Norris, J. V. DeGroot, T. Ogawa, T. Watanabe, T. C. Kowalczyk, A. Baugher, and R. Blum, “High reliability of silicone materials for use as polymer waveguides,” Proc. SPIE 5212, 76–82 (2003).
    [Crossref]
  7. www.gemfire.comT. C. Kowalczyk and R. Blum, “Polymer variable optical attenuator arrays: pathway from material platform to qualified telecom product,” Proc. SPIE 5517, 50–61 (2004).
    [Crossref]
  8. R. Charters, Redfern Polymer Optics Pty. Ltd., (personal communication, 2007).
  9. S. Madden, M. Zhang, B. Luther-Davies, and R. Charters, “Patterning of inorganic polymer glass waveguiding films by dry etching,” Proc. SPIE 6801, 680107-1:7 (2008).
    [Crossref]
  10. Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28, 153-84 (1998).
    [Crossref]
  11. D. Kim, W. Chin, S. Lee, S. Ahn, and K. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique”, Appl. Phys. Lett. 88, 071120-1:3 (2006).
    [Crossref]
  12. L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
    [Crossref]
  13. Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).
  14. G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
    [Crossref]
  15. S. Kopetz, D. K. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
    [Crossref]
  16. S. Kopetz, E. Rabe, W. J. Kang, and A. Neyer, “Polysiloxane optical waveguide layer integrated in printed circuit board,” Electron. Lett. 40, 668–669 (2004).
    [Crossref]
  17. W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16, 1888–1890 (2004).
    [Crossref]
  18. A. Neyer, S. Kopetz, E. Rabe, W. J. Kang, and S. Tombrink, “Electrical-Optical Circuit Board using Polysiloxane Optical Waveguide Layer,” Electronic Components and Technology Conference, 2005. Proceedings. 55th. 2005
  19. M. Vogler, S. Wiedenberg, M. Muhlberger, I. Bergmair, T. Glinsner, H. Schmidt, E. Kley, and G. Grutzner, “Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography,” Microelectron. Eng. 84, 984–988 (2007).
    [Crossref]
  20. K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
    [Crossref]
  21. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395-9 (1971).
    [Crossref] [PubMed]
  22. R. A. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. B. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow Loss High Delta Silica Germania Planar Waveguides,” J. Electrochem. Soc. 151, G541–G547 (2004).
    [Crossref]

2008 (1)

S. Madden, M. Zhang, B. Luther-Davies, and R. Charters, “Patterning of inorganic polymer glass waveguiding films by dry etching,” Proc. SPIE 6801, 680107-1:7 (2008).
[Crossref]

2007 (2)

S. Kopetz, D. K. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[Crossref]

M. Vogler, S. Wiedenberg, M. Muhlberger, I. Bergmair, T. Glinsner, H. Schmidt, E. Kley, and G. Grutzner, “Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography,” Microelectron. Eng. 84, 984–988 (2007).
[Crossref]

2006 (1)

D. Kim, W. Chin, S. Lee, S. Ahn, and K. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique”, Appl. Phys. Lett. 88, 071120-1:3 (2006).
[Crossref]

2004 (6)

Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).

G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
[Crossref]

S. Kopetz, E. Rabe, W. J. Kang, and A. Neyer, “Polysiloxane optical waveguide layer integrated in printed circuit board,” Electron. Lett. 40, 668–669 (2004).
[Crossref]

W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16, 1888–1890 (2004).
[Crossref]

www.gemfire.comT. C. Kowalczyk and R. Blum, “Polymer variable optical attenuator arrays: pathway from material platform to qualified telecom product,” Proc. SPIE 5517, 50–61 (2004).
[Crossref]

R. A. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. B. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow Loss High Delta Silica Germania Planar Waveguides,” J. Electrochem. Soc. 151, G541–G547 (2004).
[Crossref]

2003 (1)

