Abstract

We demonstrate time division multiplexing (TDM) and wavelength division multiplexing/TDM (WDM/TDM) long reach 10 Gb/s passive optical network (PON) architectures of 100 km reach with no infield amplification or dispersion compensation. The purely passive nature of the 100 km systems is enabled by the use of ultra-low-loss optical fiber with average attenuation of 0.17 dB/km and downstream transmission with a 10 Gb/s signal modulated with the duobinary format. The high tolerance of duobinary to dispersion, stimulated Brillouin scattering (SBS), and self-phase modulation (SPM) are all key factors to achieving good system performance at this distance, as is the significantly reduced loss from the ultra-low-loss fiber. We show that this combination of fiber and downstream signal format allow split ratios up to 1:128 for both system architectures. The achievable split ratio is reduced for standard single-mode fiber and/or use of an NRZ modulated downstream signal. Standard strength forward error correction (FEC) is used for the WDM/TDM system but is not required for the TDM system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tanaka and N. Edagawa, "Experimental Study on 10 Gbit/s E-PON System using XENPAK-based burst-mode transceivers," European Conference on Optical Communication (ECOC 2005), Glasgow, Scotland, Paper Tu1.3.2, (2005).
  2. D. Nesset, R. P. Davey, D. Shea, P. Kirkpatrick, S. Q. Shang, M. Lobel, and B. Christensen, "10 Gbit/s bidirectional transmission in 1024-way Split, 110 km Reach, PON system using commercial transceiver modules, Super FEC, and EDC," European Conference on Optical Communication (ECOC 2005), Glasgow, Scotland, Paper Tu1.3.1, (2005).
  3. G. C. Wilson, T. H. Wood, J. A. Stiles, R. D. Feldman, J. M. P. Delavaux, T. H. Daugherty, and P. D. Magill, "FiberVista: An FTTH or FTTC system delivering broadband data and CATV services," Bell Labs Tech. J. 4, 300-322 (1999).
    [CrossRef]
  4. I. Van de Voorde, C. M. Martin, J. Vandewege, and X. Z. Qiu, "The SuperPON demonstrator: An exploration of possible evolution paths for optical access networks," IEEE Commun. Mag. 38, 74-82 (2000).
    [CrossRef]
  5. A. J. Phillips, J. M. Senior, R. Mercinelli, M. Valvo, P. J. Vetter, C. M. Martin, M. O. van Deventer, P. Vaes, and X. Z. Qiu, "Redundancy strategies for a high splitting optically amplified passive optical network," J. Lightwave Technol. 19, 137-149 (2001).
    [CrossRef]
  6. D. P. Shea and J. E. Mitchell, "Operating penalties in single-fiber operation 10-Gb/s, 1024-way split, 110-km long-reach optical access networks," IEEE Photon. Technol. Lett. 18, 2463-2465 (2006).
    [CrossRef]
  7. G. Talli and P. D. Townsend, "Feasibility demonstration of 100km reach DWDM SuperPON with upstream bit rates of 2.5Gb/s and 10Gb/s," Optical Fiber Communication Conference and Exhibition and The National Fiber Optic Engineers Conference on CD-ROM) (Optical Society of America, Washington, D.C., 2005), paper OFI1 (2005).
  8. J. A. Lazaro, J. Prat, P. Chanclou, G. M. Tosi Beleffi, A. Teixeira, I. Tomkos, R. Soila, and V. Koratzinos, "Scalable extended reach PON," Optical Fiber Communication Conference and Exhibition and The National Fiber Optic Engineers Conference on CD-ROM) (Optical Society of America, Washington, D.C., 2008), paper OThL2 (2008).
  9. A. B. Ruffin, J. D. Downie, and J. Hurley, "Purely passive long reach 10 GE-PON architecture based on duobinary signals and ultra-low loss optical fiber," Optical Fiber Communication Conference and Exhibition and The National Fiber Optic Engineers Conference on CD-ROM) (Optical Society of America, Washington, D.C., 2008), paper OThL4 (2008).
  10. Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, "Chirp-managed directly modulated laser (CML)," IEEE Photon. Technol. Lett. 18, 385-387 (2006).
    [CrossRef]
  11. J. D. Downie, A. B. Ruffin, and J. Hurley, "An 11.1 Gb/s WDM/TDM-PON system with 100 km reach using ultra-low-loss fiber and duobinary downstream signals," IEEE LEOS Annual Meeting, paper WEE3 (2008).
    [CrossRef]
  12. M. D. Vaughn, A. B. Ruffin, A. Kobyakov, et al, "Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks," J. Opt. Netw. 5, 40-57 (2006).
    [CrossRef]
  13. A. J. Price and N. LeMercier, "Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance," Electron. Lett.  31, 58-591995).
    [CrossRef]
  14. S. Kuwano, K. Yonenaga, and K. Iwashita, "10 Gbit/s repeaterless transmission experiment of optical duobinary modulated signal," Electron. Lett. 31, 1359-1361 (1995).
    [CrossRef]
  15. S. Chandrasekhar, C. R. Doerr, L. L. Buhl, Y. Matsui, D. Mahgerefteh, X. Zheng, K. McCallion, Z. Fan, and P. Tayebati, "Repeaterless transmission with negative penalty over 285 km at 10 Gb/s using a chirp managed laser," IEEE Photon. Technol. Lett. 17, 2454-2456 (2005).
    [CrossRef]

