Abstract

Laser-induced generation of vapor bubbles in water around plasmonic nanoparticles was experimentally studied by optical scattering methods. Nanoparticle-generated bubbles spatially localize a laser-induced thermal field and also amplify the optical scattering relatively to that by gold nanoparticles. Bubble lifetimes and threshold fluencies were determined as functions of the parameters of a laser (pulse duration, fluence, interpulse interval), nanoparticle (size, shape, aggregation state), and of the sample chamber so as to optimize the conditions of bubble generation around plasmonic nanoparticles. Nanoparticle-generated bubbles are suggested as nano-sized optical sensors and sources of localized thermal and mechanical impact.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schwartzberg and J. Z. Zhang, "Novel optical properties and emerging applications of metal nanostructures," J. Phys. Chem. 28, 10323-10337 (2008).
  2. O. Govorov and H. H. Richardson, "Generating heat with metal nanoparticles," Nano. Today 1, 30-38 (2007).
  3. L. François, M. Mostafavi, J. Belloni, J.-F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).
  4. Y. Seol, A. Carpenter, and T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt. Lett. 31, 2429-2431 (2006).
    [PubMed]
  5. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
    [PubMed]
  6. M. Pitsillides, E. K. Joe, X. Wei, R. R Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
    [PubMed]
  7. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
    [PubMed]
  8. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano. Lett. 7, 1929-1934 (2007).
    [PubMed]
  9. L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, "Gold nanorods mediate tumor cell death by compromising membrane integrity," Adv. Mater. 19, 3136-3141 (2007).
  10. I. El-Sayed, X. Huang, and M. El-Sayed "Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles," Cancer Lett. 239, 129- 35 (2006).
  11. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trend. Biotech. 24, 62-67 (2006).
  12. G. Skirtach, A. M. Javier, O. Kreft, K. Khler, A. P. Alberola, H. Mohwald, W. J. Parak, and G. B. Sukhorukov, "Laser-induced release of encapsulated materials inside living cells," Angew. Chem. Int. Ed. 45, 4612-4617 (2006).
  13. C. Murphy, A. Gole, J. Stone, P. Sisco, A Alkilany, E. Goldsmith, and S. C. Baxter, "Gold nanoparticles in biology: beyond toxicity to cellular imaging," Acc. Chem. Res. 41, 1721-1730 (2008).
    [PubMed]
  14. H. Liao, C. Nehl, and J. Hafner, "Biomedical applications of plasmon resonant metal nanoparicles," Nanomedicine 1,201-208 (2006).
  15. M. Hu and G. V. Hartland, "Heat dissipation for Au particles in aqueous solution: relaxation time versus size," J. Phys. Chem. B 106, 7029-7033 (2002).
  16. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near-infrared absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004).
    [PubMed]
  17. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared tegion by using gold nanorods," J. Am. Chem. Soc. 128, 2115-21202 (2006).
    [PubMed]
  18. T. B. Huff, L. Tong, M. Hansen, J. X. Cheng, and A. Wei, "Hyperthermic effects of gold nanorods on tumor cells," Nanomedicine 2, 125-132 (2007).
    [PubMed]
  19. X. Huang and P. K. Jain, and I. H. El-Sayed, and M. A. El-Sayed, "Plasmonic photothermal therapy (PPTT) using gold nanoparticles," Lasers Med. Sci. 23, 217-228 (2008).
  20. C. P. Lin and M. W. Kelly, "Cavitation and acoustic emission around laser-heated microparticles," Appl. Phys. Lett. 72, 2800-2802 (1998).
  21. D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent — an ex vivo preliminary rat study," Nanotechnology 19, 095101 (2008).
    [PubMed]
  22. S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, "Molecular specific optoacoustic imaging with plasmonic nanoparticles," Opt. Express 11, 6583-6588 (2007).
  23. D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Method of laser activated nanothermolysis for elimination of tumor cells," Cancer Lett. 239, 36-45 (2006).
  24. D. Lapotko, E. Lukianova, and A. Oraevsky, "Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles," Lasers Surg. Med. 38, 631-642 (2006).
    [PubMed]
  25. Y. Hleb, J. H. Hafner, J. N. Myers, E. Y. Hanna, and D. O. Lapotko, "LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles," Nanomedicine 3, 648-667 (2008).
  26. D. M. Bartels, R. A. Crowell, T. E. McGrath, and G. J. Diebold, "Laser-initiated chemical reactions in carbon suspensions," J. Phys. Chem. A 106, 10072-10078 (2002).
  27. O. Yavas, P. Leiderer, H. Park, C. Grigoropoulos, C. Poon, W. Leung, N. Do, and A. Tam, "Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating," Phys. Rev. Lett. 70,1830-1833 (1993).
    [PubMed]
  28. G. M. Hansen, "Mie scattering as a technique for the sizing of air bubbles," Appl. Opt. 24, 3214-3220 (1985).
    [PubMed]
  29. J.-S. Jeon, I.-J. Yang, S.-W. Karng, and H.-Y. Kwak, "Radius measurement of a sonoluminescing gas bubble," Jpn. J. Appl. Phys. 39, 1124-1127 (2000).
  30. Q. Zhu, B. Chance, W. T. Jenkins, and Y. Zhang, "Enhanced optical scattering by microbubbles," Proc. SPIE 2979, 157-162 (1997).
  31. T. Kozuka, S. Hatanaka, K. Yasui, T. Tuziuti, and H. Mitome, "Simultaneous observation of motion and size of a sonoluminescing bubble," Jpn. J. Appl. Phys. 41, 3248-3249 (2002).
  32. C. Auger, R. G. Barrera, and B. Stou, "Optical properties of an eccentrically located pigment within an air bubble," Progress in Organic Coatings 49, 74-83 (2004).
  33. A. Kokhanovsky, "Optical properties of bubbles," J. Opt. A: Pure Appl. Opt. 5, 47-52 (2003).
  34. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery," Phys. Rev. Lett. 100, 038102 (2008).
    [PubMed]
  35. E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, "Photothermal bubbles as optical scattering probes for imaging living cells," Nanomedicine 3, 797-812 (2008).
    [PubMed]
  36. J. Neumann and R. Brinkmann, "Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses," J. Biomed. Opt. 10, 024001 (2005).
    [PubMed]
  37. S. L. Jacques and D. J. McAuliffe, "The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation," Photochem. Photobiol. 53, 769-775 (1991).
    [PubMed]
  38. J. Neumann and R. Brinkmann "Nucleation dynamics around single microabsorbers in water heated by nanosecond laser irradiation," J. Appl. Phys. 101, 114701 (2007).
  39. E. Faraggi, B. S. Gerstman, and J. Sun, "Biophysical effects of pulsed lasers in the retina and other tissues containing strongly absorbing particles: shockwave and explosive bubble generation," J. Biomed. Opt. 10, 064029 (2005).
  40. T. G. van Leeuwen, E. D. Jansen, A. J. Welch, and C. Borst, "Excimer laser-induced bubble: dimensions, theory, and implications for laser angioplasty," Lasers Surg. Med. 4, 381-390 (1996).
  41. M. Strauss, P. A. Amendt, R. A. London, D. J. Maitland, M. E. Glinsky, C. P. Lin, and M. W. Kelly, "Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles," Proc. SPIE 2975, 261-270 (1997).
  42. A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
  43. S. Gersman, "Theoretical modeling of laser induced explosive pressure generation and vaporization in pigmented cells," Proc. SPIE 3902, 41-52 (2000).
  44. I. Amendt, M. Strauss, R. A. London, M. E. Glinsky, D. J. Maitland, P. M. Celliers, S. R. Visuri, D. S. Bailey, D. A. Young, and D. Ho, "Modeling of bubble dynamics in relation to medical applications," in Laser-Tisstle Interaction 8, eds. (Proc. SPIE 2975, Bellingham, 1997), pp. 362-373.
  45. T.G. van Leeuwen, E. D. Jansen, M. Motamedi, A. J. Welch, and C. Borst, "Excimer laser ablation of soft tissue: a study of the content of rapidly expanding and collapsing bubbles," IEEE J. Quantum Electron. 30, 1339-1345 (1994).
  46. U. S. Sathyam, MS, A. Shearin, BS, E. A. Chasteney, MD, and S. A. Prahl "Threshold and ablation efficiency studies of microsecond ablation of gelatin under water,"Lasers Surg. Med. 19, 397-406 (1996).
    [PubMed]
  47. R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, "Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring," IEEE J. Sel. Top. Quant. Electron. 2, 826-835 (1996).
  48. R. Brinkmann, G. Huttmann, J. Rogener, J. Roider, R. Birngruber, and C. P. Lin, "Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen," Lasers Surg. Med. 27, 451-64 (2000).
    [PubMed]
  49. R. R. Kaustubh, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
  50. T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, "Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses," Lasers Surg. Med. 19, 23-31 (1996).
    [PubMed]
  51. S. Hutson and X. Ma "Plasma and cavitation dynamics during pulsed laser microsurgery in vivo," Phys. Rev. 99, 158104 (2007).
  52. J. Roegener and C. P. Lin, ‘‘Photomechanical effects: experimental studies of pigment granule absorption, cavitation, and cell damage,’’Proc. SPIE 3902, 35-40 (2000).
  53. J. Baumgart, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, "Live cell opto-injection by femtosecond laser pulses," Proc SPIE 6435, 643512 (2007).
  54. C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).
  55. N. del Fatti, C. Voisin, F. Chevy, F. Valleґe, and C. Flytzanis, "Coherent acoustic mode oscillation and damping in silver nanoparticles," J. Chem. Phys. 110, 11484 (1999).
  56. M. Hu, X. Wang, G.V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, "Heat dissipation in gold-silica core-shell nanoparticles," Chem. Phys. Lett. 372, 767-772 (2003).
  57. A. Plech, M. Wulff, S. Kürbitz, K.-J. Berg, G. Berg, H. Graener, S. Grésillon, M. Kaempfe, J. Feldmann,and G. von Plessen, "Time-resolved X-ray diffraction on laser-excited metal nanoparticles," Europhys. Lett. 61, 762-768 (2003).
  58. A. Plech, V. Kotaidis, S. Grersillon, C. Dahmen, and G. von Plessen, "Laser-induced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering," Phys. Rev. B 70, 195423 (2004).
  59. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, D. von der Linde, M. H. von Hoegen, A. Cavalleri, J.A. Squier, and M. Kammler, "Femtosecond X-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
    [PubMed]
  60. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).
  61. F. Schotte, S. Techert, P.A. Anfinrud, V. Srajer, K. Moffat, and M. Wulff, Third-generation hard X-ray synchrotron radiation sources D. Mills eds. (Wiley, New York, 2002), pp. 345-401.
  62. A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, and P. A. Anfinrud, "Visualizing chemical reactions in solution by picosecond X-ray diffraction," Phys. Rev. Lett. 92, 125505 (2004).
    [PubMed]
  63. V. Kotaidis and A. Plecha "Cavitation dynamics on the nanoscale," Appl. Phys. Lett. 87, 213102 (2005).
  64. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech "Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water," J. Chem. Phys. 124, 184702 (2006).
    [PubMed]
  65. H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, "Nucleating cavitation from laser-illuminated nano-particles," Acoust. Res. Lett. Online 6, 138-143 (2005).
  66. L. François, M. Mostafavi, J. Belloni, and J. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. 3, 4965-4971 (2001).
  67. G. Huttmann and R. Birngruber, "On the possibility of high-precision optothermal microeffects and the measurement of fast thermal denaturation of proteins," IEEE J. Sel. Top. Quantum Electron. 5, 954-962 (1999).
  68. D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, A. Oraevsky, V. Savitskiy, and O. Klimovich "Photothermal microscopy and laser ablation of leukemia cells targeted with gold nanoparticles," Proc. SPIE 5697, 82-89 (2005).
  69. D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Elimination of leukemic cells from human transplants by laser nano-thermolysis," Proc. SPIE 6086, 135-142 (2006).
  70. A. N. Volkov, C. Sevilla, and L. V. Zhigilei "Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water," Appl. Surf. Sci. 253, 6394-6399 (2007).
  71. B. Krasovitski, H. Kislev, and E. Kimmel "Modeling photothermal and acoustical induced microbubble generation and growth," Ultrasonics 47,90-101, (2007).
    [PubMed]
  72. E. Y. Hleb and D. O. Lapotko, "Photothermal properties of gold nanoparticles under exposure to high optical energies," Nanotechnology 19, 355702 (2008).
    [PubMed]
  73. M. Otter, "Temperature dependance of the optical constants of heavy metals," Z. Phys. 161, 539-549 (1961).
  74. M. Hu and G. V. Hartland, "Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures," Chem. Phys. Lett. 391, 220-225 (2004).
  75. A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, "A surface phase transition of supported gold nanoparticles" Nano. Lett. 13, 17352505 (2007).
  76. S. Inasawa, M. Sugiyama, and Y. Yamaguchi, "Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting," J. Phys. Chem. B 109, 3104-3111 (2005).
  77. S. Inasawa, M. Sugiyama, S. Noda, and Y. Yamaguchi, "Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer," J. Phys. Chem. B 110, 3114-3119 (2006).
    [PubMed]
  78. H. Petrova, H. Min, and G. Hartland, "Photothermal properties of gold nanoparticles," Z. Phys. Chem. 221, 361-76 (2007).
  79. G. Hartland, "Measurement of the material properties of metal nanoparticles by time-resolved spectroscopy," Phys. Chem. Chem. Phys. 6, 5263-5274 (2004).
  80. S. Link and M. A. El-Sayed, "Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals," Internat. Rev. Phys. Chem. 19, 409-453 (2000).
  81. L. Rayleigh, "On the pressure developed in a liquid during the collapse of a spherical cavity," Philos. Mag. 34, 94-98 (1917).
  82. R. Gilmore, "The growth and collapse of a spherical bubble in a viscous compressible liquid," presented at California Institute of Technology Hydrodynamics. Laboratory Report 26(4), Pasadena, 1952.
  83. C. E. Brennen, Cavitation and bubble dynamics: (Oxford University Press, Oxford Engineering Science, New York, 1995), pp. 44.
  84. C.-D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, "Bubble dynamics, shock waves and sonoluminescence," Philos. Trans. R. Soc. London Ser. A 357, 269-294 (1999).
  85. D. Lapotko, E. Lukianova-Hleb, and A. Oraevsky, "Clusterization of nanoparticles during their interaction with living cells," Nanomedicine 2, 241-253 (2007).
    [PubMed]
  86. W.C.W. Chan and B. D. Chithrani, "Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes," Nano. Lett. 7, 1542-1550 (2007).
    [PubMed]
  87. J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization," Anal. Biochem. 262, 157-176 (1998).
    [PubMed]
  88. O. C. Farokhzad, S. Jon, A. Khademhosseini, T. N. T. Tran, D. A. LaVan, and R. Langer, "Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells," Cancer Res. 64, 7668-7672 (2004).
    [PubMed]
  89. C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
  90. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
    [PubMed]
  91. O. Siiman, K. Gordon, A. Burshteyn, J. Maples, and J. Whitesell, "Immunophenotyping using gold or silver nanoparticle-polystyrene bead conjugates with multiple light scatter," Cytometry 41, 298-307 (2000).
    [PubMed]
  92. R. Drezek, M. Faupel, C. Pitris, M. Feld, M. Brewer, R. Richards-Kortum, and M. Follen, "Optical imaging for the detection of cervical precancers in vivo," Cancer 98, 2015-2027 (2003).
    [PubMed]
  93. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nano. Today 2, 18-29 (2007).
  94. K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
    [PubMed]
  95. A. C. Tam, "Overview of photothermal spectroscopy," in Photothermal investigation of solids and fluids, J. A. Sell eds. (Acad. Press, 1988) pp.1-34.
  96. D. Lapotko, K. Lukianova, and A. Shnip, "Photothermal responses of individual cells," J. Biomed. Opt. 10, 14006 (2005).
    [PubMed]
  97. E. Antononi and M. Brunoni, Hemoglobin and mioglobin and their reaction with ligands (North-Holland, Amsterdam,1997).
  98. D. Lapotko and K. Lukianova, "Laser-induced micro-bubbles in cells," Int. J. Heat Mass Transfer 48, 227-234 (2005).
  99. G. Paltauf and P. E. Dyer, "Photomechanical processes and effects in ablation," Chem. Rev. 103, 487-518 (2003).
    [PubMed]
  100. G.I. Zheltov, V. A. Lisinetskii, A. S. Grabtchikov, and V.A. Orlovich, "Low-threshold cavitation in water using IR laser pulse trains," Appl. Opt. 47, 3549 - 3554 (2008).
    [PubMed]
  101. P.A. Dayton, J. E. Chomas, A. F. H. Lunn, J. S. Allen, J. R. Lindner, S. I. Simon, and K. W. Ferrara, "Optical and acoustical dynamics of microbubble contrast agents inside neutrophils," Biophys. J. 80, 1547-1556 (2001).
    [PubMed]
  102. C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R.  Anderson, "Selective cell killing by microparticle absorption of pulsed laser radiation," IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).
  103. S. Hutson and X. Ma, "Plasma and cavitation dynamics during pulsed laser microsurgery in vivo," Phys. Rev. Lett. 99, 158104 (2007).
    [PubMed]
  104. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, "Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds," Opt. Express 10, 196-203 (2002).
    [PubMed]
  105. M. J. Zohdy, C. Tse, Jing Yong Ye, and M. O`Donnell, "Optical and acoustic detection of laser-generated microbubbles in single cells," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 117-125 (2006).
    [PubMed]