A. W. Norris, J. V. DeGroot, T. Ogawa, T. Watanabe, T. C. Kowalczyk, A. Baugher, and R. Blum, “High reliability of silicone materials for use as polymer waveguides,” Proc. SPIE 5212, 76–82 (2003).
[Crossref]

2002 (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and Devices,” Adv. Materials 14, 1339–1365 (2002).
[Crossref]

2001 (1)

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Muller-Fiedler, and O. Rosch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. and Tech. 20, 181–186 (2001).
[Crossref]

2000 (1)

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

1999 (1)

L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[Crossref]

1998 (2)

1997 (1)

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, and T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with a wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[Crossref]

1996 (1)

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[Crossref]

1971 (1)

Agarwal, A.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Ahn, S.

D. Kim, W. Chin, S. Lee, S. Ahn, and K. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique”, Appl. Phys. Lett. 88, 071120-1:3 (2006).
[Crossref]

Alibert, G.

R. A. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. B. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow Loss High Delta Silica Germania Planar Waveguides,” J. Electrochem. Soc. 151, G541–G547 (2004).
[Crossref]

Amano, M.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[Crossref]

Bae, B. S.

W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16, 1888–1890 (2004).
[Crossref]

Baugher, A.

A. W. Norris, J. V. DeGroot, T. Ogawa, T. Watanabe, T. C. Kowalczyk, A. Baugher, and R. Blum, “High reliability of silicone materials for use as polymer waveguides,” Proc. SPIE 5212, 76–82 (2003).
[Crossref]

Beguin, A.

R. A. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. B. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow Loss High Delta Silica Germania Planar Waveguides,” J. Electrochem. Soc. 151, G541–G547 (2004).
[Crossref]

Bellman, R. A.

R. A. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. B. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow Loss High Delta Silica Germania Planar Waveguides,” J. Electrochem. Soc. 151, G541–G547 (2004).
[Crossref]

Bergmair, I.

M. Vogler, S. Wiedenberg, M. Muhlberger, I. Bergmair, T. Glinsner, H. Schmidt, E. Kley, and G. Grutzner, “Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography,” Microelectron. Eng. 84, 984–988 (2007).
[Crossref]

Blum, R.

www.gemfire.comT. C. Kowalczyk and R. Blum, “Polymer variable optical attenuator arrays: pathway from material platform to qualified telecom product,” Proc. SPIE 5517, 50–61 (2004).
[Crossref]

A. W. Norris, J. V. DeGroot, T. Ogawa, T. Watanabe, T. C. Kowalczyk, A. Baugher, and R. Blum, “High reliability of silicone materials for use as polymer waveguides,” Proc. SPIE 5212, 76–82 (2003).
[Crossref]

Bourdon, G.

R. A. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. B. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow Loss High Delta Silica Germania Planar Waveguides,” J. Electrochem. Soc. 151, G541–G547 (2004).
[Crossref]

Buestrich, R.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Muller-Fiedler, and O. Rosch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. and Tech. 20, 181–186 (2001).
[Crossref]

Cai, D. K.

S. Kopetz, D. K. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[Crossref]

Cappuzzo, M. A.

L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[Crossref]

Charters, R.

S. Madden, M. Zhang, B. Luther-Davies, and R. Charters, “Patterning of inorganic polymer glass waveguiding films by dry etching,” Proc. SPIE 6801, 680107-1:7 (2008).
[Crossref]

R. Charters, Redfern Polymer Optics Pty. Ltd., (personal communication, 2007).

Chin, W.

D. Kim, W. Chin, S. Lee, S. Ahn, and K. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique”, Appl. Phys. Lett. 88, 071120-1:3 (2006).
[Crossref]

Dalton, L. R.

Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and Devices,” Adv. Materials 14, 1339–1365 (2002).
[Crossref]

Dannberg, P.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Muller-Fiedler, and O. Rosch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. and Tech. 20, 181–186 (2001).
[Crossref]

DeGroot, J. V.