2006 (3)

D. P. Shea and J. E. Mitchell, "Operating penalties in single-fiber operation 10-Gb/s, 1024-way split, 110-km long-reach optical access networks," IEEE Photon. Technol. Lett. 18, 2463-2465 (2006).
[CrossRef]

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, "Chirp-managed directly modulated laser (CML)," IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[CrossRef]

M. D. Vaughn, A. B. Ruffin, A. Kobyakov, et al, "Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks," J. Opt. Netw. 5, 40-57 (2006).
[CrossRef]

2005 (1)

S. Chandrasekhar, C. R. Doerr, L. L. Buhl, Y. Matsui, D. Mahgerefteh, X. Zheng, K. McCallion, Z. Fan, and P. Tayebati, "Repeaterless transmission with negative penalty over 285 km at 10 Gb/s using a chirp managed laser," IEEE Photon. Technol. Lett. 17, 2454-2456 (2005).
[CrossRef]

2001 (1)

2000 (1)

I. Van de Voorde, C. M. Martin, J. Vandewege, and X. Z. Qiu, "The SuperPON demonstrator: An exploration of possible evolution paths for optical access networks," IEEE Commun. Mag. 38, 74-82 (2000).
[CrossRef]

1999 (1)

G. C. Wilson, T. H. Wood, J. A. Stiles, R. D. Feldman, J. M. P. Delavaux, T. H. Daugherty, and P. D. Magill, "FiberVista: An FTTH or FTTC system delivering broadband data and CATV services," Bell Labs Tech. J. 4, 300-322 (1999).
[CrossRef]

1995 (2)

A. J. Price and N. LeMercier, "Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance," Electron. Lett.  31, 58-591995).
[CrossRef]

S. Kuwano, K. Yonenaga, and K. Iwashita, "10 Gbit/s repeaterless transmission experiment of optical duobinary modulated signal," Electron. Lett. 31, 1359-1361 (1995).
[CrossRef]

Buhl, L. L.

S. Chandrasekhar, C. R. Doerr, L. L. Buhl, Y. Matsui, D. Mahgerefteh, X. Zheng, K. McCallion, Z. Fan, and P. Tayebati, "Repeaterless transmission with negative penalty over 285 km at 10 Gb/s using a chirp managed laser," IEEE Photon. Technol. Lett. 17, 2454-2456 (2005).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar, C. R. Doerr, L. L. Buhl, Y. Matsui, D. Mahgerefteh, X. Zheng, K. McCallion, Z. Fan, and P. Tayebati, "Repeaterless transmission with negative penalty over 285 km at 10 Gb/s using a chirp managed laser," IEEE Photon. Technol. Lett. 17, 2454-2456 (2005).
[CrossRef]

Daugherty, T. H.

G. C. Wilson, T. H. Wood, J. A. Stiles, R. D. Feldman, J. M. P. Delavaux, T. H. Daugherty, and P. D. Magill, "FiberVista: An FTTH or FTTC system delivering broadband data and CATV services," Bell Labs Tech. J. 4, 300-322 (1999).
[CrossRef]

Delavaux, J. M. P.

G. C. Wilson, T. H. Wood, J. A. Stiles, R. D. Feldman, J. M. P. Delavaux, T. H. Daugherty, and P. D. Magill, "FiberVista: An FTTH or FTTC system delivering broadband data and CATV services," Bell Labs Tech. J. 4, 300-322 (1999).
[CrossRef]

Doerr, C. R.

S. Chandrasekhar, C. R. Doerr, L. L. Buhl, Y. Matsui, D. Mahgerefteh, X. Zheng, K. McCallion, Z. Fan, and P. Tayebati, "Repeaterless transmission with negative penalty over 285 km at 10 Gb/s using a chirp managed laser," IEEE Photon. Technol. Lett. 17, 2454-2456 (2005).
[CrossRef]

Fan, Z.

