Abstract

This paper presents a novel optical sensor which allows simultaneous measurements of axial position and tangential velocity of moving solid state objects. An extended laser Doppler velocimeter setup is used with two slightly tilted interference fringe systems. The distance to a solid state surface can be determined via a phase evaluation. The phase laser Doppler distance sensor offers a distance resolution of 150 nm and a total position uncertainty below 1 μm. Compared to conventional measurement techniques, such as triangulation, the distance resolution is independent of the lateral surface velocity. This advantage enables precise distance and shape measurements of fast rotating surfaces.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Dorsch, G. Häusler, and J. Herrmann, "Laser triangulation: fundamental uncertainty in distance measurement," Appl. Opt. 33, 1306-14 (1994).
    [CrossRef] [PubMed]
  2. A. Kempe, S. Schlamp, and T. Rösgen, "Low-coherence interferometric tip-clearance probe," Opt. Lett. 28, 1323-1325 (2003).
    [CrossRef] [PubMed]
  3. L. Sheng-Hua and L. Cheng-Chung, "Measuring large step heights by variable synthetic wavelength interferometry," Meas. Sci. Technol. 13, 1382-1387 (2002).
    [CrossRef]
  4. G. Y. Sirat and D. Psaltis, "Conoscopic Holograms," Opt. Commun. 65, 243-249 (1988).
    [CrossRef]
  5. J. Czarske, J. Möbius, K. Moldenhauer, and W. Ertmer, "External cavity laser sensor using synchronouslypumped laser diode for position measurements of rough surfaces," Electron. Lett. 40, 1584-1586 (2004).
    [CrossRef]
  6. B. E. Truax, F. C. Demarest, and G. E. Sommargren, "Laser Doppler velocimeter for velocity and length measurements of moving surfaces," Appl. Opt. 23, 67-73 (1984).
    [CrossRef] [PubMed]
  7. K. Matsubara, W. Stork, A. Wagner, J. Drescher, and K. D. Müller-Glaser, "Simultaneous measurement of the velocity and the displacement of the moving rough surface by a laser Doppler velocimeter," Appl. Opt. 36, 4516-20 (1997).
    [CrossRef] [PubMed]
  8. T. Pfister, L. Büttner, and J. Czarske, "Laser Doppler profile sensor with sub-micrometre position resolution for velocity and absolute radius measurements of rotating objects," Meas. Sci. Technol. 16, 627-641 (2005).
    [CrossRef]
  9. T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, "Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor," Meas. Sci. Technol. 17, 1693-1705 (2006).
    [CrossRef]
  10. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer Verlag, Berlin, 2003).
  11. L. Büttner and J. Czarske, "Spatial resolving laser Doppler velocity profile sensor using slightly tilted fringe systems and phase evaluation," Meas. Sci. Technol. 14, 2111-2120 (2003).
    [CrossRef]
  12. J. W. Czarske, "Laser Doppler velocimetry using powerful solid-state light sources, Review Paper," Meas. Sci. Technol. 17, R71-R91 (2006).
    [CrossRef]
  13. L. Büttner and J. Czarske, "Passive directional discrimination in laser-Doppler anemometry by the twowavelength quadrature homodyne technique," Appl. Opt. 42, 3843-3852 (2003).
    [CrossRef] [PubMed]
  14. P. Miles and P. O. Witze, "Evaluation of the Gaussian beam model for prediction of LDV fringe fields," in Proc. 8th Int. Symposium an Application of Laser Techniques to Fluid Mechanics Lisabon/Portugal, vol. 40.1, pp. 1-8 (1996).
  15. J. Czarske, "Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals," Meas. Sci. Technol. 12, 597-614 (2001).
    [CrossRef]
  16. T. Pfister, P. Günther, L. Büttner, and J. Czarske, "Shape and vibration measurement of fast rotating objects employing novel laser Doppler techniques," Proc. SPIE 6616, 66,163S1-12 (2007).

2006 (2)

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, "Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor," Meas. Sci. Technol. 17, 1693-1705 (2006).
[CrossRef]

J. W. Czarske, "Laser Doppler velocimetry using powerful solid-state light sources, Review Paper," Meas. Sci. Technol. 17, R71-R91 (2006).
[CrossRef]

2005 (1)

T. Pfister, L. Büttner, and J. Czarske, "Laser Doppler profile sensor with sub-micrometre position resolution for velocity and absolute radius measurements of rotating objects," Meas. Sci. Technol. 16, 627-641 (2005).
[CrossRef]

2004 (1)

J. Czarske, J. Möbius, K. Moldenhauer, and W. Ertmer, "External cavity laser sensor using synchronouslypumped laser diode for position measurements of rough surfaces," Electron. Lett. 40, 1584-1586 (2004).
[CrossRef]

2003 (3)

2002 (1)

L. Sheng-Hua and L. Cheng-Chung, "Measuring large step heights by variable synthetic wavelength interferometry," Meas. Sci. Technol. 13, 1382-1387 (2002).
[CrossRef]

2001 (1)

J. Czarske, "Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals," Meas. Sci. Technol. 12, 597-614 (2001).
[CrossRef]

1997 (1)

1994 (1)

1988 (1)

G. Y. Sirat and D. Psaltis, "Conoscopic Holograms," Opt. Commun. 65, 243-249 (1988).
[CrossRef]

1984 (1)

Büttner, L.