A. W. Norris, J. V. DeGroot, T. Ogawa, T. Watanabe, T. C. Kowalczyk, A. Baugher, and R. Blum, “High reliability of silicone materials for use as polymer waveguides,” Proc. SPIE 5212, 76–82 (2003).
[Crossref]

Dodabalapur, A.

L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[Crossref]

Foresi, J.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Glinsner, T.

M. Vogler, S. Wiedenberg, M. Muhlberger, I. Bergmair, T. Glinsner, H. Schmidt, E. Kley, and G. Grutzner, “Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography,” Microelectron. Eng. 84, 984–988 (2007).
[Crossref]

Grutzner, G.

M. Vogler, S. Wiedenberg, M. Muhlberger, I. Bergmair, T. Glinsner, H. Schmidt, E. Kley, and G. Grutzner, “Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography,” Microelectron. Eng. 84, 984–988 (2007).
[Crossref]

Guiot, E.

R. A. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. B. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow Loss High Delta Silica Germania Planar Waveguides,” J. Electrochem. Soc. 151, G541–G547 (2004).
[Crossref]

Guiziou, L.

R. A. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. B. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow Loss High Delta Silica Germania Planar Waveguides,” J. Electrochem. Soc. 151, G541–G547 (2004).
[Crossref]

Hayashida, S.

T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, and S. Imamura, “Polymeric Optical Waveguide Circuits Formed Using Silicone Resin,” J. Lightwave Technol. 16, 1049–1055 (1998).
[Crossref]

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[Crossref]

Hikita, M.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[Crossref]

Huang, Y.

G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
[Crossref]

Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).

Imamura, S.

T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, and S. Imamura, “Polymeric Optical Waveguide Circuits Formed Using Silicone Resin,” J. Lightwave Technol. 16, 1049–1055 (1998).
[Crossref]

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[Crossref]

Inoue, Y.

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, and T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with a wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[Crossref]

Jen, A. K. Y.

G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
[Crossref]

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and Devices,” Adv. Materials 14, 1339–1365 (2002).
[Crossref]

Kahlenberg, F.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Muller-Fiedler, and O. Rosch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. and Tech. 20, 181–186 (2001).
[Crossref]

Kaneko, A.

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, and T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with a wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[Crossref]

Kang, W. J.

S. Kopetz, E. Rabe, W. J. Kang, and A. Neyer, “Polysiloxane optical waveguide layer integrated in printed circuit board,” Electron. Lett. 40, 668–669 (2004).
[Crossref]

A. Neyer, S. Kopetz, E. Rabe, W. J. Kang, and S. Tombrink, “Electrical-Optical Circuit Board using Polysiloxane Optical Waveguide Layer,” Electronic Components and Technology Conference, 2005. Proceedings. 55th. 2005

Kim, D.

D. Kim, W. Chin, S. Lee, S. Ahn, and K. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique”, Appl. Phys. Lett. 88, 071120-1:3 (2006).
[Crossref]

Kim, W. S.

W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16, 1888–1890 (2004).
[Crossref]

Kim, Y. C.

W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16, 1888–1890 (2004).
[Crossref]

Kimerling, L. C.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Kley, E.

M. Vogler, S. Wiedenberg, M. Muhlberger, I. Bergmair, T. Glinsner, H. Schmidt, E. Kley, and G. Grutzner, “Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography,” Microelectron. Eng. 84, 984–988 (2007).
[Crossref]

Kopetz, S.