2008 (9)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery," Phys. Rev. Lett. 100, 038102 (2008).
[PubMed]

E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, "Photothermal bubbles as optical scattering probes for imaging living cells," Nanomedicine 3, 797-812 (2008).
[PubMed]

E. Y. Hleb and D. O. Lapotko, "Photothermal properties of gold nanoparticles under exposure to high optical energies," Nanotechnology 19, 355702 (2008).
[PubMed]

C. Murphy, A. Gole, J. Stone, P. Sisco, A Alkilany, E. Goldsmith, and S. C. Baxter, "Gold nanoparticles in biology: beyond toxicity to cellular imaging," Acc. Chem. Res. 41, 1721-1730 (2008).
[PubMed]

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent — an ex vivo preliminary rat study," Nanotechnology 19, 095101 (2008).
[PubMed]

X. Huang and P. K. Jain, and I. H. El-Sayed, and M. A. El-Sayed, "Plasmonic photothermal therapy (PPTT) using gold nanoparticles," Lasers Med. Sci. 23, 217-228 (2008).

Y. Hleb, J. H. Hafner, J. N. Myers, E. Y. Hanna, and D. O. Lapotko, "LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles," Nanomedicine 3, 648-667 (2008).

M. Schwartzberg and J. Z. Zhang, "Novel optical properties and emerging applications of metal nanostructures," J. Phys. Chem. 28, 10323-10337 (2008).

G.I. Zheltov, V. A. Lisinetskii, A. S. Grabtchikov, and V.A. Orlovich, "Low-threshold cavitation in water using IR laser pulse trains," Appl. Opt. 47, 3549 - 3554 (2008).
[PubMed]

2007 (16)

O. Govorov and H. H. Richardson, "Generating heat with metal nanoparticles," Nano. Today 1, 30-38 (2007).

S. Hutson and X. Ma, "Plasma and cavitation dynamics during pulsed laser microsurgery in vivo," Phys. Rev. Lett. 99, 158104 (2007).
[PubMed]

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, "Molecular specific optoacoustic imaging with plasmonic nanoparticles," Opt. Express 11, 6583-6588 (2007).

T. B. Huff, L. Tong, M. Hansen, J. X. Cheng, and A. Wei, "Hyperthermic effects of gold nanorods on tumor cells," Nanomedicine 2, 125-132 (2007).
[PubMed]

A. N. Volkov, C. Sevilla, and L. V. Zhigilei "Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water," Appl. Surf. Sci. 253, 6394-6399 (2007).

B. Krasovitski, H. Kislev, and E. Kimmel "Modeling photothermal and acoustical induced microbubble generation and growth," Ultrasonics 47,90-101, (2007).
[PubMed]

H. Petrova, H. Min, and G. Hartland, "Photothermal properties of gold nanoparticles," Z. Phys. Chem. 221, 361-76 (2007).

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, "A surface phase transition of supported gold nanoparticles" Nano. Lett. 13, 17352505 (2007).

D. Lapotko, E. Lukianova-Hleb, and A. Oraevsky, "Clusterization of nanoparticles during their interaction with living cells," Nanomedicine 2, 241-253 (2007).
[PubMed]

W.C.W. Chan and B. D. Chithrani, "Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes," Nano. Lett. 7, 1542-1550 (2007).
[PubMed]

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nano. Today 2, 18-29 (2007).

M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano. Lett. 7, 1929-1934 (2007).
[PubMed]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, "Gold nanorods mediate tumor cell death by compromising membrane integrity," Adv. Mater. 19, 3136-3141 (2007).

J. Neumann and R. Brinkmann "Nucleation dynamics around single microabsorbers in water heated by nanosecond laser irradiation," J. Appl. Phys. 101, 114701 (2007).

S. Hutson and X. Ma "Plasma and cavitation dynamics during pulsed laser microsurgery in vivo," Phys. Rev. 99, 158104 (2007).

J. Baumgart, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, "Live cell opto-injection by femtosecond laser pulses," Proc SPIE 6435, 643512 (2007).

2006 (13)

R. R. Kaustubh, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech "Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water," J. Chem. Phys. 124, 184702 (2006).
[PubMed]

I. El-Sayed, X. Huang, and M. El-Sayed "Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles," Cancer Lett. 239, 129- 35 (2006).

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trend. Biotech. 24, 62-67 (2006).

G. Skirtach, A. M. Javier, O. Kreft, K. Khler, A. P. Alberola, H. Mohwald, W. J. Parak, and G. B. Sukhorukov, "Laser-induced release of encapsulated materials inside living cells," Angew. Chem. Int. Ed. 45, 4612-4617 (2006).

S. Inasawa, M. Sugiyama, S. Noda, and Y. Yamaguchi, "Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer," J. Phys. Chem. B 110, 3114-3119 (2006).
[PubMed]

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Elimination of leukemic cells from human transplants by laser nano-thermolysis," Proc. SPIE 6086, 135-142 (2006).

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared tegion by using gold nanorods," J. Am. Chem. Soc. 128, 2115-21202 (2006).
[PubMed]

H. Liao, C. Nehl, and J. Hafner, "Biomedical applications of plasmon resonant metal nanoparicles," Nanomedicine 1,201-208 (2006).

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Method of laser activated nanothermolysis for elimination of tumor cells," Cancer Lett. 239, 36-45 (2006).

D. Lapotko, E. Lukianova, and A. Oraevsky, "Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles," Lasers Surg. Med. 38, 631-642 (2006).
[PubMed]

M. J. Zohdy, C. Tse, Jing Yong Ye, and M. O`Donnell, "Optical and acoustic detection of laser-generated microbubbles in single cells," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 117-125 (2006).
[PubMed]

Y. Seol, A. Carpenter, and T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt. Lett. 31, 2429-2431 (2006).
[PubMed]

2005 (10)

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
[PubMed]

V. Kotaidis and A. Plecha "Cavitation dynamics on the nanoscale," Appl. Phys. Lett. 87, 213102 (2005).

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, A. Oraevsky, V. Savitskiy, and O. Klimovich "Photothermal microscopy and laser ablation of leukemia cells targeted with gold nanoparticles," Proc. SPIE 5697, 82-89 (2005).

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, "Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting," J. Phys. Chem. B 109, 3104-3111 (2005).

D. Lapotko, K. Lukianova, and A. Shnip, "Photothermal responses of individual cells," J. Biomed. Opt. 10, 14006 (2005).
[PubMed]

D. Lapotko and K. Lukianova, "Laser-induced micro-bubbles in cells," Int. J. Heat Mass Transfer 48, 227-234 (2005).

H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, "Nucleating cavitation from laser-illuminated nano-particles," Acoust. Res. Lett. Online 6, 138-143 (2005).

E. Faraggi, B. S. Gerstman, and J. Sun, "Biophysical effects of pulsed lasers in the retina and other tissues containing strongly absorbing particles: shockwave and explosive bubble generation," J. Biomed. Opt. 10, 064029 (2005).

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).

J. Neumann and R. Brinkmann, "Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses," J. Biomed. Opt. 10, 024001 (2005).
[PubMed]

2004 (7)

C. Auger, R. G. Barrera, and B. Stou, "Optical properties of an eccentrically located pigment within an air bubble," Progress in Organic Coatings 49, 74-83 (2004).

A. Plech, V. Kotaidis, S. Grersillon, C. Dahmen, and G. von Plessen, "Laser-induced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering," Phys. Rev. B 70, 195423 (2004).

A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, and P. A. Anfinrud, "Visualizing chemical reactions in solution by picosecond X-ray diffraction," Phys. Rev. Lett. 92, 125505 (2004).
[PubMed]

O. C. Farokhzad, S. Jon, A. Khademhosseini, T. N. T. Tran, D. A. LaVan, and R. Langer, "Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells," Cancer Res. 64, 7668-7672 (2004).
[PubMed]

G. Hartland, "Measurement of the material properties of metal nanoparticles by time-resolved spectroscopy," Phys. Chem. Chem. Phys. 6, 5263-5274 (2004).

M. Hu and G. V. Hartland, "Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures," Chem. Phys. Lett. 391, 220-225 (2004).

P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near-infrared absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004).
[PubMed]

2003 (8)

R. Drezek, M. Faupel, C. Pitris, M. Feld, M. Brewer, R. Richards-Kortum, and M. Follen, "Optical imaging for the detection of cervical precancers in vivo," Cancer 98, 2015-2027 (2003).
[PubMed]

M. Pitsillides, E. K. Joe, X. Wei, R. R Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[PubMed]

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

G. Paltauf and P. E. Dyer, "Photomechanical processes and effects in ablation," Chem. Rev. 103, 487-518 (2003).
[PubMed]

M. Hu, X. Wang, G.V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, "Heat dissipation in gold-silica core-shell nanoparticles," Chem. Phys. Lett. 372, 767-772 (2003).

A. Plech, M. Wulff, S. Kürbitz, K.-J. Berg, G. Berg, H. Graener, S. Grésillon, M. Kaempfe, J. Feldmann,and G. von Plessen, "Time-resolved X-ray diffraction on laser-excited metal nanoparticles," Europhys. Lett. 61, 762-768 (2003).

A. Kokhanovsky, "Optical properties of bubbles," J. Opt. A: Pure Appl. Opt. 5, 47-52 (2003).

2002 (5)

T. Kozuka, S. Hatanaka, K. Yasui, T. Tuziuti, and H. Mitome, "Simultaneous observation of motion and size of a sonoluminescing bubble," Jpn. J. Appl. Phys. 41, 3248-3249 (2002).

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[PubMed]

M. Hu and G. V. Hartland, "Heat dissipation for Au particles in aqueous solution: relaxation time versus size," J. Phys. Chem. B 106, 7029-7033 (2002).

D. M. Bartels, R. A. Crowell, T. E. McGrath, and G. J. Diebold, "Laser-initiated chemical reactions in carbon suspensions," J. Phys. Chem. A 106, 10072-10078 (2002).

B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, "Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds," Opt. Express 10, 196-203 (2002).
[PubMed]

2001 (4)

P.A. Dayton, J. E. Chomas, A. F. H. Lunn, J. S. Allen, J. R. Lindner, S. I. Simon, and K. W. Ferrara, "Optical and acoustical dynamics of microbubble contrast agents inside neutrophils," Biophys. J. 80, 1547-1556 (2001).
[PubMed]

C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, D. von der Linde, M. H. von Hoegen, A. Cavalleri, J.A. Squier, and M. Kammler, "Femtosecond X-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[PubMed]

L. François, M. Mostafavi, J. Belloni, and J. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. 3, 4965-4971 (2001).

2000 (8)

R. Brinkmann, G. Huttmann, J. Rogener, J. Roider, R. Birngruber, and C. P. Lin, "Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen," Lasers Surg. Med. 27, 451-64 (2000).
[PubMed]

J. Roegener and C. P. Lin, ‘‘Photomechanical effects: experimental studies of pigment granule absorption, cavitation, and cell damage,’’Proc. SPIE 3902, 35-40 (2000).

S. Gersman, "Theoretical modeling of laser induced explosive pressure generation and vaporization in pigmented cells," Proc. SPIE 3902, 41-52 (2000).

J.-S. Jeon, I.-J. Yang, S.-W. Karng, and H.-Y. Kwak, "Radius measurement of a sonoluminescing gas bubble," Jpn. J. Appl. Phys. 39, 1124-1127 (2000).

O. Siiman, K. Gordon, A. Burshteyn, J. Maples, and J. Whitesell, "Immunophenotyping using gold or silver nanoparticle-polystyrene bead conjugates with multiple light scatter," Cytometry 41, 298-307 (2000).
[PubMed]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

S. Link and M. A. El-Sayed, "Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals," Internat. Rev. Phys. Chem. 19, 409-453 (2000).

L. François, M. Mostafavi, J. Belloni, J.-F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).

1999 (5)

C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R.  Anderson, "Selective cell killing by microparticle absorption of pulsed laser radiation," IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).

C.-D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, "Bubble dynamics, shock waves and sonoluminescence," Philos. Trans. R. Soc. London Ser. A 357, 269-294 (1999).

N. del Fatti, C. Voisin, F. Chevy, F. Valleґe, and C. Flytzanis, "Coherent acoustic mode oscillation and damping in silver nanoparticles," J. Chem. Phys. 110, 11484 (1999).

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).

G. Huttmann and R. Birngruber, "On the possibility of high-precision optothermal microeffects and the measurement of fast thermal denaturation of proteins," IEEE J. Sel. Top. Quantum Electron. 5, 954-962 (1999).