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, "Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor," Meas. Sci. Technol. 17, 1693-1705 (2006).
[CrossRef]

T. Pfister, L. Büttner, and J. Czarske, "Laser Doppler profile sensor with sub-micrometre position resolution for velocity and absolute radius measurements of rotating objects," Meas. Sci. Technol. 16, 627-641 (2005).
[CrossRef]

L. Büttner and J. Czarske, "Spatial resolving laser Doppler velocity profile sensor using slightly tilted fringe systems and phase evaluation," Meas. Sci. Technol. 14, 2111-2120 (2003).
[CrossRef]

L. Büttner and J. Czarske, "Passive directional discrimination in laser-Doppler anemometry by the twowavelength quadrature homodyne technique," Appl. Opt. 42, 3843-3852 (2003).
[CrossRef] [PubMed]

Cheng-Chung, L.

L. Sheng-Hua and L. Cheng-Chung, "Measuring large step heights by variable synthetic wavelength interferometry," Meas. Sci. Technol. 13, 1382-1387 (2002).
[CrossRef]

Czarske, J.

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, "Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor," Meas. Sci. Technol. 17, 1693-1705 (2006).
[CrossRef]

T. Pfister, L. Büttner, and J. Czarske, "Laser Doppler profile sensor with sub-micrometre position resolution for velocity and absolute radius measurements of rotating objects," Meas. Sci. Technol. 16, 627-641 (2005).
[CrossRef]

J. Czarske, J. Möbius, K. Moldenhauer, and W. Ertmer, "External cavity laser sensor using synchronouslypumped laser diode for position measurements of rough surfaces," Electron. Lett. 40, 1584-1586 (2004).
[CrossRef]

L. Büttner and J. Czarske, "Spatial resolving laser Doppler velocity profile sensor using slightly tilted fringe systems and phase evaluation," Meas. Sci. Technol. 14, 2111-2120 (2003).
[CrossRef]

L. Büttner and J. Czarske, "Passive directional discrimination in laser-Doppler anemometry by the twowavelength quadrature homodyne technique," Appl. Opt. 42, 3843-3852 (2003).
[CrossRef] [PubMed]

J. Czarske, "Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals," Meas. Sci. Technol. 12, 597-614 (2001).
[CrossRef]

Czarske, J. W.

J. W. Czarske, "Laser Doppler velocimetry using powerful solid-state light sources, Review Paper," Meas. Sci. Technol. 17, R71-R91 (2006).
[CrossRef]

Demarest, F. C.

Dorsch, R. G.

Drescher, J.

Ertmer, W.

J. Czarske, J. Möbius, K. Moldenhauer, and W. Ertmer, "External cavity laser sensor using synchronouslypumped laser diode for position measurements of rough surfaces," Electron. Lett. 40, 1584-1586 (2004).
[CrossRef]

Häusler, G.

Herrmann, J.

Kempe, A.

Krain, H.

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, "Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor," Meas. Sci. Technol. 17, 1693-1705 (2006).
[CrossRef]

Matsubara, K.

Möbius, J.

J. Czarske, J. Möbius, K. Moldenhauer, and W. Ertmer, "External cavity laser sensor using synchronouslypumped laser diode for position measurements of rough surfaces," Electron. Lett. 40, 1584-1586 (2004).
[CrossRef]

Moldenhauer, K.

J. Czarske, J. Möbius, K. Moldenhauer, and W. Ertmer, "External cavity laser sensor using synchronouslypumped laser diode for position measurements of rough surfaces," Electron. Lett. 40, 1584-1586 (2004).
[CrossRef]

Müller-Glaser, K. D.

Pfister, T.

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, "Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor," Meas. Sci. Technol. 17, 1693-1705 (2006).
[CrossRef]

T. Pfister, L. Büttner, and J. Czarske, "Laser Doppler profile sensor with sub-micrometre position resolution for velocity and absolute radius measurements of rotating objects," Meas. Sci. Technol. 16, 627-641 (2005).
[CrossRef]

Psaltis, D.

G. Y. Sirat and D. Psaltis, "Conoscopic Holograms," Opt. Commun. 65, 243-249 (1988).
[CrossRef]

Rösgen, T.

Schlamp, S.

Schodl, R.

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, "Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor," Meas. Sci. Technol. 17, 1693-1705 (2006).
[CrossRef]

Sheng-Hua, L.

L. Sheng-Hua and L. Cheng-Chung, "Measuring large step heights by variable synthetic wavelength interferometry," Meas. Sci. Technol. 13, 1382-1387 (2002).
[CrossRef]

Sirat, G. Y.