S. Kopetz, D. K. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[Crossref]

S. Kopetz, E. Rabe, W. J. Kang, and A. Neyer, “Polysiloxane optical waveguide layer integrated in printed circuit board,” Electron. Lett. 40, 668–669 (2004).
[Crossref]

A. Neyer, S. Kopetz, E. Rabe, W. J. Kang, and S. Tombrink, “Electrical-Optical Circuit Board using Polysiloxane Optical Waveguide Layer,” Electronic Components and Technology Conference, 2005. Proceedings. 55th. 2005

Kowalczyk, T. C.

www.gemfire.comT. C. Kowalczyk and R. Blum, “Polymer variable optical attenuator arrays: pathway from material platform to qualified telecom product,” Proc. SPIE 5517, 50–61 (2004).
[Crossref]

A. W. Norris, J. V. DeGroot, T. Ogawa, T. Watanabe, T. C. Kowalczyk, A. Baugher, and R. Blum, “High reliability of silicone materials for use as polymer waveguides,” Proc. SPIE 5212, 76–82 (2003).
[Crossref]

Kurihara, T.

T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, and S. Imamura, “Polymeric Optical Waveguide Circuits Formed Using Silicone Resin,” J. Lightwave Technol. 16, 1049–1055 (1998).
[Crossref]

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, and T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with a wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[Crossref]

Laskowski, E. J.

L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[Crossref]

Lee, J. H.

W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16, 1888–1890 (2004).
[Crossref]

Lee, K.

D. Kim, W. Chin, S. Lee, S. Ahn, and K. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique”, Appl. Phys. Lett. 88, 071120-1:3 (2006).
[Crossref]

Lee, K. K.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Lee, S.

D. Kim, W. Chin, S. Lee, S. Ahn, and K. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique”, Appl. Phys. Lett. 88, 071120-1:3 (2006).
[Crossref]

LeGuen, E.

R. A. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. B. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow Loss High Delta Silica Germania Planar Waveguides,” J. Electrochem. Soc. 151, G541–G547 (2004).
[Crossref]

Lehuede, P.

R. A. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. B. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow Loss High Delta Silica Germania Planar Waveguides,” J. Electrochem. Soc. 151, G541–G547 (2004).
[Crossref]

Lim, D. R.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Luan, H. C.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Luo, J.

G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
[Crossref]

Luther-Davies, B.

S. Madden, M. Zhang, B. Luther-Davies, and R. Charters, “Patterning of inorganic polymer glass waveguiding films by dry etching,” Proc. SPIE 6801, 680107-1:7 (2008).
[Crossref]

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and Devices,” Adv. Materials 14, 1339–1365 (2002).
[Crossref]

Madden, S.

S. Madden, M. Zhang, B. Luther-Davies, and R. Charters, “Patterning of inorganic polymer glass waveguiding films by dry etching,” Proc. SPIE 6801, 680107-1:7 (2008).
[Crossref]

Meier, M.

L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[Crossref]

Muhlberger, M.

M. Vogler, S. Wiedenberg, M. Muhlberger, I. Bergmair, T. Glinsner, H. Schmidt, E. Kley, and G. Grutzner, “Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography,” Microelectron. Eng. 84, 984–988 (2007).
[Crossref]

Muller-Fiedler, R.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Muller-Fiedler, and O. Rosch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. and Tech. 20, 181–186 (2001).
[Crossref]

Neyer, A.

S. Kopetz, D. K. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[Crossref]

S. Kopetz, E. Rabe, W. J. Kang, and A. Neyer, “Polysiloxane optical waveguide layer integrated in printed circuit board,” Electron. Lett. 40, 668–669 (2004).
[Crossref]

A. Neyer, S. Kopetz, E. Rabe, W. J. Kang, and S. Tombrink, “Electrical-Optical Circuit Board using Polysiloxane Optical Waveguide Layer,” Electronic Components and Technology Conference, 2005. Proceedings. 55th. 2005

Norris, A. W.

A. W. Norris, J. V. DeGroot, T. Ogawa, T. Watanabe, T. C. Kowalczyk, A. Baugher, and R. Blum, “High reliability of silicone materials for use as polymer waveguides,” Proc. SPIE 5212, 76–82 (2003).
[Crossref]

Ogawa, T.