1998 (2)

J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization," Anal. Biochem. 262, 157-176 (1998).
[PubMed]

C. P. Lin and M. W. Kelly, "Cavitation and acoustic emission around laser-heated microparticles," Appl. Phys. Lett. 72, 2800-2802 (1998).

1997 (2)

Q. Zhu, B. Chance, W. T. Jenkins, and Y. Zhang, "Enhanced optical scattering by microbubbles," Proc. SPIE 2979, 157-162 (1997).

M. Strauss, P. A. Amendt, R. A. London, D. J. Maitland, M. E. Glinsky, C. P. Lin, and M. W. Kelly, "Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles," Proc. SPIE 2975, 261-270 (1997).

1996 (4)

T. G. van Leeuwen, E. D. Jansen, A. J. Welch, and C. Borst, "Excimer laser-induced bubble: dimensions, theory, and implications for laser angioplasty," Lasers Surg. Med. 4, 381-390 (1996).

U. S. Sathyam, MS, A. Shearin, BS, E. A. Chasteney, MD, and S. A. Prahl "Threshold and ablation efficiency studies of microsecond ablation of gelatin under water,"Lasers Surg. Med. 19, 397-406 (1996).
[PubMed]

R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, "Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring," IEEE J. Sel. Top. Quant. Electron. 2, 826-835 (1996).

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, "Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses," Lasers Surg. Med. 19, 23-31 (1996).
[PubMed]

1994 (1)

T.G. van Leeuwen, E. D. Jansen, M. Motamedi, A. J. Welch, and C. Borst, "Excimer laser ablation of soft tissue: a study of the content of rapidly expanding and collapsing bubbles," IEEE J. Quantum Electron. 30, 1339-1345 (1994).

1993 (1)

O. Yavas, P. Leiderer, H. Park, C. Grigoropoulos, C. Poon, W. Leung, N. Do, and A. Tam, "Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating," Phys. Rev. Lett. 70,1830-1833 (1993).
[PubMed]

1991 (1)

S. L. Jacques and D. J. McAuliffe, "The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation," Photochem. Photobiol. 53, 769-775 (1991).
[PubMed]

1985 (1)

1961 (1)

M. Otter, "Temperature dependance of the optical constants of heavy metals," Z. Phys. 161, 539-549 (1961).

1917 (1)

L. Rayleigh, "On the pressure developed in a liquid during the collapse of a spherical cavity," Philos. Mag. 34, 94-98 (1917).

Aaron, J.

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, "Molecular specific optoacoustic imaging with plasmonic nanoparticles," Opt. Express 11, 6583-6588 (2007).

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

Adler-Storthz, K.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

Agarwal, A.

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent — an ex vivo preliminary rat study," Nanotechnology 19, 095101 (2008).
[PubMed]

Alberola, A. P.

G. Skirtach, A. M. Javier, O. Kreft, K. Khler, A. P. Alberola, H. Mohwald, W. J. Parak, and G. B. Sukhorukov, "Laser-induced release of encapsulated materials inside living cells," Angew. Chem. Int. Ed. 45, 4612-4617 (2006).

Aleinikova, O.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Method of laser activated nanothermolysis for elimination of tumor cells," Cancer Lett. 239, 36-45 (2006).

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Elimination of leukemic cells from human transplants by laser nano-thermolysis," Proc. SPIE 6086, 135-142 (2006).

Alkilany, A

C. Murphy, A. Gole, J. Stone, P. Sisco, A Alkilany, E. Goldsmith, and S. C. Baxter, "Gold nanoparticles in biology: beyond toxicity to cellular imaging," Acc. Chem. Res. 41, 1721-1730 (2008).
[PubMed]

Allen, J. S.

P.A. Dayton, J. E. Chomas, A. F. H. Lunn, J. S. Allen, J. R. Lindner, S. I. Simon, and K. W. Ferrara, "Optical and acoustical dynamics of microbubble contrast agents inside neutrophils," Biophys. J. 80, 1547-1556 (2001).
[PubMed]

Amendt, P. A.

M. Strauss, P. A. Amendt, R. A. London, D. J. Maitland, M. E. Glinsky, C. P. Lin, and M. W. Kelly, "Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles," Proc. SPIE 2975, 261-270 (1997).

Anderson, R. R

M. Pitsillides, E. K. Joe, X. Wei, R. R Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[PubMed]

Anderson, R. R.

C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R.  Anderson, "Selective cell killing by microparticle absorption of pulsed laser radiation," IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).

Anfinrud, P. A.

A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, and P. A. Anfinrud, "Visualizing chemical reactions in solution by picosecond X-ray diffraction," Phys. Rev. Lett. 92, 125505 (2004).
[PubMed]

Arap, W.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

Auger, C.

C. Auger, R. G. Barrera, and B. Stou, "Optical properties of an eccentrically located pigment within an air bubble," Progress in Organic Coatings 49, 74-83 (2004).

Aussenegg, F.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Barrera, R. G.

C. Auger, R. G. Barrera, and B. Stou, "Optical properties of an eccentrically located pigment within an air bubble," Progress in Organic Coatings 49, 74-83 (2004).

Bartels, A.

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, "A surface phase transition of supported gold nanoparticles" Nano. Lett. 13, 17352505 (2007).

Bartels, D. M.

D. M. Bartels, R. A. Crowell, T. E. McGrath, and G. J. Diebold, "Laser-initiated chemical reactions in carbon suspensions," J. Phys. Chem. A 106, 10072-10078 (2002).

Baumgart, J.

J. Baumgart, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, "Live cell opto-injection by femtosecond laser pulses," Proc SPIE 6435, 643512 (2007).

Baxter, S. C.

C. Murphy, A. Gole, J. Stone, P. Sisco, A Alkilany, E. Goldsmith, and S. C. Baxter, "Gold nanoparticles in biology: beyond toxicity to cellular imaging," Acc. Chem. Res. 41, 1721-1730 (2008).
[PubMed]

Belloni, J.

L. François, M. Mostafavi, J. Belloni, and J. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. 3, 4965-4971 (2001).

L. François, M. Mostafavi, J. Belloni, J.-F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).

Berg, G.

A. Plech, M. Wulff, S. Kürbitz, K.-J. Berg, G. Berg, H. Graener, S. Grésillon, M. Kaempfe, J. Feldmann,and G. von Plessen, "Time-resolved X-ray diffraction on laser-excited metal nanoparticles," Europhys. Lett. 61, 762-768 (2003).

Berg, K.-J.

A. Plech, M. Wulff, S. Kürbitz, K.-J. Berg, G. Berg, H. Graener, S. Grésillon, M. Kaempfe, J. Feldmann,and G. von Plessen, "Time-resolved X-ray diffraction on laser-excited metal nanoparticles," Europhys. Lett. 61, 762-768 (2003).

Bialkowski, J.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).

Bintig, W.

J. Baumgart, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, "Live cell opto-injection by femtosecond laser pulses," Proc SPIE 6435, 643512 (2007).

Birngruber, R.

R. Brinkmann, G. Huttmann, J. Rogener, J. Roider, R. Birngruber, and C. P. Lin, "Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen," Lasers Surg. Med. 27, 451-64 (2000).
[PubMed]

G. Huttmann and R. Birngruber, "On the possibility of high-precision optothermal microeffects and the measurement of fast thermal denaturation of proteins," IEEE J. Sel. Top. Quantum Electron. 5, 954-962 (1999).

R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, "Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring," IEEE J. Sel. Top. Quant. Electron. 2, 826-835 (1996).

Blome, C.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, D. von der Linde, M. H. von Hoegen, A. Cavalleri, J.A. Squier, and M. Kammler, "Femtosecond X-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[PubMed]

Bor, Z.

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, "Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses," Lasers Surg. Med. 19, 23-31 (1996).
[PubMed]

Borst, C.

T. G. van Leeuwen, E. D. Jansen, A. J. Welch, and C. Borst, "Excimer laser-induced bubble: dimensions, theory, and implications for laser angioplasty," Lasers Surg. Med. 4, 381-390 (1996).

T.G. van Leeuwen, E. D. Jansen, M. Motamedi, A. J. Welch, and C. Borst, "Excimer laser ablation of soft tissue: a study of the content of rapidly expanding and collapsing bubbles," IEEE J. Quantum Electron. 30, 1339-1345 (1994).

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[PubMed]

Bratos, S.

A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, and P. A. Anfinrud, "Visualizing chemical reactions in solution by picosecond X-ray diffraction," Phys. Rev. Lett. 92, 125505 (2004).
[PubMed]

Brewer, M.

R. Drezek, M. Faupel, C. Pitris, M. Feld, M. Brewer, R. Richards-Kortum, and M. Follen, "Optical imaging for the detection of cervical precancers in vivo," Cancer 98, 2015-2027 (2003).
[PubMed]

Brinkmann, R.

J. Neumann and R. Brinkmann "Nucleation dynamics around single microabsorbers in water heated by nanosecond laser irradiation," J. Appl. Phys. 101, 114701 (2007).

J. Neumann and R. Brinkmann, "Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses," J. Biomed. Opt. 10, 024001 (2005).
[PubMed]

R. Brinkmann, G. Huttmann, J. Rogener, J. Roider, R. Birngruber, and C. P. Lin, "Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen," Lasers Surg. Med. 27, 451-64 (2000).
[PubMed]

R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, "Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring," IEEE J. Sel. Top. Quant. Electron. 2, 826-835 (1996).

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).

Bron, W. E.

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, "Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses," Lasers Surg. Med. 19, 23-31 (1996).
[PubMed]

Burshteyn, A.

O. Siiman, K. Gordon, A. Burshteyn, J. Maples, and J. Whitesell, "Immunophenotyping using gold or silver nanoparticle-polystyrene bead conjugates with multiple light scatter," Cytometry 41, 298-307 (2000).
[PubMed]

Carpenter, A.

Carson, P. L.

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent — an ex vivo preliminary rat study," Nanotechnology 19, 095101 (2008).
[PubMed]

Cavalleri, A.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, D. von der Linde, M. H. von Hoegen, A. Cavalleri, J.A. Squier, and M. Kammler, "Femtosecond X-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[PubMed]

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).

Cerna, R.

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, "A surface phase transition of supported gold nanoparticles" Nano. Lett. 13, 17352505 (2007).

Chamberland, D. L.

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent — an ex vivo preliminary rat study," Nanotechnology 19, 095101 (2008).
[PubMed]

Chan, V.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Chan, W.C.W.

W.C.W. Chan and B. D. Chithrani, "Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes," Nano. Lett. 7, 1542-1550 (2007).
[PubMed]

Chance, B.

Q. Zhu, B. Chance, W. T. Jenkins, and Y. Zhang, "Enhanced optical scattering by microbubbles," Proc. SPIE 2979, 157-162 (1997).

Cheng, J. X.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, "Gold nanorods mediate tumor cell death by compromising membrane integrity," Adv. Mater. 19, 3136-3141 (2007).

T. B. Huff, L. Tong, M. Hansen, J. X. Cheng, and A. Wei, "Hyperthermic effects of gold nanorods on tumor cells," Nanomedicine 2, 125-132 (2007).
[PubMed]

Chevy, F.

N. del Fatti, C. Voisin, F. Chevy, F. Valleґe, and C. Flytzanis, "Coherent acoustic mode oscillation and damping in silver nanoparticles," J. Chem. Phys. 110, 11484 (1999).

Chithrani, B. D.

W.C.W. Chan and B. D. Chithrani, "Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes," Nano. Lett. 7, 1542-1550 (2007).
[PubMed]

Chomas, J. E.

P.A. Dayton, J. E. Chomas, A. F. H. Lunn, J. S. Allen, J. R. Lindner, S. I. Simon, and K. W. Ferrara, "Optical and acoustical dynamics of microbubble contrast agents inside neutrophils," Biophys. J. 80, 1547-1556 (2001).
[PubMed]

Cortie, M. B.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trend. Biotech. 24, 62-67 (2006).

Crowell, R. A.

D. M. Bartels, R. A. Crowell, T. E. McGrath, and G. J. Diebold, "Laser-initiated chemical reactions in carbon suspensions," J. Phys. Chem. A 106, 10072-10078 (2002).

Dahmen, C.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech "Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water," J. Chem. Phys. 124, 184702 (2006).
[PubMed]

A. Plech, V. Kotaidis, S. Grersillon, C. Dahmen, and G. von Plessen, "Laser-induced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering," Phys. Rev. B 70, 195423 (2004).

Dayton, P.A.

P.A. Dayton, J. E. Chomas, A. F. H. Lunn, J. S. Allen, J. R. Lindner, S. I. Simon, and K. W. Ferrara, "Optical and acoustical dynamics of microbubble contrast agents inside neutrophils," Biophys. J. 80, 1547-1556 (2001).
[PubMed]

Dekorsy, T.

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, "A surface phase transition of supported gold nanoparticles" Nano. Lett. 13, 17352505 (2007).

del Fatti, N.

N. del Fatti, C. Voisin, F. Chevy, F. Valleґe, and C. Flytzanis, "Coherent acoustic mode oscillation and damping in silver nanoparticles," J. Chem. Phys. 110, 11484 (1999).

Delaire, J.

L. François, M. Mostafavi, J. Belloni, and J. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. 3, 4965-4971 (2001).

L. François, M. Mostafavi, J. Belloni, J.-F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).

Delouis, J.-F.

L. François, M. Mostafavi, J. Belloni, J.-F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).

Descour, M.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

Diebold, G. J.

D. M. Bartels, R. A. Crowell, T. E. McGrath, and G. J. Diebold, "Laser-initiated chemical reactions in carbon suspensions," J. Phys. Chem. A 106, 10072-10078 (2002).

Dietrich, C.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, D. von der Linde, M. H. von Hoegen, A. Cavalleri, J.A. Squier, and M. Kammler, "Femtosecond X-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[PubMed]

Ditlbacher, H.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Do, N.

O. Yavas, P. Leiderer, H. Park, C. Grigoropoulos, C. Poon, W. Leung, N. Do, and A. Tam, "Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating," Phys. Rev. Lett. 70,1830-1833 (1993).
[PubMed]

Drezek, R.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
[PubMed]

R. Drezek, M. Faupel, C. Pitris, M. Feld, M. Brewer, R. Richards-Kortum, and M. Follen, "Optical imaging for the detection of cervical precancers in vivo," Cancer 98, 2015-2027 (2003).
[PubMed]

Drezek, R. A.

E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, "Photothermal bubbles as optical scattering probes for imaging living cells," Nanomedicine 3, 797-812 (2008).
[PubMed]

M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano. Lett. 7, 1929-1934 (2007).
[PubMed]

Dyer, P. E.

G. Paltauf and P. E. Dyer, "Photomechanical processes and effects in ablation," Chem. Rev. 103, 487-518 (2003).
[PubMed]

El-Sayed, I.

I. El-Sayed, X. Huang, and M. El-Sayed "Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles," Cancer Lett. 239, 129- 35 (2006).