S. Chandrasekhar, C. R. Doerr, L. L. Buhl, Y. Matsui, D. Mahgerefteh, X. Zheng, K. McCallion, Z. Fan, and P. Tayebati, "Repeaterless transmission with negative penalty over 285 km at 10 Gb/s using a chirp managed laser," IEEE Photon. Technol. Lett. 17, 2454-2456 (2005).
[CrossRef]

Fan, Z. F.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, "Chirp-managed directly modulated laser (CML)," IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[CrossRef]

Feldman, R. D.

G. C. Wilson, T. H. Wood, J. A. Stiles, R. D. Feldman, J. M. P. Delavaux, T. H. Daugherty, and P. D. Magill, "FiberVista: An FTTH or FTTC system delivering broadband data and CATV services," Bell Labs Tech. J. 4, 300-322 (1999).
[CrossRef]

Iwashita, K.

S. Kuwano, K. Yonenaga, and K. Iwashita, "10 Gbit/s repeaterless transmission experiment of optical duobinary modulated signal," Electron. Lett. 31, 1359-1361 (1995).
[CrossRef]

Kobyakov, A.

Kuwano, S.

S. Kuwano, K. Yonenaga, and K. Iwashita, "10 Gbit/s repeaterless transmission experiment of optical duobinary modulated signal," Electron. Lett. 31, 1359-1361 (1995).
[CrossRef]

LeMercier, N.

A. J. Price and N. LeMercier, "Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance," Electron. Lett.  31, 58-591995).
[CrossRef]

Liao, C.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, "Chirp-managed directly modulated laser (CML)," IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[CrossRef]

Magill, P. D.

G. C. Wilson, T. H. Wood, J. A. Stiles, R. D. Feldman, J. M. P. Delavaux, T. H. Daugherty, and P. D. Magill, "FiberVista: An FTTH or FTTC system delivering broadband data and CATV services," Bell Labs Tech. J. 4, 300-322 (1999).
[CrossRef]

Mahgerefteh, D.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, "Chirp-managed directly modulated laser (CML)," IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[CrossRef]

S. Chandrasekhar, C. R. Doerr, L. L. Buhl, Y. Matsui, D. Mahgerefteh, X. Zheng, K. McCallion, Z. Fan, and P. Tayebati, "Repeaterless transmission with negative penalty over 285 km at 10 Gb/s using a chirp managed laser," IEEE Photon. Technol. Lett. 17, 2454-2456 (2005).
[CrossRef]

Martin, C. M.

A. J. Phillips, J. M. Senior, R. Mercinelli, M. Valvo, P. J. Vetter, C. M. Martin, M. O. van Deventer, P. Vaes, and X. Z. Qiu, "Redundancy strategies for a high splitting optically amplified passive optical network," J. Lightwave Technol. 19, 137-149 (2001).
[CrossRef]

I. Van de Voorde, C. M. Martin, J. Vandewege, and X. Z. Qiu, "The SuperPON demonstrator: An exploration of possible evolution paths for optical access networks," IEEE Commun. Mag. 38, 74-82 (2000).
[CrossRef]

Matsui, Y.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, "Chirp-managed directly modulated laser (CML)," IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[CrossRef]

S. Chandrasekhar, C. R. Doerr, L. L. Buhl, Y. Matsui, D. Mahgerefteh, X. Zheng, K. McCallion, Z. Fan, and P. Tayebati, "Repeaterless transmission with negative penalty over 285 km at 10 Gb/s using a chirp managed laser," IEEE Photon. Technol. Lett. 17, 2454-2456 (2005).
[CrossRef]

McCallion, K.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, "Chirp-managed directly modulated laser (CML)," IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[CrossRef]

S. Chandrasekhar, C. R. Doerr, L. L. Buhl, Y. Matsui, D. Mahgerefteh, X. Zheng, K. McCallion, Z. Fan, and P. Tayebati, "Repeaterless transmission with negative penalty over 285 km at 10 Gb/s using a chirp managed laser," IEEE Photon. Technol. Lett. 17, 2454-2456 (2005).
[CrossRef]

Mercinelli, R.

Mitchell, J. E.

D. P. Shea and J. E. Mitchell, "Operating penalties in single-fiber operation 10-Gb/s, 1024-way split, 110-km long-reach optical access networks," IEEE Photon. Technol. Lett. 18, 2463-2465 (2006).
[CrossRef]

Phillips, A. J.

Price, A. J.

A. J. Price and N. LeMercier, "Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance," Electron. Lett.  31, 58-591995).
[CrossRef]

Qiu, X. Z.