A. W. Norris, J. V. DeGroot, T. Ogawa, T. Watanabe, T. C. Kowalczyk, A. Baugher, and R. Blum, “High reliability of silicone materials for use as polymer waveguides,” Proc. SPIE 5212, 76–82 (2003).
[Crossref]

Ooba, N.

T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, and S. Imamura, “Polymeric Optical Waveguide Circuits Formed Using Silicone Resin,” J. Lightwave Technol. 16, 1049–1055 (1998).
[Crossref]

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, and T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with a wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[Crossref]

Paloczi, G. T.

G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
[Crossref]

Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).

Popall, M.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Muller-Fiedler, and O. Rosch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. and Tech. 20, 181–186 (2001).
[Crossref]

Rabe, E.

S. Kopetz, D. K. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[Crossref]

S. Kopetz, E. Rabe, W. J. Kang, and A. Neyer, “Polysiloxane optical waveguide layer integrated in printed circuit board,” Electron. Lett. 40, 668–669 (2004).
[Crossref]

A. Neyer, S. Kopetz, E. Rabe, W. J. Kang, and S. Tombrink, “Electrical-Optical Circuit Board using Polysiloxane Optical Waveguide Layer,” Electronic Components and Technology Conference, 2005. Proceedings. 55th. 2005

Rogers, L. A.

L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[Crossref]

Rosch, O.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Muller-Fiedler, and O. Rosch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. and Tech. 20, 181–186 (2001).
[Crossref]

Schmidt, H.

M. Vogler, S. Wiedenberg, M. Muhlberger, I. Bergmair, T. Glinsner, H. Schmidt, E. Kley, and G. Grutzner, “Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography,” Microelectron. Eng. 84, 984–988 (2007).
[Crossref]

Shin, S. Y.

W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16, 1888–1890 (2004).
[Crossref]

Simpson, L. B.

R. A. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. B. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow Loss High Delta Silica Germania Planar Waveguides,” J. Electrochem. Soc. 151, G541–G547 (2004).
[Crossref]

Sugawara, S.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[Crossref]

Tien, P. K.

Tombrink, S.

A. Neyer, S. Kopetz, E. Rabe, W. J. Kang, and S. Tombrink, “Electrical-Optical Circuit Board using Polysiloxane Optical Waveguide Layer,” Electronic Components and Technology Conference, 2005. Proceedings. 55th. 2005

Usui, M.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[Crossref]

Vogler, M.

M. Vogler, S. Wiedenberg, M. Muhlberger, I. Bergmair, T. Glinsner, H. Schmidt, E. Kley, and G. Grutzner, “Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography,” Microelectron. Eng. 84, 984–988 (2007).
[Crossref]

Watanabe, T.

A. W. Norris, J. V. DeGroot, T. Ogawa, T. Watanabe, T. C. Kowalczyk, A. Baugher, and R. Blum, “High reliability of silicone materials for use as polymer waveguides,” Proc. SPIE 5212, 76–82 (2003).
[Crossref]

T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, and S. Imamura, “Polymeric Optical Waveguide Circuits Formed Using Silicone Resin,” J. Lightwave Technol. 16, 1049–1055 (1998).
[Crossref]

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, and T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with a wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[Crossref]

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[Crossref]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28, 153-84 (1998).
[Crossref]

Wiedenberg, S.

M. Vogler, S. Wiedenberg, M. Muhlberger, I. Bergmair, T. Glinsner, H. Schmidt, E. Kley, and G. Grutzner, “Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography,” Microelectron. Eng. 84, 984–988 (2007).
[Crossref]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28, 153-84 (1998).
[Crossref]

Yariv, A.

Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).

G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
[Crossref]

Zhang, C.

Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).

Zhang, M.

