Abstract

Common-path optical coherence tomography (CPOCT) is known to reduce group velocity dispersion and polarization mismatch between the reference and the sample arm as both arms share the same physical path. Existing implementations of CPOCT typically require one to incorporate an additional cover glass within the beam path of the sample arm to provide a reference signal. In this paper, we aim to further reduce this step by directly making use of the back-reflected signal, arising from a conical lens-tip fiber, as a reference signal. The conical lens, which is directly manufactured onto the optical fiber tip via a simple selective-chemical etching process, fulfils two functions acting as both the imaging lens and the self-aligning reference plane. We use a Fourier-domain OCT system to demonstrate the feasibility of this technique upon biological tissue. An in-fiber CPOCT technique may prove potentially useful in endoscopic OCT imaging.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. S. D. Huang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
    [CrossRef]
  2. W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
    [CrossRef] [PubMed]
  3. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Opt. 42, 6953-6958 (2003).
    [CrossRef] [PubMed]
  4. A. Popp, M. Wendel, L. Knels, P. Knuschke, M. Mehner, T. Koch, D. Boller, P. Koch, and E. Koch, "Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs," Proc. SPIE 5861, 58610Q (2005).
  5. A. R. Tumlinson, B. Považay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sartmann, W. Drexler, and J. K. Barton, "In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope," J. Biomed. Opt. 11, 064003 (2006).
    [CrossRef]
  6. U. Sharma and J. U. Kang, "Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography," Rev. Sci. Instrum. 78, 113102 (2007).
    [CrossRef] [PubMed]
  7. H. Y. Choi, S. Y. Ryu, J. H. Na, B. H. Lee, I. B. Sohn, Y. C. Noh, and J. M. Lee, "Single-body lensed photonic crystal fibers as side-viewing probes for optical imaging systems," Opt. Lett. 33, 34-36 (2008).
    [CrossRef]
  8. S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, "Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography," Appl. Opt. 47, 1510-1516 (2008).
    [CrossRef] [PubMed]
  9. Z. H. Ding, H. W. Ren, Y. H. Zhao, J. S. Nelson, and Z. P. Chen, "High-resolution optical coherence tomography over a large depth range with an axicon lens," Opt. Lett. 27, 243-245 (2002).
    [CrossRef]
  10. K. S. Lee, and L. P. Rolland, "Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range," Opt. Lett. 33, 1696-1698 (2008).
    [CrossRef] [PubMed]
  11. S. Mononobe and M. Ohtsu, "Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231-2235 (1996).
    [CrossRef]
  12. S. Y. Ryu, Department of Information and Communications, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712, South Korea (personal communication, 2008).
  13. E. B. Li, G. D. Peng, and X. Ding, "High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity," Appl. Phys. Lett. 92,10117 (2008).
  14. G. Häusler, and M. W. Lindner, "Coherence Radar and Spectral Radar—New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  15. S. K. Eah, W. Jhe, and Y. Arakawa, "Nearly diffraction-limited focusing of a fiber axicon microlens," Rev. Sci. Instrum. 74, 4969-4971 (2003).
    [CrossRef]
  16. Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, "Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle," Opt. Commun. 267, 264-270 (2006).
    [CrossRef]
  17. T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, "Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams," App. Opt. 46, 8061-8067 (2007).
    [CrossRef]
  18. X. D. Li, X. M. Liu, Y. C. Chen, M. J. Cobb, and M. B. Kimmey, "Development of a fast scanning miniature probe and methods of dispersion management for high-resolution optical coherence tomography," in 26th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (2004), pp. 5289-5291.
  19. A. M. Zysk, E. J. Chaney, and S. A. Boppart "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
    [CrossRef] [PubMed]

2008

2007

T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, "Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams," App. Opt. 46, 8061-8067 (2007).
[CrossRef]

U. Sharma and J. U. Kang, "Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography," Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef] [PubMed]

2006

A. R. Tumlinson, B. Považay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sartmann, W. Drexler, and J. K. Barton, "In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope," J. Biomed. Opt. 11, 064003 (2006).
[CrossRef]

A. M. Zysk, E. J. Chaney, and S. A. Boppart "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
[CrossRef] [PubMed]

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, "Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle," Opt. Commun. 267, 264-270 (2006).
[CrossRef]

2005

A. Popp, M. Wendel, L. Knels, P. Knuschke, M. Mehner, T. Koch, D. Boller, P. Koch, and E. Koch, "Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs," Proc. SPIE 5861, 58610Q (2005).

2004

W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

2003

S. K. Eah, W. Jhe, and Y. Arakawa, "Nearly diffraction-limited focusing of a fiber axicon microlens," Rev. Sci. Instrum. 74, 4969-4971 (2003).
[CrossRef]

A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Opt. 42, 6953-6958 (2003).
[CrossRef] [PubMed]

2002

1998

G. Häusler, and M. W. Lindner, "Coherence Radar and Spectral Radar—New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

1996

S. Mononobe and M. Ohtsu, "Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231-2235 (1996).
[CrossRef]

1991

E. A. S. D. Huang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Arakawa, Y.

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, "Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle," Opt. Commun. 267, 264-270 (2006).
[CrossRef]

S. K. Eah, W. Jhe, and Y. Arakawa, "Nearly diffraction-limited focusing of a fiber axicon microlens," Rev. Sci. Instrum. 74, 4969-4971 (2003).
[CrossRef]

Barton, J. K.