A. J. Phillips, J. M. Senior, R. Mercinelli, M. Valvo, P. J. Vetter, C. M. Martin, M. O. van Deventer, P. Vaes, and X. Z. Qiu, "Redundancy strategies for a high splitting optically amplified passive optical network," J. Lightwave Technol. 19, 137-149 (2001).
[CrossRef]

I. Van de Voorde, C. M. Martin, J. Vandewege, and X. Z. Qiu, "The SuperPON demonstrator: An exploration of possible evolution paths for optical access networks," IEEE Commun. Mag. 38, 74-82 (2000).
[CrossRef]

Ruffin, A. B.

Senior, J. M.

Shea, D. P.

D. P. Shea and J. E. Mitchell, "Operating penalties in single-fiber operation 10-Gb/s, 1024-way split, 110-km long-reach optical access networks," IEEE Photon. Technol. Lett. 18, 2463-2465 (2006).
[CrossRef]

Stiles, J. A.

G. C. Wilson, T. H. Wood, J. A. Stiles, R. D. Feldman, J. M. P. Delavaux, T. H. Daugherty, and P. D. Magill, "FiberVista: An FTTH or FTTC system delivering broadband data and CATV services," Bell Labs Tech. J. 4, 300-322 (1999).
[CrossRef]

Tayebati, P.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, "Chirp-managed directly modulated laser (CML)," IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[CrossRef]

S. Chandrasekhar, C. R. Doerr, L. L. Buhl, Y. Matsui, D. Mahgerefteh, X. Zheng, K. McCallion, Z. Fan, and P. Tayebati, "Repeaterless transmission with negative penalty over 285 km at 10 Gb/s using a chirp managed laser," IEEE Photon. Technol. Lett. 17, 2454-2456 (2005).
[CrossRef]

Vaes, P.

Valvo, M.

Van de Voorde, I.

I. Van de Voorde, C. M. Martin, J. Vandewege, and X. Z. Qiu, "The SuperPON demonstrator: An exploration of possible evolution paths for optical access networks," IEEE Commun. Mag. 38, 74-82 (2000).
[CrossRef]

van Deventer, M. O.

Vandewege, J.

I. Van de Voorde, C. M. Martin, J. Vandewege, and X. Z. Qiu, "The SuperPON demonstrator: An exploration of possible evolution paths for optical access networks," IEEE Commun. Mag. 38, 74-82 (2000).
[CrossRef]

Vaughn, M. D.

Vetter, P. J.

Wilson, G. C.

G. C. Wilson, T. H. Wood, J. A. Stiles, R. D. Feldman, J. M. P. Delavaux, T. H. Daugherty, and P. D. Magill, "FiberVista: An FTTH or FTTC system delivering broadband data and CATV services," Bell Labs Tech. J. 4, 300-322 (1999).
[CrossRef]

Wood, T. H.

G. C. Wilson, T. H. Wood, J. A. Stiles, R. D. Feldman, J. M. P. Delavaux, T. H. Daugherty, and P. D. Magill, "FiberVista: An FTTH or FTTC system delivering broadband data and CATV services," Bell Labs Tech. J. 4, 300-322 (1999).
[CrossRef]

Yonenaga, K.

S. Kuwano, K. Yonenaga, and K. Iwashita, "10 Gbit/s repeaterless transmission experiment of optical duobinary modulated signal," Electron. Lett. 31, 1359-1361 (1995).
[CrossRef]

Zheng, X.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, "Chirp-managed directly modulated laser (CML)," IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[CrossRef]

S. Chandrasekhar, C. R. Doerr, L. L. Buhl, Y. Matsui, D. Mahgerefteh, X. Zheng, K. McCallion, Z. Fan, and P. Tayebati, "Repeaterless transmission with negative penalty over 285 km at 10 Gb/s using a chirp managed laser," IEEE Photon. Technol. Lett. 17, 2454-2456 (2005).
[CrossRef]

Bell Labs Tech. J. (1)

G. C. Wilson, T. H. Wood, J. A. Stiles, R. D. Feldman, J. M. P. Delavaux, T. H. Daugherty, and P. D. Magill, "FiberVista: An FTTH or FTTC system delivering broadband data and CATV services," Bell Labs Tech. J. 4, 300-322 (1999).
[CrossRef]

Electron. Lett. (2)

A. J. Price and N. LeMercier, "Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance," Electron. Lett.  31, 58-591995).
[CrossRef]

S. Kuwano, K. Yonenaga, and K. Iwashita, "10 Gbit/s repeaterless transmission experiment of optical duobinary modulated signal," Electron. Lett. 31, 1359-1361 (1995).
[CrossRef]