El-Sayed, I. H.

X. Huang and P. K. Jain, and I. H. El-Sayed, and M. A. El-Sayed, "Plasmonic photothermal therapy (PPTT) using gold nanoparticles," Lasers Med. Sci. 23, 217-228 (2008).

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nano. Today 2, 18-29 (2007).

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared tegion by using gold nanorods," J. Am. Chem. Soc. 128, 2115-21202 (2006).
[PubMed]

El-Sayed, M.

I. El-Sayed, X. Huang, and M. El-Sayed "Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles," Cancer Lett. 239, 129- 35 (2006).

El-Sayed, M. A.

X. Huang and P. K. Jain, and I. H. El-Sayed, and M. A. El-Sayed, "Plasmonic photothermal therapy (PPTT) using gold nanoparticles," Lasers Med. Sci. 23, 217-228 (2008).

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nano. Today 2, 18-29 (2007).

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared tegion by using gold nanorods," J. Am. Chem. Soc. 128, 2115-21202 (2006).
[PubMed]

S. Link and M. A. El-Sayed, "Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals," Internat. Rev. Phys. Chem. 19, 409-453 (2000).

Emelianov, S.

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, "Molecular specific optoacoustic imaging with plasmonic nanoparticles," Opt. Express 11, 6583-6588 (2007).

Ertmer, W.

J. Baumgart, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, "Live cell opto-injection by femtosecond laser pulses," Proc SPIE 6435, 643512 (2007).

Faraggi, E.

E. Faraggi, B. S. Gerstman, and J. Sun, "Biophysical effects of pulsed lasers in the retina and other tissues containing strongly absorbing particles: shockwave and explosive bubble generation," J. Biomed. Opt. 10, 064029 (2005).

Farny, H.

H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, "Nucleating cavitation from laser-illuminated nano-particles," Acoust. Res. Lett. Online 6, 138-143 (2005).

Farokhzad, O. C.

O. C. Farokhzad, S. Jon, A. Khademhosseini, T. N. T. Tran, D. A. LaVan, and R. Langer, "Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells," Cancer Res. 64, 7668-7672 (2004).
[PubMed]

Faupel, M.

R. Drezek, M. Faupel, C. Pitris, M. Feld, M. Brewer, R. Richards-Kortum, and M. Follen, "Optical imaging for the detection of cervical precancers in vivo," Cancer 98, 2015-2027 (2003).
[PubMed]

Feld, M.

R. Drezek, M. Faupel, C. Pitris, M. Feld, M. Brewer, R. Richards-Kortum, and M. Follen, "Optical imaging for the detection of cervical precancers in vivo," Cancer 98, 2015-2027 (2003).
[PubMed]

Feldmann, J.

A. Plech, M. Wulff, S. Kürbitz, K.-J. Berg, G. Berg, H. Graener, S. Grésillon, M. Kaempfe, J. Feldmann,and G. von Plessen, "Time-resolved X-ray diffraction on laser-excited metal nanoparticles," Europhys. Lett. 61, 762-768 (2003).

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Feneyrou, P.

L. François, M. Mostafavi, J. Belloni, J.-F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).

Ferrara, K. W.

P.A. Dayton, J. E. Chomas, A. F. H. Lunn, J. S. Allen, J. R. Lindner, S. I. Simon, and K. W. Ferrara, "Optical and acoustical dynamics of microbubble contrast agents inside neutrophils," Biophys. J. 80, 1547-1556 (2001).
[PubMed]

Follen, M.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

R. Drezek, M. Faupel, C. Pitris, M. Feld, M. Brewer, R. Richards-Kortum, and M. Follen, "Optical imaging for the detection of cervical precancers in vivo," Cancer 98, 2015-2027 (2003).
[PubMed]

Fowlkes, J. B.

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent — an ex vivo preliminary rat study," Nanotechnology 19, 095101 (2008).
[PubMed]

François, L.

L. François, M. Mostafavi, J. Belloni, and J. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. 3, 4965-4971 (2001).

L. François, M. Mostafavi, J. Belloni, J.-F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery," Phys. Rev. Lett. 100, 038102 (2008).
[PubMed]

Geier, S.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Geisler, R.

C.-D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, "Bubble dynamics, shock waves and sonoluminescence," Philos. Trans. R. Soc. London Ser. A 357, 269-294 (1999).

Gersman, S.

S. Gersman, "Theoretical modeling of laser induced explosive pressure generation and vaporization in pigmented cells," Proc. SPIE 3902, 41-52 (2000).

Gerstman, B. S.

E. Faraggi, B. S. Gerstman, and J. Sun, "Biophysical effects of pulsed lasers in the retina and other tissues containing strongly absorbing particles: shockwave and explosive bubble generation," J. Biomed. Opt. 10, 064029 (2005).

Gillenwater, A.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

Glezer, E. N.

Glinsky, M. E.

M. Strauss, P. A. Amendt, R. A. London, D. J. Maitland, M. E. Glinsky, C. P. Lin, and M. W. Kelly, "Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles," Proc. SPIE 2975, 261-270 (1997).

Gobin, M.

M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano. Lett. 7, 1929-1934 (2007).
[PubMed]

Goldsmith, E.

C. Murphy, A. Gole, J. Stone, P. Sisco, A Alkilany, E. Goldsmith, and S. C. Baxter, "Gold nanoparticles in biology: beyond toxicity to cellular imaging," Acc. Chem. Res. 41, 1721-1730 (2008).
[PubMed]

Gole, A.

C. Murphy, A. Gole, J. Stone, P. Sisco, A Alkilany, E. Goldsmith, and S. C. Baxter, "Gold nanoparticles in biology: beyond toxicity to cellular imaging," Acc. Chem. Res. 41, 1721-1730 (2008).
[PubMed]

Gordon, K.

O. Siiman, K. Gordon, A. Burshteyn, J. Maples, and J. Whitesell, "Immunophenotyping using gold or silver nanoparticle-polystyrene bead conjugates with multiple light scatter," Cytometry 41, 298-307 (2000).
[PubMed]

Govorov, O.

O. Govorov and H. H. Richardson, "Generating heat with metal nanoparticles," Nano. Today 1, 30-38 (2007).

Grabtchikov, A. S.

Graener, H.

A. Plech, M. Wulff, S. Kürbitz, K.-J. Berg, G. Berg, H. Graener, S. Grésillon, M. Kaempfe, J. Feldmann,and G. von Plessen, "Time-resolved X-ray diffraction on laser-excited metal nanoparticles," Europhys. Lett. 61, 762-768 (2003).

Grersillon, S.

A. Plech, V. Kotaidis, S. Grersillon, C. Dahmen, and G. von Plessen, "Laser-induced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering," Phys. Rev. B 70, 195423 (2004).

Grésillon, S.

A. Plech, M. Wulff, S. Kürbitz, K.-J. Berg, G. Berg, H. Graener, S. Grésillon, M. Kaempfe, J. Feldmann,and G. von Plessen, "Time-resolved X-ray diffraction on laser-excited metal nanoparticles," Europhys. Lett. 61, 762-768 (2003).

Grigoropoulos, C.

O. Yavas, P. Leiderer, H. Park, C. Grigoropoulos, C. Poon, W. Leung, N. Do, and A. Tam, "Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating," Phys. Rev. Lett. 70,1830-1833 (1993).
[PubMed]

Hafner, J.

H. Liao, C. Nehl, and J. Hafner, "Biomedical applications of plasmon resonant metal nanoparicles," Nanomedicine 1,201-208 (2006).

Hafner, J. H.

Y. Hleb, J. H. Hafner, J. N. Myers, E. Y. Hanna, and D. O. Lapotko, "LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles," Nanomedicine 3, 648-667 (2008).

E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, "Photothermal bubbles as optical scattering probes for imaging living cells," Nanomedicine 3, 797-812 (2008).
[PubMed]

Halas, N.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
[PubMed]

Halas, N. J.

M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano. Lett. 7, 1929-1934 (2007).
[PubMed]

P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near-infrared absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004).
[PubMed]

Hanna, E. Y.

Y. Hleb, J. H. Hafner, J. N. Myers, E. Y. Hanna, and D. O. Lapotko, "LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles," Nanomedicine 3, 648-667 (2008).

Hansen, C.

R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, "Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring," IEEE J. Sel. Top. Quant. Electron. 2, 826-835 (1996).

Hansen, G. M.

Hansen, M.

T. B. Huff, L. Tong, M. Hansen, J. X. Cheng, and A. Wei, "Hyperthermic effects of gold nanorods on tumor cells," Nanomedicine 2, 125-132 (2007).
[PubMed]

Hansen, M. N.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, "Gold nanorods mediate tumor cell death by compromising membrane integrity," Adv. Mater. 19, 3136-3141 (2007).

Hartland, G.

H. Petrova, H. Min, and G. Hartland, "Photothermal properties of gold nanoparticles," Z. Phys. Chem. 221, 361-76 (2007).

G. Hartland, "Measurement of the material properties of metal nanoparticles by time-resolved spectroscopy," Phys. Chem. Chem. Phys. 6, 5263-5274 (2004).

Hartland, G. V.

M. Hu and G. V. Hartland, "Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures," Chem. Phys. Lett. 391, 220-225 (2004).

M. Hu and G. V. Hartland, "Heat dissipation for Au particles in aqueous solution: relaxation time versus size," J. Phys. Chem. B 106, 7029-7033 (2002).

Hartland, G.V.

M. Hu, X. Wang, G.V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, "Heat dissipation in gold-silica core-shell nanoparticles," Chem. Phys. Lett. 372, 767-772 (2003).

Hatanaka, S.

T. Kozuka, S. Hatanaka, K. Yasui, T. Tuziuti, and H. Mitome, "Simultaneous observation of motion and size of a sonoluminescing bubble," Jpn. J. Appl. Phys. 41, 3248-3249 (2002).

Hecker, N. E.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Heisterkamp, A.

J. Baumgart, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, "Live cell opto-injection by femtosecond laser pulses," Proc SPIE 6435, 643512 (2007).

Hellman, A. N.

R. R. Kaustubh, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).

Hirsch, L. R.

P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near-infrared absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004).
[PubMed]

Hleb, E. Y.

E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, "Photothermal bubbles as optical scattering probes for imaging living cells," Nanomedicine 3, 797-812 (2008).
[PubMed]

E. Y. Hleb and D. O. Lapotko, "Photothermal properties of gold nanoparticles under exposure to high optical energies," Nanotechnology 19, 355702 (2008).
[PubMed]

Hleb, Y.

Y. Hleb, J. H. Hafner, J. N. Myers, E. Y. Hanna, and D. O. Lapotko, "LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles," Nanomedicine 3, 648-667 (2008).

Holt, R. G.

H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, "Nucleating cavitation from laser-illuminated nano-particles," Acoust. Res. Lett. Online 6, 138-143 (2005).

Hsu, B.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

Hu, M.

M. Hu and G. V. Hartland, "Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures," Chem. Phys. Lett. 391, 220-225 (2004).

M. Hu, X. Wang, G.V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, "Heat dissipation in gold-silica core-shell nanoparticles," Chem. Phys. Lett. 372, 767-772 (2003).

M. Hu and G. V. Hartland, "Heat dissipation for Au particles in aqueous solution: relaxation time versus size," J. Phys. Chem. B 106, 7029-7033 (2002).

Hu, Y.

E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, "Photothermal bubbles as optical scattering probes for imaging living cells," Nanomedicine 3, 797-812 (2008).
[PubMed]

Huang, X.

X. Huang and P. K. Jain, and I. H. El-Sayed, and M. A. El-Sayed, "Plasmonic photothermal therapy (PPTT) using gold nanoparticles," Lasers Med. Sci. 23, 217-228 (2008).

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared tegion by using gold nanorods," J. Am. Chem. Soc. 128, 2115-21202 (2006).
[PubMed]

I. El-Sayed, X. Huang, and M. El-Sayed "Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles," Cancer Lett. 239, 129- 35 (2006).

Hudert, F.

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, "A surface phase transition of supported gold nanoparticles" Nano. Lett. 13, 17352505 (2007).

Huff, T. B.

T. B. Huff, L. Tong, M. Hansen, J. X. Cheng, and A. Wei, "Hyperthermic effects of gold nanorods on tumor cells," Nanomedicine 2, 125-132 (2007).
[PubMed]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, "Gold nanorods mediate tumor cell death by compromising membrane integrity," Adv. Mater. 19, 3136-3141 (2007).

Hutson, S.

S. Hutson and X. Ma, "Plasma and cavitation dynamics during pulsed laser microsurgery in vivo," Phys. Rev. Lett. 99, 158104 (2007).
[PubMed]

S. Hutson and X. Ma "Plasma and cavitation dynamics during pulsed laser microsurgery in vivo," Phys. Rev. 99, 158104 (2007).

Huttmann, G.

R. Brinkmann, G. Huttmann, J. Rogener, J. Roider, R. Birngruber, and C. P. Lin, "Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen," Lasers Surg. Med. 27, 451-64 (2000).
[PubMed]

G. Huttmann and R. Birngruber, "On the possibility of high-precision optothermal microeffects and the measurement of fast thermal denaturation of proteins," IEEE J. Sel. Top. Quantum Electron. 5, 954-962 (1999).

Hüttmann, G.

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).

Inasawa, S.

S. Inasawa, M. Sugiyama, S. Noda, and Y. Yamaguchi, "Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer," J. Phys. Chem. B 110, 3114-3119 (2006).
[PubMed]

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, "Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting," J. Phys. Chem. B 109, 3104-3111 (2005).

Jacques, S. L.

S. L. Jacques and D. J. McAuliffe, "The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation," Photochem. Photobiol. 53, 769-775 (1991).
[PubMed]

Jain, P. K.

X. Huang and P. K. Jain, and I. H. El-Sayed, and M. A. El-Sayed, "Plasmonic photothermal therapy (PPTT) using gold nanoparticles," Lasers Med. Sci. 23, 217-228 (2008).

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nano. Today 2, 18-29 (2007).

James, W. D.

M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano. Lett. 7, 1929-1934 (2007).
[PubMed]

Jansen, E. D.

T. G. van Leeuwen, E. D. Jansen, A. J. Welch, and C. Borst, "Excimer laser-induced bubble: dimensions, theory, and implications for laser angioplasty," Lasers Surg. Med. 4, 381-390 (1996).

T.G. van Leeuwen, E. D. Jansen, M. Motamedi, A. J. Welch, and C. Borst, "Excimer laser ablation of soft tissue: a study of the content of rapidly expanding and collapsing bubbles," IEEE J. Quantum Electron. 30, 1339-1345 (1994).

Javier, A. M.

G. Skirtach, A. M. Javier, O. Kreft, K. Khler, A. P. Alberola, H. Mohwald, W. J. Parak, and G. B. Sukhorukov, "Laser-induced release of encapsulated materials inside living cells," Angew. Chem. Int. Ed. 45, 4612-4617 (2006).

Jenkins, W. T.