S. Madden, M. Zhang, B. Luther-Davies, and R. Charters, “Patterning of inorganic polymer glass waveguiding films by dry etching,” Proc. SPIE 6801, 680107-1:7 (2008).
[Crossref]

Adv. Materials (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and Devices,” Adv. Materials 14, 1339–1365 (2002).
[Crossref]

AEU-Int. J. Electron. Commun. (1)

S. Kopetz, D. K. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[Crossref]

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28, 153-84 (1998).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
[Crossref]

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

D. Kim, W. Chin, S. Lee, S. Ahn, and K. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique”, Appl. Phys. Lett. 88, 071120-1:3 (2006).
[Crossref]

L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[Crossref]

Electron. Lett. (2)

S. Kopetz, E. Rabe, W. J. Kang, and A. Neyer, “Polysiloxane optical waveguide layer integrated in printed circuit board,” Electron. Lett. 40, 668–669 (2004).
[Crossref]

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, and T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with a wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (1)

W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16, 1888–1890 (2004).
[Crossref]

J. Electrochem. Soc. (1)

R. A. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. B. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow Loss High Delta Silica Germania Planar Waveguides,” J. Electrochem. Soc. 151, G541–G547 (2004).
[Crossref]

J. Lightwave Technol. (2)

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[Crossref]

T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, and S. Imamura, “Polymeric Optical Waveguide Circuits Formed Using Silicone Resin,” J. Lightwave Technol. 16, 1049–1055 (1998).
[Crossref]

J. Phys. Chem. (1)

Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).

J. Sol-Gel Sci. and Tech. (1)

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Muller-Fiedler, and O. Rosch, “ORMOCERs for Optical Interconnection Technology,” J. Sol-Gel Sci. and Tech. 20, 181–186 (2001).
[Crossref]

Microelectron. Eng. (1)

M. Vogler, S. Wiedenberg, M. Muhlberger, I. Bergmair, T. Glinsner, H. Schmidt, E. Kley, and G. Grutzner, “Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography,” Microelectron. Eng. 84, 984–988 (2007).
[Crossref]

Proc. SPIE (3)

S. Madden, M. Zhang, B. Luther-Davies, and R. Charters, “Patterning of inorganic polymer glass waveguiding films by dry etching,” Proc. SPIE 6801, 680107-1:7 (2008).
[Crossref]

A. W. Norris, J. V. DeGroot, T. Ogawa, T. Watanabe, T. C. Kowalczyk, A. Baugher, and R. Blum, “High reliability of silicone materials for use as polymer waveguides,” Proc. SPIE 5212, 76–82 (2003).
[Crossref]

www.gemfire.comT. C. Kowalczyk and R. Blum, “Polymer variable optical attenuator arrays: pathway from material platform to qualified telecom product,” Proc. SPIE 5517, 50–61 (2004).
[Crossref]

Other (2)

R. Charters, Redfern Polymer Optics Pty. Ltd., (personal communication, 2007).

A. Neyer, S. Kopetz, E. Rabe, W. J. Kang, and S. Tombrink, “Electrical-Optical Circuit Board using Polysiloxane Optical Waveguide Layer,” Electronic Components and Technology Conference, 2005. Proceedings. 55th. 2005

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Fundamental mode field profile for 3×3μm waveguide with 2% index contrast. (b). Computed loss to radiation modes in unimprinted slab area vs isolation trench width.

Fig. 2.
Fig. 2.

Waveguide fabrication process (right)

Fig. 3.
Fig. 3.

(a). and (b). SEM images of imprinted waveguides. (c) .Cross sectional view of the imprinted waveguides under optical microscope.

Fig. 4.
Fig. 4.

Cutback results at 1532nm for various waveguide widths

Fig. 5.
Fig. 5.

(a). Optical loss spectrum of imprinted waveguide compared to the cured bulk material. (b) Excess loss introduced by waveguide (measurement regions highlighted by yellow boxes have reduced reliability due to differences in the resolutions and dynamic ranges of the measurement instruments for the fiber and bulk results).

Tables (1)

Tables Icon

Table 1. Insertion losses at major transmission windows for imprinted waveguides

Metrics