IEEE Commun. Mag. (1)

I. Van de Voorde, C. M. Martin, J. Vandewege, and X. Z. Qiu, "The SuperPON demonstrator: An exploration of possible evolution paths for optical access networks," IEEE Commun. Mag. 38, 74-82 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

D. P. Shea and J. E. Mitchell, "Operating penalties in single-fiber operation 10-Gb/s, 1024-way split, 110-km long-reach optical access networks," IEEE Photon. Technol. Lett. 18, 2463-2465 (2006).
[CrossRef]

S. Chandrasekhar, C. R. Doerr, L. L. Buhl, Y. Matsui, D. Mahgerefteh, X. Zheng, K. McCallion, Z. Fan, and P. Tayebati, "Repeaterless transmission with negative penalty over 285 km at 10 Gb/s using a chirp managed laser," IEEE Photon. Technol. Lett. 17, 2454-2456 (2005).
[CrossRef]

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, "Chirp-managed directly modulated laser (CML)," IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Netw. (1)

Other (6)

J. D. Downie, A. B. Ruffin, and J. Hurley, "An 11.1 Gb/s WDM/TDM-PON system with 100 km reach using ultra-low-loss fiber and duobinary downstream signals," IEEE LEOS Annual Meeting, paper WEE3 (2008).
[CrossRef]

K. Tanaka and N. Edagawa, "Experimental Study on 10 Gbit/s E-PON System using XENPAK-based burst-mode transceivers," European Conference on Optical Communication (ECOC 2005), Glasgow, Scotland, Paper Tu1.3.2, (2005).

D. Nesset, R. P. Davey, D. Shea, P. Kirkpatrick, S. Q. Shang, M. Lobel, and B. Christensen, "10 Gbit/s bidirectional transmission in 1024-way Split, 110 km Reach, PON system using commercial transceiver modules, Super FEC, and EDC," European Conference on Optical Communication (ECOC 2005), Glasgow, Scotland, Paper Tu1.3.1, (2005).

G. Talli and P. D. Townsend, "Feasibility demonstration of 100km reach DWDM SuperPON with upstream bit rates of 2.5Gb/s and 10Gb/s," Optical Fiber Communication Conference and Exhibition and The National Fiber Optic Engineers Conference on CD-ROM) (Optical Society of America, Washington, D.C., 2005), paper OFI1 (2005).

J. A. Lazaro, J. Prat, P. Chanclou, G. M. Tosi Beleffi, A. Teixeira, I. Tomkos, R. Soila, and V. Koratzinos, "Scalable extended reach PON," Optical Fiber Communication Conference and Exhibition and The National Fiber Optic Engineers Conference on CD-ROM) (Optical Society of America, Washington, D.C., 2008), paper OThL2 (2008).

A. B. Ruffin, J. D. Downie, and J. Hurley, "Purely passive long reach 10 GE-PON architecture based on duobinary signals and ultra-low loss optical fiber," Optical Fiber Communication Conference and Exhibition and The National Fiber Optic Engineers Conference on CD-ROM) (Optical Society of America, Washington, D.C., 2008), paper OThL4 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Reflected power for duobinary and undithered NRZ signals from an SBS measurement set-up with 100 km of standard single-mode fiber. (b) Required OSNR to achieve a BER value of 10-3 with NRZ and duobinary signals over 100 km span of ultra-low-loss fiber. The wavelength for all data was 1550 nm, modulated at 10.3125 Gb/s.

Fig. 2.
Fig. 2.

Downstream TDM-PON experimental setup.

Fig. 3.
Fig. 3.

Downstream signal transmission results for (a) duobinary and NRZ with 1:128 split over ultra-low-loss fiber, (b) duobinary with 1:128 split over both fibers.

Fig. 4.
Fig. 4.

(a) Downstream signal transmission results for CML and duobinary transmitters over 100 km ultra-low-loss fiber TDM-PON with 1:128 split ratio. (b) Upstream transmission results at 1.25 Gb/s.

Fig. 5.
Fig. 5.

Experimental set-up used for WDM/TDM-PON downstream transmission.

Fig. 6.
Fig. 6.

Q values of downstream channel #5 as a function of launch power/channel. (a) 1:64 split per wavelength, (b) 1:128 split per wavelength.

Fig. 7.
Fig. 7.

(a) WDM/TDM-PON system upstream results for a DML modulated at 1.25 Gb/s and 2.5 Gb/s. (b) Downstream transmission BER vs. EDFA output power results for 1552.52 nm channel for alternative WDM/TDM-PON system architecture.

Metrics