Q. Zhu, B. Chance, W. T. Jenkins, and Y. Zhang, "Enhanced optical scattering by microbubbles," Proc. SPIE 2979, 157-162 (1997).

Jeon, J.-S.

J.-S. Jeon, I.-J. Yang, S.-W. Karng, and H.-Y. Kwak, "Radius measurement of a sonoluminescing gas bubble," Jpn. J. Appl. Phys. 39, 1124-1127 (2000).

Joe, E. K.

M. Pitsillides, E. K. Joe, X. Wei, R. R Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[PubMed]

Jon, S.

O. C. Farokhzad, S. Jon, A. Khademhosseini, T. N. T. Tran, D. A. LaVan, and R. Langer, "Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells," Cancer Res. 64, 7668-7672 (2004).
[PubMed]

Juhasz, T.

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, "Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses," Lasers Surg. Med. 19, 23-31 (1996).
[PubMed]

Kaempfe, M.

A. Plech, M. Wulff, S. Kürbitz, K.-J. Berg, G. Berg, H. Graener, S. Grésillon, M. Kaempfe, J. Feldmann,and G. von Plessen, "Time-resolved X-ray diffraction on laser-excited metal nanoparticles," Europhys. Lett. 61, 762-768 (2003).

Kammler, M.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, D. von der Linde, M. H. von Hoegen, A. Cavalleri, J.A. Squier, and M. Kammler, "Femtosecond X-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[PubMed]

Karng, S.-W.

J.-S. Jeon, I.-J. Yang, S.-W. Karng, and H.-Y. Kwak, "Radius measurement of a sonoluminescing gas bubble," Jpn. J. Appl. Phys. 39, 1124-1127 (2000).

Kastis, G. A.

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, "Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses," Lasers Surg. Med. 19, 23-31 (1996).
[PubMed]

Kaustubh, R. R.

R. R. Kaustubh, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).

Kelly, M. W.

C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R.  Anderson, "Selective cell killing by microparticle absorption of pulsed laser radiation," IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).

C. P. Lin and M. W. Kelly, "Cavitation and acoustic emission around laser-heated microparticles," Appl. Phys. Lett. 72, 2800-2802 (1998).

M. Strauss, P. A. Amendt, R. A. London, D. J. Maitland, M. E. Glinsky, C. P. Lin, and M. W. Kelly, "Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles," Proc. SPIE 2975, 261-270 (1997).

Khademhosseini, A.

O. C. Farokhzad, S. Jon, A. Khademhosseini, T. N. T. Tran, D. A. LaVan, and R. Langer, "Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells," Cancer Res. 64, 7668-7672 (2004).
[PubMed]

Khler, K.

G. Skirtach, A. M. Javier, O. Kreft, K. Khler, A. P. Alberola, H. Mohwald, W. J. Parak, and G. B. Sukhorukov, "Laser-induced release of encapsulated materials inside living cells," Angew. Chem. Int. Ed. 45, 4612-4617 (2006).

Kim, A. M. T.

Kimmel, E.

B. Krasovitski, H. Kislev, and E. Kimmel "Modeling photothermal and acoustical induced microbubble generation and growth," Ultrasonics 47,90-101, (2007).
[PubMed]

Kislev, H.

B. Krasovitski, H. Kislev, and E. Kimmel "Modeling photothermal and acoustical induced microbubble generation and growth," Ultrasonics 47,90-101, (2007).
[PubMed]

Klimovich, O.

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, A. Oraevsky, V. Savitskiy, and O. Klimovich "Photothermal microscopy and laser ablation of leukemia cells targeted with gold nanoparticles," Proc. SPIE 5697, 82-89 (2005).

Kokhanovsky, A.

A. Kokhanovsky, "Optical properties of bubbles," J. Opt. A: Pure Appl. Opt. 5, 47-52 (2003).

Korgel, B.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

Kotaidis, V.

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, "A surface phase transition of supported gold nanoparticles" Nano. Lett. 13, 17352505 (2007).

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech "Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water," J. Chem. Phys. 124, 184702 (2006).
[PubMed]

V. Kotaidis and A. Plecha "Cavitation dynamics on the nanoscale," Appl. Phys. Lett. 87, 213102 (2005).

A. Plech, V. Kotaidis, S. Grersillon, C. Dahmen, and G. von Plessen, "Laser-induced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering," Phys. Rev. B 70, 195423 (2004).

Kotov, N.

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent — an ex vivo preliminary rat study," Nanotechnology 19, 095101 (2008).
[PubMed]

Kozuka, T.

T. Kozuka, S. Hatanaka, K. Yasui, T. Tuziuti, and H. Mitome, "Simultaneous observation of motion and size of a sonoluminescing bubble," Jpn. J. Appl. Phys. 41, 3248-3249 (2002).

Krasovitski, B.

B. Krasovitski, H. Kislev, and E. Kimmel "Modeling photothermal and acoustical induced microbubble generation and growth," Ultrasonics 47,90-101, (2007).
[PubMed]

Kreft, O.

G. Skirtach, A. M. Javier, O. Kreft, K. Khler, A. P. Alberola, H. Mohwald, W. J. Parak, and G. B. Sukhorukov, "Laser-induced release of encapsulated materials inside living cells," Angew. Chem. Int. Ed. 45, 4612-4617 (2006).

Krenn, J.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Kürbitz, S.

A. Plech, M. Wulff, S. Kürbitz, K.-J. Berg, G. Berg, H. Graener, S. Grésillon, M. Kaempfe, J. Feldmann,and G. von Plessen, "Time-resolved X-ray diffraction on laser-excited metal nanoparticles," Europhys. Lett. 61, 762-768 (2003).

Kurz, T.

C.-D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, "Bubble dynamics, shock waves and sonoluminescence," Philos. Trans. R. Soc. London Ser. A 357, 269-294 (1999).

Kwak, H.-Y.

J.-S. Jeon, I.-J. Yang, S.-W. Karng, and H.-Y. Kwak, "Radius measurement of a sonoluminescing gas bubble," Jpn. J. Appl. Phys. 39, 1124-1127 (2000).

Lam, W.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

Lamprecht, B.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Langer, R.

O. C. Farokhzad, S. Jon, A. Khademhosseini, T. N. T. Tran, D. A. LaVan, and R. Langer, "Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells," Cancer Res. 64, 7668-7672 (2004).
[PubMed]

Lapotko, D.

D. Lapotko, E. Lukianova-Hleb, and A. Oraevsky, "Clusterization of nanoparticles during their interaction with living cells," Nanomedicine 2, 241-253 (2007).
[PubMed]

D. Lapotko, E. Lukianova, and A. Oraevsky, "Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles," Lasers Surg. Med. 38, 631-642 (2006).
[PubMed]

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Elimination of leukemic cells from human transplants by laser nano-thermolysis," Proc. SPIE 6086, 135-142 (2006).

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Method of laser activated nanothermolysis for elimination of tumor cells," Cancer Lett. 239, 36-45 (2006).

D. Lapotko and K. Lukianova, "Laser-induced micro-bubbles in cells," Int. J. Heat Mass Transfer 48, 227-234 (2005).

D. Lapotko, K. Lukianova, and A. Shnip, "Photothermal responses of individual cells," J. Biomed. Opt. 10, 14006 (2005).
[PubMed]

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, A. Oraevsky, V. Savitskiy, and O. Klimovich "Photothermal microscopy and laser ablation of leukemia cells targeted with gold nanoparticles," Proc. SPIE 5697, 82-89 (2005).

Lapotko, D. O.

E. Y. Hleb and D. O. Lapotko, "Photothermal properties of gold nanoparticles under exposure to high optical energies," Nanotechnology 19, 355702 (2008).
[PubMed]

Y. Hleb, J. H. Hafner, J. N. Myers, E. Y. Hanna, and D. O. Lapotko, "LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles," Nanomedicine 3, 648-667 (2008).

E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, "Photothermal bubbles as optical scattering probes for imaging living cells," Nanomedicine 3, 797-812 (2008).
[PubMed]

Larson, T.

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, "Molecular specific optoacoustic imaging with plasmonic nanoparticles," Opt. Express 11, 6583-6588 (2007).

Latina, M. A.

C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R.  Anderson, "Selective cell killing by microparticle absorption of pulsed laser radiation," IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).

Lauterborn, W.

C.-D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, "Bubble dynamics, shock waves and sonoluminescence," Philos. Trans. R. Soc. London Ser. A 357, 269-294 (1999).

LaVan, D. A.

O. C. Farokhzad, S. Jon, A. Khademhosseini, T. N. T. Tran, D. A. LaVan, and R. Langer, "Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells," Cancer Res. 64, 7668-7672 (2004).
[PubMed]

Lee, M. H.

M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano. Lett. 7, 1929-1934 (2007).
[PubMed]

Leiderer, P.

O. Yavas, P. Leiderer, H. Park, C. Grigoropoulos, C. Poon, W. Leung, N. Do, and A. Tam, "Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating," Phys. Rev. Lett. 70,1830-1833 (1993).
[PubMed]

Leung, W.

O. Yavas, P. Leiderer, H. Park, C. Grigoropoulos, C. Poon, W. Leung, N. Do, and A. Tam, "Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating," Phys. Rev. Lett. 70,1830-1833 (1993).
[PubMed]

Liao, H.

H. Liao, C. Nehl, and J. Hafner, "Biomedical applications of plasmon resonant metal nanoparicles," Nanomedicine 1,201-208 (2006).

Lin, C. P.

M. Pitsillides, E. K. Joe, X. Wei, R. R Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[PubMed]

R. Brinkmann, G. Huttmann, J. Rogener, J. Roider, R. Birngruber, and C. P. Lin, "Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen," Lasers Surg. Med. 27, 451-64 (2000).
[PubMed]

J. Roegener and C. P. Lin, ‘‘Photomechanical effects: experimental studies of pigment granule absorption, cavitation, and cell damage,’’Proc. SPIE 3902, 35-40 (2000).

C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R.  Anderson, "Selective cell killing by microparticle absorption of pulsed laser radiation," IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).

C. P. Lin and M. W. Kelly, "Cavitation and acoustic emission around laser-heated microparticles," Appl. Phys. Lett. 72, 2800-2802 (1998).

M. Strauss, P. A. Amendt, R. A. London, D. J. Maitland, M. E. Glinsky, C. P. Lin, and M. W. Kelly, "Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles," Proc. SPIE 2975, 261-270 (1997).

Lindau, O.

C.-D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, "Bubble dynamics, shock waves and sonoluminescence," Philos. Trans. R. Soc. London Ser. A 357, 269-294 (1999).

Lindner, J. R.

P.A. Dayton, J. E. Chomas, A. F. H. Lunn, J. S. Allen, J. R. Lindner, S. I. Simon, and K. W. Ferrara, "Optical and acoustical dynamics of microbubble contrast agents inside neutrophils," Biophys. J. 80, 1547-1556 (2001).
[PubMed]

Link, S.

S. Link and M. A. El-Sayed, "Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals," Internat. Rev. Phys. Chem. 19, 409-453 (2000).

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery," Phys. Rev. Lett. 100, 038102 (2008).
[PubMed]

Lisinetskii, V. A.

Liz-Marzan, L. M.

M. Hu, X. Wang, G.V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, "Heat dissipation in gold-silica core-shell nanoparticles," Chem. Phys. Lett. 372, 767-772 (2003).

London, R. A.

M. Strauss, P. A. Amendt, R. A. London, D. J. Maitland, M. E. Glinsky, C. P. Lin, and M. W. Kelly, "Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles," Proc. SPIE 2975, 261-270 (1997).

Loo, C.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
[PubMed]

Lotan, R.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Lounis, B.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[PubMed]

Lowery, A.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
[PubMed]

Lubatschowski, H.

J. Baumgart, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, "Live cell opto-injection by femtosecond laser pulses," Proc SPIE 6435, 643512 (2007).

Lukianova, E.

D. Lapotko, E. Lukianova, and A. Oraevsky, "Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles," Lasers Surg. Med. 38, 631-642 (2006).
[PubMed]

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Method of laser activated nanothermolysis for elimination of tumor cells," Cancer Lett. 239, 36-45 (2006).

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Elimination of leukemic cells from human transplants by laser nano-thermolysis," Proc. SPIE 6086, 135-142 (2006).

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, A. Oraevsky, V. Savitskiy, and O. Klimovich "Photothermal microscopy and laser ablation of leukemia cells targeted with gold nanoparticles," Proc. SPIE 5697, 82-89 (2005).

Lukianova, K.

D. Lapotko, K. Lukianova, and A. Shnip, "Photothermal responses of individual cells," J. Biomed. Opt. 10, 14006 (2005).
[PubMed]

D. Lapotko and K. Lukianova, "Laser-induced micro-bubbles in cells," Int. J. Heat Mass Transfer 48, 227-234 (2005).

Lukianova-Hleb, E.

D. Lapotko, E. Lukianova-Hleb, and A. Oraevsky, "Clusterization of nanoparticles during their interaction with living cells," Nanomedicine 2, 241-253 (2007).
[PubMed]

Lunn, A. F. H.

P.A. Dayton, J. E. Chomas, A. F. H. Lunn, J. S. Allen, J. R. Lindner, S. I. Simon, and K. W. Ferrara, "Optical and acoustical dynamics of microbubble contrast agents inside neutrophils," Biophys. J. 80, 1547-1556 (2001).
[PubMed]

Ma, X.

S. Hutson and X. Ma "Plasma and cavitation dynamics during pulsed laser microsurgery in vivo," Phys. Rev. 99, 158104 (2007).

S. Hutson and X. Ma, "Plasma and cavitation dynamics during pulsed laser microsurgery in vivo," Phys. Rev. Lett. 99, 158104 (2007).
[PubMed]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[PubMed]

MacAulay, C.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

Maitland, D. J.

M. Strauss, P. A. Amendt, R. A. London, D. J. Maitland, M. E. Glinsky, C. P. Lin, and M. W. Kelly, "Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles," Proc. SPIE 2975, 261-270 (1997).

Mallidi, S.

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, "Molecular specific optoacoustic imaging with plasmonic nanoparticles," Opt. Express 11, 6583-6588 (2007).

Malpica, A.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Maples, J.

O. Siiman, K. Gordon, A. Burshteyn, J. Maples, and J. Whitesell, "Immunophenotyping using gold or silver nanoparticle-polystyrene bead conjugates with multiple light scatter," Cytometry 41, 298-307 (2000).
[PubMed]

Mazur, E.

B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, "Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds," Opt. Express 10, 196-203 (2002).
[PubMed]

C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).

McAuliffe, D. J.

S. L. Jacques and D. J. McAuliffe, "The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation," Photochem. Photobiol. 53, 769-775 (1991).
[PubMed]

McGrath, T. E.

D. M. Bartels, R. A. Crowell, T. E. McGrath, and G. J. Diebold, "Laser-initiated chemical reactions in carbon suspensions," J. Phys. Chem. A 106, 10072-10078 (2002).

Min, H.

H. Petrova, H. Min, and G. Hartland, "Photothermal properties of gold nanoparticles," Z. Phys. Chem. 221, 361-76 (2007).

Mirloup, F.