G. Y. Sirat and D. Psaltis, "Conoscopic Holograms," Opt. Commun. 65, 243-249 (1988).
[CrossRef]

Sommargren, G. E.

Stork, W.

Truax, B. E.

Wagner, A.

Appl. Opt. (4)

Electron. Lett. (1)

J. Czarske, J. Möbius, K. Moldenhauer, and W. Ertmer, "External cavity laser sensor using synchronouslypumped laser diode for position measurements of rough surfaces," Electron. Lett. 40, 1584-1586 (2004).
[CrossRef]

Meas. Sci. Technol. (6)

T. Pfister, L. Büttner, and J. Czarske, "Laser Doppler profile sensor with sub-micrometre position resolution for velocity and absolute radius measurements of rotating objects," Meas. Sci. Technol. 16, 627-641 (2005).
[CrossRef]

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, "Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor," Meas. Sci. Technol. 17, 1693-1705 (2006).
[CrossRef]

L. Sheng-Hua and L. Cheng-Chung, "Measuring large step heights by variable synthetic wavelength interferometry," Meas. Sci. Technol. 13, 1382-1387 (2002).
[CrossRef]

L. Büttner and J. Czarske, "Spatial resolving laser Doppler velocity profile sensor using slightly tilted fringe systems and phase evaluation," Meas. Sci. Technol. 14, 2111-2120 (2003).
[CrossRef]

J. W. Czarske, "Laser Doppler velocimetry using powerful solid-state light sources, Review Paper," Meas. Sci. Technol. 17, R71-R91 (2006).
[CrossRef]

J. Czarske, "Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals," Meas. Sci. Technol. 12, 597-614 (2001).
[CrossRef]

Opt. Commun. (1)

G. Y. Sirat and D. Psaltis, "Conoscopic Holograms," Opt. Commun. 65, 243-249 (1988).
[CrossRef]

Opt. Lett. (1)

Other (3)

T. Pfister, P. Günther, L. Büttner, and J. Czarske, "Shape and vibration measurement of fast rotating objects employing novel laser Doppler techniques," Proc. SPIE 6616, 66,163S1-12 (2007).

P. Miles and P. O. Witze, "Evaluation of the Gaussian beam model for prediction of LDV fringe fields," in Proc. 8th Int. Symposium an Application of Laser Techniques to Fluid Mechanics Lisabon/Portugal, vol. 40.1, pp. 1-8 (1996).

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer Verlag, Berlin, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Principle of the phase laser Doppler distance sensor. Superposition of interference fringe systems with approximately constant and equal fringe spacing d, which are tilted towards each other by an angle ?.

Fig. 2.
Fig. 2.

Principle of the high resolving sensor setup with one ambiguous and one unambiguous phase function.

Fig. 3.
Fig. 3.

Experimental setup of the phase laser Doppler distance sensor.

Fig. 4.
Fig. 4.

Measured phase difference functions of the two sensor setups: (a) bijective phase function with sI - 0.45°/μm and (b) steep phase function with sII - 5.5°/μm.

Fig. 5.
Fig. 5.

Measurement results of the position evaluation: (a) statistical uncertainties and (b) systematic deviations of the sensor setup with sI = 0.45°/μm; (c) statistical uncertainties and (d) systematic deviations of the sensor setup with sII = 5.5°/μm.

Fig. 6.
Fig. 6.

Experimentally obtained position uncertainties of the phase sensor depending on the slope s of the phase difference function. (a) statistical uncertainties σz and (b) total uncertainties σz,tot .

Fig. 7.
Fig. 7.

Total position uncertainty of the phase sensor σz,tot in dependence of Ra .

Fig. 8.
Fig. 8.

Measured statistical position uncertainties σz in dependence of the object velocity v for the phase sensor and the two triangulation sensors (TS).

Fig. 9.
Fig. 9.

Comparison of the relative uncertainties: (a) relative uncertainty of the frequency evaluation σf /f , (b) relative uncertainty of the velocity evaluation σv /v.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

v = fd ,
φ ( z ) = sz + φ 0
v = f 1 v z d 1 ( z ) = f 2 v z d 2 ( z ) .
s opt = 2 π l z ,
σ z = φ z 1 σ φ = s 1 σ φ .
σ φ 2 SNR N ,
σ z , min = s 1 2 SNR N .
d i ( z ) = λ i 2 sin θ i [ 1 + λ i 2 cos 2 θ i π 2 w 0 i 4 z 2 ] ; i = 1,2 ,
Δ φ ( z ) = 2 π ( 1 d 2 ( z ) 1 d 1 ( z ) ) 2 w 0 .
w 0 2 = λ 1 λ 2 w 0 1 .
σ v v = ( σ f f ) 2 + ( σ d d ) 2 .
σ v v = ( σ f f ) 2 + ( d z s 1 d 1 σ φ ) 2 .
σ v v σ f f
σ z , tot = σ z 2 + ( Δ z max 3 ) 2 .

Metrics