Abstract

A nematic liquid crystal adaptive optics system (NLC AOS) was assembled for a 2.16-m telescope to correct for atmospheric turbulence. LC AOS was designed and optimized with Zemax optical software. Second, an adaptive correction experiment was performed in the laboratory to test the performance of the NLC AOS. After the correction, the peak to valley (PV) and root mean square (RMS) of the wavefront were down to 0.2 λ (λ=633 nm) and 0.05 λ, respectively. Finally, the star of Pollux (β Gem) was tracked using the 2.16-m Reflecting Telescope, and real time correction of the atmospheric turbulence was performed with the NLC AOS. After the adaptive correction, the average PV and RMS of the wavefront were reduced from 11 λ and 2.5 λ to 2.3 λ and 0.6 λ, respectively. Although the intensity distribution of the β Gem was converged and its peak was sharp, a halo still existed around the peak. These results indicated that the NLC AOS only partially corrected the vertical atmospheric turbulence. The limitations of our NLC AOS are discussed and some proposals are made.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schöck, D. Le Mignant, G. A. Chanan, and P. L. Wizinowich, "Atmospheric turbulence characterization with the Keck adaptive optics systems," Proc. SPIE 4839, 813-824 (2003).
    [CrossRef]
  2. P. Ryan, S. Milster, and J. Drummond, "Performance of coronagraph on AEOS 3.6m AO telescope," Proc. SPIE 4860, 311-314 (2003).
    [CrossRef]
  3. A. Piterman, Z. Ninkov, B. S. Backer, and E. P. Horch, "Photometric studies using the Starfire Optical Range adaptive optics system," Proc. SPIE 3353, 447-454 (1998).
    [CrossRef]
  4. F. Roddier, "Curvature sensing and compensation: a new concept in adaptive optics," Appl. Opt. 27, 1223 (1998).
    [CrossRef]
  5. F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999), pp. 13-15.
  6. G. Marchiori, S. De Lorenzi, A. Busatta, and L. Giacomel, "The E-ELT Project: the feasibility study," Proc. SPIE 7012, 70121J-1-70121J-12 (2008).
  7. http://www.adaptiveoptics.org/News_1207_2.html.
  8. G. D. Love, "Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator," Appl. Opt. 36, 1517-1524 (1997).
    [CrossRef] [PubMed]
  9. Z. Cao, Q. Mu, L. Hu, D. Li, Y. Liu, L. Jin, and L. Xuan, "Correction of horizontal turbulence with nematic liquid crystal wavefront corrector," Opt. Express 16:7006-7013 (2008).
    [CrossRef]
  10. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, "Phase-only liquid crystal spatial light modulator for wavefront correction with high precision," Opt. Express 12, 6403-6409 (2004).
    [CrossRef] [PubMed]
  11. G. D. Love, "Liquid crystal phase modulator for unpolarized light," Appl. Opt. 32, 2222-2223 (1993).
    [CrossRef] [PubMed]
  12. D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, "A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
    [CrossRef]
  13. S. R. Restaino, D. Dayton, S. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, and M. Shilko, "On the use of dual frequency nematic material for adaptive optics systems: first results of a closed -loop experiment," Opt. Express 6, 2-6 (2000).
    [CrossRef] [PubMed]
  14. Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, "Open-loop correction of horizontal turbulence: system design and result," Appl. Opt. 47, 4297-4301 (2008).
    [CrossRef] [PubMed]

2008 (2)

2004 (1)

2003 (2)

M. Schöck, D. Le Mignant, G. A. Chanan, and P. L. Wizinowich, "Atmospheric turbulence characterization with the Keck adaptive optics systems," Proc. SPIE 4839, 813-824 (2003).
[CrossRef]

P. Ryan, S. Milster, and J. Drummond, "Performance of coronagraph on AEOS 3.6m AO telescope," Proc. SPIE 4860, 311-314 (2003).
[CrossRef]

2000 (1)

1998 (2)

A. Piterman, Z. Ninkov, B. S. Backer, and E. P. Horch, "Photometric studies using the Starfire Optical Range adaptive optics system," Proc. SPIE 3353, 447-454 (1998).
[CrossRef]

F. Roddier, "Curvature sensing and compensation: a new concept in adaptive optics," Appl. Opt. 27, 1223 (1998).
[CrossRef]

1997 (1)

1995 (1)

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, "A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
[CrossRef]

1993 (1)

Backer, B. S.

A. Piterman, Z. Ninkov, B. S. Backer, and E. P. Horch, "Photometric studies using the Starfire Optical Range adaptive optics system," Proc. SPIE 3353, 447-454 (1998).
[CrossRef]

Baker, J.

Browne, S.

Burns, D. C.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, "A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
[CrossRef]

Cao, Z.

Chanan, G. A.

M. Schöck, D. Le Mignant, G. A. Chanan, and P. L. Wizinowich, "Atmospheric turbulence characterization with the Keck adaptive optics systems," Proc. SPIE 4839, 813-824 (2003).
[CrossRef]

Dayton, D.

Drummond, J.