A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, and P. A. Anfinrud, "Visualizing chemical reactions in solution by picosecond X-ray diffraction," Phys. Rev. Lett. 92, 125505 (2004).
[PubMed]

Mitome, H.

T. Kozuka, S. Hatanaka, K. Yasui, T. Tuziuti, and H. Mitome, "Simultaneous observation of motion and size of a sonoluminescing bubble," Jpn. J. Appl. Phys. 41, 3248-3249 (2002).

Mohrenstecher, D.

R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, "Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring," IEEE J. Sel. Top. Quant. Electron. 2, 826-835 (1996).

Mohwald, H.

G. Skirtach, A. M. Javier, O. Kreft, K. Khler, A. P. Alberola, H. Mohwald, W. J. Parak, and G. B. Sukhorukov, "Laser-induced release of encapsulated materials inside living cells," Angew. Chem. Int. Ed. 45, 4612-4617 (2006).

Möller, M.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Mostafavi, M.

L. François, M. Mostafavi, J. Belloni, and J. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. 3, 4965-4971 (2001).

L. François, M. Mostafavi, J. Belloni, J.-F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).

Motamedi, M.

T.G. van Leeuwen, E. D. Jansen, M. Motamedi, A. J. Welch, and C. Borst, "Excimer laser ablation of soft tissue: a study of the content of rapidly expanding and collapsing bubbles," IEEE J. Quantum Electron. 30, 1339-1345 (1994).

Murphy, C.

C. Murphy, A. Gole, J. Stone, P. Sisco, A Alkilany, E. Goldsmith, and S. C. Baxter, "Gold nanoparticles in biology: beyond toxicity to cellular imaging," Acc. Chem. Res. 41, 1721-1730 (2008).
[PubMed]

Murray, T. W.

H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, "Nucleating cavitation from laser-illuminated nano-particles," Acoust. Res. Lett. Online 6, 138-143 (2005).

Myers, J. N.

Y. Hleb, J. H. Hafner, J. N. Myers, E. Y. Hanna, and D. O. Lapotko, "LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles," Nanomedicine 3, 648-667 (2008).

Nehl, C.

H. Liao, C. Nehl, and J. Hafner, "Biomedical applications of plasmon resonant metal nanoparicles," Nanomedicine 1,201-208 (2006).

Neumann, J.

J. Neumann and R. Brinkmann "Nucleation dynamics around single microabsorbers in water heated by nanosecond laser irradiation," J. Appl. Phys. 101, 114701 (2007).

J. Neumann and R. Brinkmann, "Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses," J. Biomed. Opt. 10, 024001 (2005).
[PubMed]

Ngezahayo, A.

J. Baumgart, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, "Live cell opto-injection by femtosecond laser pulses," Proc SPIE 6435, 643512 (2007).

Nida, D.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

Nishimura, N.

Noack, J.

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).

Noda, S.

S. Inasawa, M. Sugiyama, S. Noda, and Y. Yamaguchi, "Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer," J. Phys. Chem. B 110, 3114-3119 (2006).
[PubMed]

Ohl, C.-D.

C.-D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, "Bubble dynamics, shock waves and sonoluminescence," Philos. Trans. R. Soc. London Ser. A 357, 269-294 (1999).

O'Neal, P.

P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near-infrared absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004).
[PubMed]

Oraevsky, A.

D. Lapotko, E. Lukianova-Hleb, and A. Oraevsky, "Clusterization of nanoparticles during their interaction with living cells," Nanomedicine 2, 241-253 (2007).
[PubMed]

D. Lapotko, E. Lukianova, and A. Oraevsky, "Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles," Lasers Surg. Med. 38, 631-642 (2006).
[PubMed]

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Elimination of leukemic cells from human transplants by laser nano-thermolysis," Proc. SPIE 6086, 135-142 (2006).

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Method of laser activated nanothermolysis for elimination of tumor cells," Cancer Lett. 239, 36-45 (2006).

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, A. Oraevsky, V. Savitskiy, and O. Klimovich "Photothermal microscopy and laser ablation of leukemia cells targeted with gold nanoparticles," Proc. SPIE 5697, 82-89 (2005).

Orlovich, V.A.

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[PubMed]

Otter, M.

M. Otter, "Temperature dependance of the optical constants of heavy metals," Z. Phys. 161, 539-549 (1961).

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery," Phys. Rev. Lett. 100, 038102 (2008).
[PubMed]

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).

G. Paltauf and P. E. Dyer, "Photomechanical processes and effects in ablation," Chem. Rev. 103, 487-518 (2003).
[PubMed]

Parak, W. J.

G. Skirtach, A. M. Javier, O. Kreft, K. Khler, A. P. Alberola, H. Mohwald, W. J. Parak, and G. B. Sukhorukov, "Laser-induced release of encapsulated materials inside living cells," Angew. Chem. Int. Ed. 45, 4612-4617 (2006).

Park, H.

O. Yavas, P. Leiderer, H. Park, C. Grigoropoulos, C. Poon, W. Leung, N. Do, and A. Tam, "Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating," Phys. Rev. Lett. 70,1830-1833 (1993).
[PubMed]

Pasqualini, R.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

Pavlova, I.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Payne, J. D.

P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near-infrared absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004).
[PubMed]

Perkins, T.

Petrova, H.

H. Petrova, H. Min, and G. Hartland, "Photothermal properties of gold nanoparticles," Z. Phys. Chem. 221, 361-76 (2007).

Pissuwan, D.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trend. Biotech. 24, 62-67 (2006).

Pitris, C.

R. Drezek, M. Faupel, C. Pitris, M. Feld, M. Brewer, R. Richards-Kortum, and M. Follen, "Optical imaging for the detection of cervical precancers in vivo," Cancer 98, 2015-2027 (2003).
[PubMed]

Pitsillides, M.

M. Pitsillides, E. K. Joe, X. Wei, R. R Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[PubMed]

Plech, A.

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, "A surface phase transition of supported gold nanoparticles" Nano. Lett. 13, 17352505 (2007).

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech "Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water," J. Chem. Phys. 124, 184702 (2006).
[PubMed]

A. Plech, V. Kotaidis, S. Grersillon, C. Dahmen, and G. von Plessen, "Laser-induced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering," Phys. Rev. B 70, 195423 (2004).

A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, and P. A. Anfinrud, "Visualizing chemical reactions in solution by picosecond X-ray diffraction," Phys. Rev. Lett. 92, 125505 (2004).
[PubMed]

A. Plech, M. Wulff, S. Kürbitz, K.-J. Berg, G. Berg, H. Graener, S. Grésillon, M. Kaempfe, J. Feldmann,and G. von Plessen, "Time-resolved X-ray diffraction on laser-excited metal nanoparticles," Europhys. Lett. 61, 762-768 (2003).

Plecha, A.

V. Kotaidis and A. Plecha "Cavitation dynamics on the nanoscale," Appl. Phys. Lett. 87, 213102 (2005).

Poon, C.

O. Yavas, P. Leiderer, H. Park, C. Grigoropoulos, C. Poon, W. Leung, N. Do, and A. Tam, "Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating," Phys. Rev. Lett. 70,1830-1833 (1993).
[PubMed]

Potapnev, M.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Method of laser activated nanothermolysis for elimination of tumor cells," Cancer Lett. 239, 36-45 (2006).

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Elimination of leukemic cells from human transplants by laser nano-thermolysis," Proc. SPIE 6086, 135-142 (2006).

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, A. Oraevsky, V. Savitskiy, and O. Klimovich "Photothermal microscopy and laser ablation of leukemia cells targeted with gold nanoparticles," Proc. SPIE 5697, 82-89 (2005).

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared tegion by using gold nanorods," J. Am. Chem. Soc. 128, 2115-21202 (2006).
[PubMed]

Quinto-Su, P. A.

R. R. Kaustubh, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).

Rayleigh, L.

L. Rayleigh, "On the pressure developed in a liquid during the collapse of a spherical cavity," Philos. Mag. 34, 94-98 (1917).

Richards-Kortum, R.

R. Drezek, M. Faupel, C. Pitris, M. Feld, M. Brewer, R. Richards-Kortum, and M. Follen, "Optical imaging for the detection of cervical precancers in vivo," Cancer 98, 2015-2027 (2003).
[PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

Richardson, H. H.

O. Govorov and H. H. Richardson, "Generating heat with metal nanoparticles," Nano. Today 1, 30-38 (2007).

Roegener, J.

J. Roegener and C. P. Lin, ‘‘Photomechanical effects: experimental studies of pigment granule absorption, cavitation, and cell damage,’’Proc. SPIE 3902, 35-40 (2000).

Rogener, J.

R. Brinkmann, G. Huttmann, J. Rogener, J. Roider, R. Birngruber, and C. P. Lin, "Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen," Lasers Surg. Med. 27, 451-64 (2000).
[PubMed]

Roider, J.

R. Brinkmann, G. Huttmann, J. Rogener, J. Roider, R. Birngruber, and C. P. Lin, "Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen," Lasers Surg. Med. 27, 451-64 (2000).
[PubMed]

Roy, R. A.

H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, "Nucleating cavitation from laser-illuminated nano-particles," Acoust. Res. Lett. Online 6, 138-143 (2005).

Salgueirino-Maceira, V.

M. Hu, X. Wang, G.V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, "Heat dissipation in gold-silica core-shell nanoparticles," Chem. Phys. Lett. 372, 767-772 (2003).

Sathyam, U. S.

U. S. Sathyam, MS, A. Shearin, BS, E. A. Chasteney, MD, and S. A. Prahl "Threshold and ablation efficiency studies of microsecond ablation of gelatin under water,"Lasers Surg. Med. 19, 397-406 (1996).
[PubMed]

Savitskiy, V.

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, A. Oraevsky, V. Savitskiy, and O. Klimovich "Photothermal microscopy and laser ablation of leukemia cells targeted with gold nanoparticles," Proc. SPIE 5697, 82-89 (2005).

Schaffer, B.

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).

Scheu, M.

R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, "Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring," IEEE J. Sel. Top. Quant. Electron. 2, 826-835 (1996).

Schotte, F.

A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, and P. A. Anfinrud, "Visualizing chemical reactions in solution by picosecond X-ray diffraction," Phys. Rev. Lett. 92, 125505 (2004).
[PubMed]

Schreiner, M.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).

Schwartzberg, M.

M. Schwartzberg and J. Z. Zhang, "Novel optical properties and emerging applications of metal nanostructures," J. Phys. Chem. 28, 10323-10337 (2008).

Seol, Y.

Sevilla, C.

A. N. Volkov, C. Sevilla, and L. V. Zhigilei "Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water," Appl. Surf. Sci. 253, 6394-6399 (2007).

Shnip, A.

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, A. Oraevsky, V. Savitskiy, and O. Klimovich "Photothermal microscopy and laser ablation of leukemia cells targeted with gold nanoparticles," Proc. SPIE 5697, 82-89 (2005).

D. Lapotko, K. Lukianova, and A. Shnip, "Photothermal responses of individual cells," J. Biomed. Opt. 10, 14006 (2005).
[PubMed]

Sibayan, S. A. B.

C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R.  Anderson, "Selective cell killing by microparticle absorption of pulsed laser radiation," IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).

Siiman, O.

O. Siiman, K. Gordon, A. Burshteyn, J. Maples, and J. Whitesell, "Immunophenotyping using gold or silver nanoparticle-polystyrene bead conjugates with multiple light scatter," Cytometry 41, 298-307 (2000).
[PubMed]

Simon, S. I.

P.A. Dayton, J. E. Chomas, A. F. H. Lunn, J. S. Allen, J. R. Lindner, S. I. Simon, and K. W. Ferrara, "Optical and acoustical dynamics of microbubble contrast agents inside neutrophils," Biophys. J. 80, 1547-1556 (2001).
[PubMed]

Sisco, P.

C. Murphy, A. Gole, J. Stone, P. Sisco, A Alkilany, E. Goldsmith, and S. C. Baxter, "Gold nanoparticles in biology: beyond toxicity to cellular imaging," Acc. Chem. Res. 41, 1721-1730 (2008).
[PubMed]

Skirtach, G.

G. Skirtach, A. M. Javier, O. Kreft, K. Khler, A. P. Alberola, H. Mohwald, W. J. Parak, and G. B. Sukhorukov, "Laser-induced release of encapsulated materials inside living cells," Angew. Chem. Int. Ed. 45, 4612-4617 (2006).

Sokolov, K.

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, "Molecular specific optoacoustic imaging with plasmonic nanoparticles," Opt. Express 11, 6583-6588 (2007).

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, D. von der Linde, M. H. von Hoegen, A. Cavalleri, J.A. Squier, and M. Kammler, "Femtosecond X-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[PubMed]

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).

Sönnichsen, C.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Spatz, J.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Springer, F.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech "Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water," J. Chem. Phys. 124, 184702 (2006).
[PubMed]

Squier, J.A.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, D. von der Linde, M. H. von Hoegen, A. Cavalleri, J.A. Squier, and M. Kammler, "Femtosecond X-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[PubMed]

Stone, J.

C. Murphy, A. Gole, J. Stone, P. Sisco, A Alkilany, E. Goldsmith, and S. C. Baxter, "Gold nanoparticles in biology: beyond toxicity to cellular imaging," Acc. Chem. Res. 41, 1721-1730 (2008).
[PubMed]

Stou, B.

C. Auger, R. G. Barrera, and B. Stou, "Optical properties of an eccentrically located pigment within an air bubble," Progress in Organic Coatings 49, 74-83 (2004).

Strauss, M.

M. Strauss, P. A. Amendt, R. A. London, D. J. Maitland, M. E. Glinsky, C. P. Lin, and M. W. Kelly, "Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles," Proc. SPIE 2975, 261-270 (1997).

Suarez, C.

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, "Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses," Lasers Surg. Med. 19, 23-31 (1996).
[PubMed]

Sugiyama, M.

S. Inasawa, M. Sugiyama, S. Noda, and Y. Yamaguchi, "Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer," J. Phys. Chem. B 110, 3114-3119 (2006).
[PubMed]

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, "Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting," J. Phys. Chem. B 109, 3104-3111 (2005).

Sukhorukov, G. B.

G. Skirtach, A. M. Javier, O. Kreft, K. Khler, A. P. Alberola, H. Mohwald, W. J. Parak, and G. B. Sukhorukov, "Laser-induced release of encapsulated materials inside living cells," Angew. Chem. Int. Ed. 45, 4612-4617 (2006).

Sun, J.

E. Faraggi, B. S. Gerstman, and J. Sun, "Biophysical effects of pulsed lasers in the retina and other tissues containing strongly absorbing particles: shockwave and explosive bubble generation," J. Biomed. Opt. 10, 064029 (2005).

Tam, A.

O. Yavas, P. Leiderer, H. Park, C. Grigoropoulos, C. Poon, W. Leung, N. Do, and A. Tam, "Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating," Phys. Rev. Lett. 70,1830-1833 (1993).
[PubMed]

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[PubMed]

Tarasevitch, A.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, D. von der Linde, M. H. von Hoegen, A. Cavalleri, J.A. Squier, and M. Kammler, "Femtosecond X-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[PubMed]

Tong, L.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, "Gold nanorods mediate tumor cell death by compromising membrane integrity," Adv. Mater. 19, 3136-3141 (2007).

T. B. Huff, L. Tong, M. Hansen, J. X. Cheng, and A. Wei, "Hyperthermic effects of gold nanorods on tumor cells," Nanomedicine 2, 125-132 (2007).
[PubMed]

Tran, T. N. T.

O. C. Farokhzad, S. Jon, A. Khademhosseini, T. N. T. Tran, D. A. LaVan, and R. Langer, "Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells," Cancer Res. 64, 7668-7672 (2004).
[PubMed]

Tse, C.

M. J. Zohdy, C. Tse, Jing Yong Ye, and M. O`Donnell, "Optical and acoustic detection of laser-generated microbubbles in single cells," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 117-125 (2006).
[PubMed]

Tuziuti, T.

T. Kozuka, S. Hatanaka, K. Yasui, T. Tuziuti, and H. Mitome, "Simultaneous observation of motion and size of a sonoluminescing bubble," Jpn. J. Appl. Phys. 41, 3248-3249 (2002).

Valenzuela, S. M.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trend. Biotech. 24, 62-67 (2006).

van Leeuwen, T. G.

T. G. van Leeuwen, E. D. Jansen, A. J. Welch, and C. Borst, "Excimer laser-induced bubble: dimensions, theory, and implications for laser angioplasty," Lasers Surg. Med. 4, 381-390 (1996).

van Leeuwen, T.G.

T.G. van Leeuwen, E. D. Jansen, M. Motamedi, A. J. Welch, and C. Borst, "Excimer laser ablation of soft tissue: a study of the content of rapidly expanding and collapsing bubbles," IEEE J. Quantum Electron. 30, 1339-1345 (1994).

Venugopalan, V.

R. R. Kaustubh, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery," Phys. Rev. Lett. 100, 038102 (2008).
[PubMed]

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).

Voisin, C.

N. del Fatti, C. Voisin, F. Chevy, F. Valleґe, and C. Flytzanis, "Coherent acoustic mode oscillation and damping in silver nanoparticles," J. Chem. Phys. 110, 11484 (1999).

Volkov, A. N.

A. N. Volkov, C. Sevilla, and L. V. Zhigilei "Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water," Appl. Surf. Sci. 253, 6394-6399 (2007).

von der Linde, D.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, D. von der Linde, M. H. von Hoegen, A. Cavalleri, J.A. Squier, and M. Kammler, "Femtosecond X-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[PubMed]

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).

von Hoegen, M. H.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, D. von der Linde, M. H. von Hoegen, A. Cavalleri, J.A. Squier, and M. Kammler, "Femtosecond X-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[PubMed]

von Plessen, G.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech "Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water," J. Chem. Phys. 124, 184702 (2006).
[PubMed]

A. Plech, V. Kotaidis, S. Grersillon, C. Dahmen, and G. von Plessen, "Laser-induced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering," Phys. Rev. B 70, 195423 (2004).

A. Plech, M. Wulff, S. Kürbitz, K.-J. Berg, G. Berg, H. Graener, S. Grésillon, M. Kaempfe, J. Feldmann,and G. von Plessen, "Time-resolved X-ray diffraction on laser-excited metal nanoparticles," Europhys. Lett. 61, 762-768 (2003).

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Vuilleumier, R.

A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, and P. A. Anfinrud, "Visualizing chemical reactions in solution by picosecond X-ray diffraction," Phys. Rev. Lett. 92, 125505 (2004).
[PubMed]

Wang, X.

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent — an ex vivo preliminary rat study," Nanotechnology 19, 095101 (2008).
[PubMed]

M. Hu, X. Wang, G.V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, "Heat dissipation in gold-silica core-shell nanoparticles," Chem. Phys. Lett. 372, 767-772 (2003).

Wei, A.

T. B. Huff, L. Tong, M. Hansen, J. X. Cheng, and A. Wei, "Hyperthermic effects of gold nanorods on tumor cells," Nanomedicine 2, 125-132 (2007).
[PubMed]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, "Gold nanorods mediate tumor cell death by compromising membrane integrity," Adv. Mater. 19, 3136-3141 (2007).

Wei, X.

M. Pitsillides, E. K. Joe, X. Wei, R. R Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[PubMed]

Welch, A. J.

T. G. van Leeuwen, E. D. Jansen, A. J. Welch, and C. Borst, "Excimer laser-induced bubble: dimensions, theory, and implications for laser angioplasty," Lasers Surg. Med. 4, 381-390 (1996).

T.G. van Leeuwen, E. D. Jansen, M. Motamedi, A. J. Welch, and C. Borst, "Excimer laser ablation of soft tissue: a study of the content of rapidly expanding and collapsing bubbles," IEEE J. Quantum Electron. 30, 1339-1345 (1994).

West, J.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
[PubMed]

West, J. L.

M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano. Lett. 7, 1929-1934 (2007).
[PubMed]

P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near-infrared absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004).
[PubMed]

Whitesell, J.

O. Siiman, K. Gordon, A. Burshteyn, J. Maples, and J. Whitesell, "Immunophenotyping using gold or silver nanoparticle-polystyrene bead conjugates with multiple light scatter," Cytometry 41, 298-307 (2000).
[PubMed]

Wu, T.

H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, "Nucleating cavitation from laser-illuminated nano-particles," Acoust. Res. Lett. Online 6, 138-143 (2005).

Wulff, M.

A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, and P. A. Anfinrud, "Visualizing chemical reactions in solution by picosecond X-ray diffraction," Phys. Rev. Lett. 92, 125505 (2004).
[PubMed]

A. Plech, M. Wulff, S. Kürbitz, K.-J. Berg, G. Berg, H. Graener, S. Grésillon, M. Kaempfe, J. Feldmann,and G. von Plessen, "Time-resolved X-ray diffraction on laser-excited metal nanoparticles," Europhys. Lett. 61, 762-768 (2003).

Yamaguchi, Y.

S. Inasawa, M. Sugiyama, S. Noda, and Y. Yamaguchi, "Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer," J. Phys. Chem. B 110, 3114-3119 (2006).
[PubMed]

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, "Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting," J. Phys. Chem. B 109, 3104-3111 (2005).

Yang, I.-J.

J.-S. Jeon, I.-J. Yang, S.-W. Karng, and H.-Y. Kwak, "Radius measurement of a sonoluminescing gas bubble," Jpn. J. Appl. Phys. 39, 1124-1127 (2000).

Yasui, K.

T. Kozuka, S. Hatanaka, K. Yasui, T. Tuziuti, and H. Mitome, "Simultaneous observation of motion and size of a sonoluminescing bubble," Jpn. J. Appl. Phys. 41, 3248-3249 (2002).

Yavas, O.

O. Yavas, P. Leiderer, H. Park, C. Grigoropoulos, C. Poon, W. Leung, N. Do, and A. Tam, "Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating," Phys. Rev. Lett. 70,1830-1833 (1993).
[PubMed]

Yguerabide, E. E.

J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization," Anal. Biochem. 262, 157-176 (1998).
[PubMed]

Yguerabide, J.

J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization," Anal. Biochem. 262, 157-176 (1998).
[PubMed]

Zhang, J. Z.

M. Schwartzberg and J. Z. Zhang, "Novel optical properties and emerging applications of metal nanostructures," J. Phys. Chem. 28, 10323-10337 (2008).

Zhang, Y.

Q. Zhu, B. Chance, W. T. Jenkins, and Y. Zhang, "Enhanced optical scattering by microbubbles," Proc. SPIE 2979, 157-162 (1997).

Zhao, Y.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, "Gold nanorods mediate tumor cell death by compromising membrane integrity," Adv. Mater. 19, 3136-3141 (2007).

Zheltov, G.

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, A. Oraevsky, V. Savitskiy, and O. Klimovich "Photothermal microscopy and laser ablation of leukemia cells targeted with gold nanoparticles," Proc. SPIE 5697, 82-89 (2005).

Zheltov, G.I.

Zhigilei, L. V.

A. N. Volkov, C. Sevilla, and L. V. Zhigilei "Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water," Appl. Surf. Sci. 253, 6394-6399 (2007).

Zhu, Q.

Q. Zhu, B. Chance, W. T. Jenkins, and Y. Zhang, "Enhanced optical scattering by microbubbles," Proc. SPIE 2979, 157-162 (1997).

Zohdy, M. J.

M. J. Zohdy, C. Tse, Jing Yong Ye, and M. O`Donnell, "Optical and acoustic detection of laser-generated microbubbles in single cells," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 117-125 (2006).
[PubMed]

Acc. Chem. Res. (1)

C. Murphy, A. Gole, J. Stone, P. Sisco, A Alkilany, E. Goldsmith, and S. C. Baxter, "Gold nanoparticles in biology: beyond toxicity to cellular imaging," Acc. Chem. Res. 41, 1721-1730 (2008).
[PubMed]

Acoust. Res. Lett. Online (1)

H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, "Nucleating cavitation from laser-illuminated nano-particles," Acoust. Res. Lett. Online 6, 138-143 (2005).

Adv. Mater. (1)

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, "Gold nanorods mediate tumor cell death by compromising membrane integrity," Adv. Mater. 19, 3136-3141 (2007).

Anal. Biochem. (1)

J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization," Anal. Biochem. 262, 157-176 (1998).
[PubMed]

Angew. Chem. Int. Ed. (1)

G. Skirtach, A. M. Javier, O. Kreft, K. Khler, A. P. Alberola, H. Mohwald, W. J. Parak, and G. B. Sukhorukov, "Laser-induced release of encapsulated materials inside living cells," Angew. Chem. Int. Ed. 45, 4612-4617 (2006).

Appl. Opt. (2)

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).

Appl. Phys. Lett. (3)

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

V. Kotaidis and A. Plecha "Cavitation dynamics on the nanoscale," Appl. Phys. Lett. 87, 213102 (2005).

C. P. Lin and M. W. Kelly, "Cavitation and acoustic emission around laser-heated microparticles," Appl. Phys. Lett. 72, 2800-2802 (1998).

Appl. Surf. Sci. (1)

A. N. Volkov, C. Sevilla, and L. V. Zhigilei "Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water," Appl. Surf. Sci. 253, 6394-6399 (2007).

Biophys. J. (3)

R. R. Kaustubh, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).

M. Pitsillides, E. K. Joe, X. Wei, R. R Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[PubMed]

P.A. Dayton, J. E. Chomas, A. F. H. Lunn, J. S. Allen, J. R. Lindner, S. I. Simon, and K. W. Ferrara, "Optical and acoustical dynamics of microbubble contrast agents inside neutrophils," Biophys. J. 80, 1547-1556 (2001).
[PubMed]

Cancer (1)

R. Drezek, M. Faupel, C. Pitris, M. Feld, M. Brewer, R. Richards-Kortum, and M. Follen, "Optical imaging for the detection of cervical precancers in vivo," Cancer 98, 2015-2027 (2003).
[PubMed]

Cancer Lett. (3)

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Method of laser activated nanothermolysis for elimination of tumor cells," Cancer Lett. 239, 36-45 (2006).

I. El-Sayed, X. Huang, and M. El-Sayed "Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles," Cancer Lett. 239, 129- 35 (2006).

P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near-infrared absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004).
[PubMed]

Cancer Res. (2)

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

O. C. Farokhzad, S. Jon, A. Khademhosseini, T. N. T. Tran, D. A. LaVan, and R. Langer, "Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells," Cancer Res. 64, 7668-7672 (2004).
[PubMed]

Chem. Phys. Lett. (2)

M. Hu and G. V. Hartland, "Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures," Chem. Phys. Lett. 391, 220-225 (2004).

M. Hu, X. Wang, G.V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, "Heat dissipation in gold-silica core-shell nanoparticles," Chem. Phys. Lett. 372, 767-772 (2003).

Chem. Rev. (1)

G. Paltauf and P. E. Dyer, "Photomechanical processes and effects in ablation," Chem. Rev. 103, 487-518 (2003).
[PubMed]

Cytometry (1)

O. Siiman, K. Gordon, A. Burshteyn, J. Maples, and J. Whitesell, "Immunophenotyping using gold or silver nanoparticle-polystyrene bead conjugates with multiple light scatter," Cytometry 41, 298-307 (2000).
[PubMed]

Europhys. Lett. (1)

A. Plech, M. Wulff, S. Kürbitz, K.-J. Berg, G. Berg, H. Graener, S. Grésillon, M. Kaempfe, J. Feldmann,and G. von Plessen, "Time-resolved X-ray diffraction on laser-excited metal nanoparticles," Europhys. Lett. 61, 762-768 (2003).

IEEE J. Quantum Electron. (1)

T.G. van Leeuwen, E. D. Jansen, M. Motamedi, A. J. Welch, and C. Borst, "Excimer laser ablation of soft tissue: a study of the content of rapidly expanding and collapsing bubbles," IEEE J. Quantum Electron. 30, 1339-1345 (1994).

IEEE J. Sel. Top. Quant. Electron. (1)

R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, "Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring," IEEE J. Sel. Top. Quant. Electron. 2, 826-835 (1996).

IEEE J. Sel. Top. Quantum Electron. (2)

G. Huttmann and R. Birngruber, "On the possibility of high-precision optothermal microeffects and the measurement of fast thermal denaturation of proteins," IEEE J. Sel. Top. Quantum Electron. 5, 954-962 (1999).

C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R.  Anderson, "Selective cell killing by microparticle absorption of pulsed laser radiation," IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

M. J. Zohdy, C. Tse, Jing Yong Ye, and M. O`Donnell, "Optical and acoustic detection of laser-generated microbubbles in single cells," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 117-125 (2006).
[PubMed]

Int. J. Heat Mass Transfer (1)

D. Lapotko and K. Lukianova, "Laser-induced micro-bubbles in cells," Int. J. Heat Mass Transfer 48, 227-234 (2005).

Internat. Rev. Phys. Chem. (1)

S. Link and M. A. El-Sayed, "Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals," Internat. Rev. Phys. Chem. 19, 409-453 (2000).

J. Am. Chem. Soc. (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared tegion by using gold nanorods," J. Am. Chem. Soc. 128, 2115-21202 (2006).
[PubMed]

J. Appl. Phys. (2)

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).

J. Neumann and R. Brinkmann "Nucleation dynamics around single microabsorbers in water heated by nanosecond laser irradiation," J. Appl. Phys. 101, 114701 (2007).

J. Biomed. Opt. (3)

E. Faraggi, B. S. Gerstman, and J. Sun, "Biophysical effects of pulsed lasers in the retina and other tissues containing strongly absorbing particles: shockwave and explosive bubble generation," J. Biomed. Opt. 10, 064029 (2005).