P. Ryan, S. Milster, and J. Drummond, "Performance of coronagraph on AEOS 3.6m AO telescope," Proc. SPIE 4860, 311-314 (2003).
[CrossRef]

Gallegos, J.

Gonglewski, J.

Gourlay, J.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, "A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
[CrossRef]

Horch, E. P.

A. Piterman, Z. Ninkov, B. S. Backer, and E. P. Horch, "Photometric studies using the Starfire Optical Range adaptive optics system," Proc. SPIE 3353, 447-454 (1998).
[CrossRef]

Hu, L.

Jin, L.

Le Mignant, D.

M. Schöck, D. Le Mignant, G. A. Chanan, and P. L. Wizinowich, "Atmospheric turbulence characterization with the Keck adaptive optics systems," Proc. SPIE 4839, 813-824 (2003).
[CrossRef]

Li, D.

Liu, Y.

Love, G. D.

McDermott, S.

Milster, S.

P. Ryan, S. Milster, and J. Drummond, "Performance of coronagraph on AEOS 3.6m AO telescope," Proc. SPIE 4860, 311-314 (2003).
[CrossRef]

Mu, Q.

Ninkov, Z.

A. Piterman, Z. Ninkov, B. S. Backer, and E. P. Horch, "Photometric studies using the Starfire Optical Range adaptive optics system," Proc. SPIE 3353, 447-454 (1998).
[CrossRef]

O’Hara, A.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, "A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
[CrossRef]

Piterman, A.

A. Piterman, Z. Ninkov, B. S. Backer, and E. P. Horch, "Photometric studies using the Starfire Optical Range adaptive optics system," Proc. SPIE 3353, 447-454 (1998).
[CrossRef]

Restaino, S. R.

Roddier, F.

Rogers, S.

Ryan, P.

P. Ryan, S. Milster, and J. Drummond, "Performance of coronagraph on AEOS 3.6m AO telescope," Proc. SPIE 4860, 311-314 (2003).
[CrossRef]

Schöck, M.

M. Schöck, D. Le Mignant, G. A. Chanan, and P. L. Wizinowich, "Atmospheric turbulence characterization with the Keck adaptive optics systems," Proc. SPIE 4839, 813-824 (2003).
[CrossRef]

Shilko, M.

Underwood, I.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, "A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
[CrossRef]

Vass, D. G.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, "A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
[CrossRef]

Wizinowich, P. L.

M. Schöck, D. Le Mignant, G. A. Chanan, and P. L. Wizinowich, "Atmospheric turbulence characterization with the Keck adaptive optics systems," Proc. SPIE 4839, 813-824 (2003).
[CrossRef]

Xuan, L.

Appl. Opt. (4)

Opt. Commun. (1)

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, "A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
[CrossRef]

Opt. Express (3)

Proc. SPIE (3)

M. Schöck, D. Le Mignant, G. A. Chanan, and P. L. Wizinowich, "Atmospheric turbulence characterization with the Keck adaptive optics systems," Proc. SPIE 4839, 813-824 (2003).
[CrossRef]

P. Ryan, S. Milster, and J. Drummond, "Performance of coronagraph on AEOS 3.6m AO telescope," Proc. SPIE 4860, 311-314 (2003).
[CrossRef]

A. Piterman, Z. Ninkov, B. S. Backer, and E. P. Horch, "Photometric studies using the Starfire Optical Range adaptive optics system," Proc. SPIE 3353, 447-454 (1998).
[CrossRef]

Other (3)

F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999), pp. 13-15.

G. Marchiori, S. De Lorenzi, A. Busatta, and L. Giacomel, "The E-ELT Project: the feasibility study," Proc. SPIE 7012, 70121J-1-70121J-12 (2008).

http://www.adaptiveoptics.org/News_1207_2.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Design of the optical layout of the NLC AOS for a 2.16 m telescope. L1-L5: achromatic lenses. TM represents the tip-tilt mirror.

Fig. 2.
Fig. 2.

The diffraction limited MTF design of the NLC AOS at the field of view of 0° and 0.68°.

Fig. 3.
Fig. 3.

PD curve at wavelengths, 486 nm, 588 nm, and 656 nm. Fields of view, 0° and 0.68°. Range of y-axis, ±0.1λ, λ = 588 nm.

Fig. 4.
Fig. 4.

Results without and with adaptive correction: (a) wavefront without the correction; (b) image of fiber bundle before the correction; (c) corrected wavefront; (d) image of fiber bundle with the correction.

Fig. 5.
Fig. 5.

Connection of the optical setup between the telescope and the NLC AOS in the Coude room, a mirror is inserted into the optical layout to reflect incident light to the NLC AOS.

Fig. 6.
Fig. 6.

Experimental layout of the NLC AOS.

Fig. 7.
Fig. 7.

Dynamic variation of PV and RMS of the wavefront before and after the correction; y-axis graduated in microns (μm).

Fig. 8.
Fig. 8.

Image of Pollux (β Gem) captured with a CCD camera (a) without and (b) with the correction.

Fig. 9.
Fig. 9.

Response time as a function of the temperature: (a) rise time; (b) fall time.

Metrics