J. Neumann and R. Brinkmann, "Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses," J. Biomed. Opt. 10, 024001 (2005).
[PubMed]

D. Lapotko, K. Lukianova, and A. Shnip, "Photothermal responses of individual cells," J. Biomed. Opt. 10, 14006 (2005).
[PubMed]

J. Chem. Phys. (2)

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech "Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water," J. Chem. Phys. 124, 184702 (2006).
[PubMed]

N. del Fatti, C. Voisin, F. Chevy, F. Valleґe, and C. Flytzanis, "Coherent acoustic mode oscillation and damping in silver nanoparticles," J. Chem. Phys. 110, 11484 (1999).

J. Opt. A: Pure Appl. Opt. (1)

A. Kokhanovsky, "Optical properties of bubbles," J. Opt. A: Pure Appl. Opt. 5, 47-52 (2003).

J. Phys. Chem. (1)

M. Schwartzberg and J. Z. Zhang, "Novel optical properties and emerging applications of metal nanostructures," J. Phys. Chem. 28, 10323-10337 (2008).

J. Phys. Chem. A (1)

D. M. Bartels, R. A. Crowell, T. E. McGrath, and G. J. Diebold, "Laser-initiated chemical reactions in carbon suspensions," J. Phys. Chem. A 106, 10072-10078 (2002).

J. Phys. Chem. B (4)

L. François, M. Mostafavi, J. Belloni, J.-F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).

M. Hu and G. V. Hartland, "Heat dissipation for Au particles in aqueous solution: relaxation time versus size," J. Phys. Chem. B 106, 7029-7033 (2002).

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, "Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting," J. Phys. Chem. B 109, 3104-3111 (2005).

S. Inasawa, M. Sugiyama, S. Noda, and Y. Yamaguchi, "Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer," J. Phys. Chem. B 110, 3114-3119 (2006).
[PubMed]

Jpn. J. Appl. Phys. (2)

J.-S. Jeon, I.-J. Yang, S.-W. Karng, and H.-Y. Kwak, "Radius measurement of a sonoluminescing gas bubble," Jpn. J. Appl. Phys. 39, 1124-1127 (2000).

T. Kozuka, S. Hatanaka, K. Yasui, T. Tuziuti, and H. Mitome, "Simultaneous observation of motion and size of a sonoluminescing bubble," Jpn. J. Appl. Phys. 41, 3248-3249 (2002).

Lasers Med. Sci. (1)

X. Huang and P. K. Jain, and I. H. El-Sayed, and M. A. El-Sayed, "Plasmonic photothermal therapy (PPTT) using gold nanoparticles," Lasers Med. Sci. 23, 217-228 (2008).

Lasers Surg. Med. (5)

D. Lapotko, E. Lukianova, and A. Oraevsky, "Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles," Lasers Surg. Med. 38, 631-642 (2006).
[PubMed]

T. G. van Leeuwen, E. D. Jansen, A. J. Welch, and C. Borst, "Excimer laser-induced bubble: dimensions, theory, and implications for laser angioplasty," Lasers Surg. Med. 4, 381-390 (1996).

U. S. Sathyam, MS, A. Shearin, BS, E. A. Chasteney, MD, and S. A. Prahl "Threshold and ablation efficiency studies of microsecond ablation of gelatin under water,"Lasers Surg. Med. 19, 397-406 (1996).
[PubMed]

R. Brinkmann, G. Huttmann, J. Rogener, J. Roider, R. Birngruber, and C. P. Lin, "Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen," Lasers Surg. Med. 27, 451-64 (2000).
[PubMed]

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, "Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses," Lasers Surg. Med. 19, 23-31 (1996).
[PubMed]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).

Nano. Lett. (4)

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, "A surface phase transition of supported gold nanoparticles" Nano. Lett. 13, 17352505 (2007).

W.C.W. Chan and B. D. Chithrani, "Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes," Nano. Lett. 7, 1542-1550 (2007).
[PubMed]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005).
[PubMed]

M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano. Lett. 7, 1929-1934 (2007).
[PubMed]

Nano. Today (2)

O. Govorov and H. H. Richardson, "Generating heat with metal nanoparticles," Nano. Today 1, 30-38 (2007).

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nano. Today 2, 18-29 (2007).

Nanomedicine (5)

D. Lapotko, E. Lukianova-Hleb, and A. Oraevsky, "Clusterization of nanoparticles during their interaction with living cells," Nanomedicine 2, 241-253 (2007).
[PubMed]

E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, "Photothermal bubbles as optical scattering probes for imaging living cells," Nanomedicine 3, 797-812 (2008).
[PubMed]

Y. Hleb, J. H. Hafner, J. N. Myers, E. Y. Hanna, and D. O. Lapotko, "LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles," Nanomedicine 3, 648-667 (2008).

H. Liao, C. Nehl, and J. Hafner, "Biomedical applications of plasmon resonant metal nanoparicles," Nanomedicine 1,201-208 (2006).

T. B. Huff, L. Tong, M. Hansen, J. X. Cheng, and A. Wei, "Hyperthermic effects of gold nanorods on tumor cells," Nanomedicine 2, 125-132 (2007).
[PubMed]

Nanotechnology (2)

D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent — an ex vivo preliminary rat study," Nanotechnology 19, 095101 (2008).
[PubMed]

E. Y. Hleb and D. O. Lapotko, "Photothermal properties of gold nanoparticles under exposure to high optical energies," Nanotechnology 19, 355702 (2008).
[PubMed]

Opt. Express (2)

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, "Molecular specific optoacoustic imaging with plasmonic nanoparticles," Opt. Express 11, 6583-6588 (2007).

B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, "Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds," Opt. Express 10, 196-203 (2002).
[PubMed]

Opt. Lett. (1)

Philos. Mag. (1)

L. Rayleigh, "On the pressure developed in a liquid during the collapse of a spherical cavity," Philos. Mag. 34, 94-98 (1917).

Philos. Trans. R. Soc. London Ser. A (1)

C.-D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, "Bubble dynamics, shock waves and sonoluminescence," Philos. Trans. R. Soc. London Ser. A 357, 269-294 (1999).

Photochem. Photobiol. (1)

S. L. Jacques and D. J. McAuliffe, "The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation," Photochem. Photobiol. 53, 769-775 (1991).
[PubMed]

Phys. Chem. (1)

L. François, M. Mostafavi, J. Belloni, and J. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. 3, 4965-4971 (2001).

Phys. Chem. Chem. Phys. (1)

G. Hartland, "Measurement of the material properties of metal nanoparticles by time-resolved spectroscopy," Phys. Chem. Chem. Phys. 6, 5263-5274 (2004).

Phys. Rev. (1)

S. Hutson and X. Ma "Plasma and cavitation dynamics during pulsed laser microsurgery in vivo," Phys. Rev. 99, 158104 (2007).

Phys. Rev. B (1)

A. Plech, V. Kotaidis, S. Grersillon, C. Dahmen, and G. von Plessen, "Laser-induced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering," Phys. Rev. B 70, 195423 (2004).

Phys. Rev. Lett. (5)

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, D. von der Linde, M. H. von Hoegen, A. Cavalleri, J.A. Squier, and M. Kammler, "Femtosecond X-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[PubMed]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery," Phys. Rev. Lett. 100, 038102 (2008).
[PubMed]

A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, and P. A. Anfinrud, "Visualizing chemical reactions in solution by picosecond X-ray diffraction," Phys. Rev. Lett. 92, 125505 (2004).
[PubMed]

S. Hutson and X. Ma, "Plasma and cavitation dynamics during pulsed laser microsurgery in vivo," Phys. Rev. Lett. 99, 158104 (2007).
[PubMed]

O. Yavas, P. Leiderer, H. Park, C. Grigoropoulos, C. Poon, W. Leung, N. Do, and A. Tam, "Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating," Phys. Rev. Lett. 70,1830-1833 (1993).
[PubMed]

Proc SPIE (1)

J. Baumgart, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, "Live cell opto-injection by femtosecond laser pulses," Proc SPIE 6435, 643512 (2007).

Proc. SPIE (6)

J. Roegener and C. P. Lin, ‘‘Photomechanical effects: experimental studies of pigment granule absorption, cavitation, and cell damage,’’Proc. SPIE 3902, 35-40 (2000).

Q. Zhu, B. Chance, W. T. Jenkins, and Y. Zhang, "Enhanced optical scattering by microbubbles," Proc. SPIE 2979, 157-162 (1997).

S. Gersman, "Theoretical modeling of laser induced explosive pressure generation and vaporization in pigmented cells," Proc. SPIE 3902, 41-52 (2000).

M. Strauss, P. A. Amendt, R. A. London, D. J. Maitland, M. E. Glinsky, C. P. Lin, and M. W. Kelly, "Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles," Proc. SPIE 2975, 261-270 (1997).

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, A. Oraevsky, V. Savitskiy, and O. Klimovich "Photothermal microscopy and laser ablation of leukemia cells targeted with gold nanoparticles," Proc. SPIE 5697, 82-89 (2005).

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Elimination of leukemic cells from human transplants by laser nano-thermolysis," Proc. SPIE 6086, 135-142 (2006).

Progress in Organic Coatings (1)

C. Auger, R. G. Barrera, and B. Stou, "Optical properties of an eccentrically located pigment within an air bubble," Progress in Organic Coatings 49, 74-83 (2004).

Science (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[PubMed]

Technol. Cancer Res. Treat. (1)

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003).
[PubMed]

Trend. Biotech. (1)

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trend. Biotech. 24, 62-67 (2006).

Ultrasonics (1)

B. Krasovitski, H. Kislev, and E. Kimmel "Modeling photothermal and acoustical induced microbubble generation and growth," Ultrasonics 47,90-101, (2007).
[PubMed]

Z. Phys. (1)

M. Otter, "Temperature dependance of the optical constants of heavy metals," Z. Phys. 161, 539-549 (1961).

Z. Phys. Chem. (1)

H. Petrova, H. Min, and G. Hartland, "Photothermal properties of gold nanoparticles," Z. Phys. Chem. 221, 361-76 (2007).

Other (6)

A. C. Tam, "Overview of photothermal spectroscopy," in Photothermal investigation of solids and fluids, J. A. Sell eds. (Acad. Press, 1988) pp.1-34.

E. Antononi and M. Brunoni, Hemoglobin and mioglobin and their reaction with ligands (North-Holland, Amsterdam,1997).

R. Gilmore, "The growth and collapse of a spherical bubble in a viscous compressible liquid," presented at California Institute of Technology Hydrodynamics. Laboratory Report 26(4), Pasadena, 1952.

C. E. Brennen, Cavitation and bubble dynamics: (Oxford University Press, Oxford Engineering Science, New York, 1995), pp. 44.

I. Amendt, M. Strauss, R. A. London, M. E. Glinsky, D. J. Maitland, P. M. Celliers, S. R. Visuri, D. S. Bailey, D. A. Young, and D. Ho, "Modeling of bubble dynamics in relation to medical applications," in Laser-Tisstle Interaction 8, eds. (Proc. SPIE 2975, Bellingham, 1997), pp. 362-373.

F. Schotte, S. Techert, P.A. Anfinrud, V. Srajer, K. Moffat, and M. Wulff, Third-generation hard X-ray synchrotron radiation sources D. Mills eds. (Wiley, New York, 2002), pp. 345-401.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Classification of the photothermal processes generated by plasmonic nanoparticles due to optical absorption of laser pulse and follow-up thermalization of the nanoparticle. Bubble mode is shown in light gray. Shift of the border between bubble mode and pressure wave mode due to increase of the nanoparticle temperature during plasmonic interaction is hatched.

Fig. 2.
Fig. 2.

Experimental setup: single gold NPs in water were placed in the sample chamber mounted on the microscope stage; PTB generation was provided by focused single pulses (532 nm, 05 ns or 10 ns); a pulsed probing laser (690 nm, 05 ns) provided time-resolved optical scattering imaging of PTB and a continuous probing laser (633 nm, 1 mW) provided the monitoring of the integral optical scattering of PTBs.

Fig. 3.
Fig. 3.

Time-resolved optical scattering images obtained for: a) a suspension of 30-nm gold NPs (no pulse), b) 30-nm gold NP exposed to a single pump laser pulse (532 nm, 0.5 ns, 0.9 J/cm2), c) clusters of 30-nm gold NPs (no pulse), d) clusters of 30 nm gold NP exposed to a single pumping laser pulse (532 nm, 0.5 ns, 0.12 J/cm2), the images (b) an (d) were obtained with a 9-ns time delay relative to the pumping pulse. Space bar is equal to 6 μm.

Fig. 4.
Fig. 4.

Time responses for a single pumping pulse (532 nm, 0.5 ns): (a) PTB around 30-nm gold NP (0.9 J/cm2), (b) PTB around a cluster of 30-nm gold NPs (0.9 J/cm2), (c) thermal signal in the sample of 30-nm gold NPs at the fluence below the PTB threshold (0.5 J/cm2), (d) PTB and thermal signal in the sample with hemoglobin as a homogenous absorber; the insets in (c) and (d) show the relaxation of the bulk thermal signals at full time-scales (a delay between the zero time and the signals is the result of the offset caused by synchronization of the digital oscilloscope that was used for the registration of the response).

Fig. 5.
Fig. 5.

(a). Influence of the fluence of a single pumping laser pulse (0.5 ns, 532 nm) on the relative scattering amplitude Ssc (t) of the PTB generated around 30-nm NP clusters (solid squares) and corresponding PTB lifetime (NP clusters shown by hollow squares, single 30-nm NPs shown by hollow circles), the images were obtained at 9 ns time delay of probing pulse relatively to pumping pulse; (b) Influence of the time-delay of a probing laser pulse (0.5 ns, 690 nm) on the parameters of NP cluster-generated PTBs: relative scattering amplitude (black columns), PTB generation threshold (hollow columns) and scattering saturation threshold (gray columns).

Fig. 6.
Fig. 6.

PTB generation threshold fluence (a) and lifetime at the threshold fluence (b) for single 30-nm gold spheres (NP30), gold rods 14 × 45 nm (NR), 100-nm gold spheres (NP100), and clusters of 30-nm spheres (cNP30), 170-nm gold shells (cNS170), 60-nm gold shells (cNS60) and for micro- and macroabsorbers: red blood cells (RBC) and a homogeneous hemoglobin solution (Hb). Black columns, 0.5-ns pulse; hollow columns, 10-ns pulse at 532 nm.

Fig. 7.
Fig. 7.

Influence of the height of the sample chamber on the PTB threshold fluence (solid squares) and lifetime (hollow circles) for 30-nm gold NPs, with a single pumping pulse: 0.5 ns, 532 nm.

Tables (3)

Tables Icon

Table 1. Parameters of NP-generated PTBs as measured in image and response modes for a single 0.5-ns laser pulse at 532 nm

Tables Icon

Table 2. Comparison of the process of generation of PTBs around plasmonic nanoparticles and in homogeneously absorbing media (+ indicates the influence of the specific experimental parameter)

Tables Icon

Table 3. Comparison of the features of two optical scattering methods for sensing PTBs

Metrics