A. R. Tumlinson, B. Považay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sartmann, W. Drexler, and J. K. Barton, "In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope," J. Biomed. Opt. 11, 064003 (2006).
[CrossRef]

Boller, D.

A. Popp, M. Wendel, L. Knels, P. Knuschke, M. Mehner, T. Koch, D. Boller, P. Koch, and E. Koch, "Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs," Proc. SPIE 5861, 58610Q (2005).

Boppart, S. A.

A. M. Zysk, E. J. Chaney, and S. A. Boppart "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
[CrossRef] [PubMed]

Chaney, E. J.

A. M. Zysk, E. J. Chaney, and S. A. Boppart "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
[CrossRef] [PubMed]

Chang, W.

E. A. S. D. Huang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Charraut, D.

T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, "Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams," App. Opt. 46, 8061-8067 (2007).
[CrossRef]

Chen, Z. P.

Choi, H. Y.

Choi, W. J.

Ding, X.

E. B. Li, G. D. Peng, and X. Ding, "High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity," Appl. Phys. Lett. 92,10117 (2008).

Ding, Z. H.

Drexler, W.

A. R. Tumlinson, B. Považay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sartmann, W. Drexler, and J. K. Barton, "In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope," J. Biomed. Opt. 11, 064003 (2006).
[CrossRef]

W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

Eah, S. K.

S. K. Eah, W. Jhe, and Y. Arakawa, "Nearly diffraction-limited focusing of a fiber axicon microlens," Rev. Sci. Instrum. 74, 4969-4971 (2003).
[CrossRef]

Flotte, T.

E. A. S. D. Huang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Fujimoto, J. G.

E. A. S. D. Huang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Gregory, K.

E. A. S. D. Huang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Grosjean, T.

T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, "Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams," App. Opt. 46, 8061-8067 (2007).
[CrossRef]

Hariri, L. P.

A. R. Tumlinson, B. Považay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sartmann, W. Drexler, and J. K. Barton, "In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope," J. Biomed. Opt. 11, 064003 (2006).
[CrossRef]

Häusler, G.

G. Häusler, and M. W. Lindner, "Coherence Radar and Spectral Radar—New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Hee, M. R.

E. A. S. D. Huang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Hermann, B.

A. R. Tumlinson, B. Považay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sartmann, W. Drexler, and J. K. Barton, "In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope," J. Biomed. Opt. 11, 064003 (2006).
[CrossRef]

Hong, M. H.

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, "Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle," Opt. Commun. 267, 264-270 (2006).
[CrossRef]

Huang, E. A. S. D.

E. A. S. D. Huang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Ibrahim, I. A.

T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, "Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams," App. Opt. 46, 8061-8067 (2007).
[CrossRef]

Jhe, W.

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, "Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle," Opt. Commun. 267, 264-270 (2006).
[CrossRef]

S. K. Eah, W. Jhe, and Y. Arakawa, "Nearly diffraction-limited focusing of a fiber axicon microlens," Rev. Sci. Instrum. 74, 4969-4971 (2003).
[CrossRef]

Kane, D. J.

Kang, J. U.

U. Sharma and J. U. Kang, "Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography," Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef] [PubMed]

Knels, L.

A. Popp, M. Wendel, L. Knels, P. Knuschke, M. Mehner, T. Koch, D. Boller, P. Koch, and E. Koch, "Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs," Proc. SPIE 5861, 58610Q (2005).

Knuschke, P.

A. Popp, M. Wendel, L. Knels, P. Knuschke, M. Mehner, T. Koch, D. Boller, P. Koch, and E. Koch, "Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs," Proc. SPIE 5861, 58610Q (2005).

Koch, E.

A. Popp, M. Wendel, L. Knels, P. Knuschke, M. Mehner, T. Koch, D. Boller, P. Koch, and E. Koch, "Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs," Proc. SPIE 5861, 58610Q (2005).

Koch, P.

A. Popp, M. Wendel, L. Knels, P. Knuschke, M. Mehner, T. Koch, D. Boller, P. Koch, and E. Koch, "Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs," Proc. SPIE 5861, 58610Q (2005).

Koch, T.

A. Popp, M. Wendel, L. Knels, P. Knuschke, M. Mehner, T. Koch, D. Boller, P. Koch, and E. Koch, "Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs," Proc. SPIE 5861, 58610Q (2005).

Lee, B. H.

Lee, J. M.

Lee, K. S.

Li, E. B.

E. B. Li, G. D. Peng, and X. Ding, "High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity," Appl. Phys. Lett. 92,10117 (2008).

Lin, C. P.

E. A. S. D. Huang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Lindner, M. W.

G. Häusler, and M. W. Lindner, "Coherence Radar and Spectral Radar—New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

McNally, J.

A. R. Tumlinson, B. Považay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sartmann, W. Drexler, and J. K. Barton, "In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope," J. Biomed. Opt. 11, 064003 (2006).
[CrossRef]

Mehner, M.

A. Popp, M. Wendel, L. Knels, P. Knuschke, M. Mehner, T. Koch, D. Boller, P. Koch, and E. Koch, "Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs," Proc. SPIE 5861, 58610Q (2005).

Mononobe, S.

S. Mononobe and M. Ohtsu, "Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231-2235 (1996).
[CrossRef]

Na, J.

Na, J. H.

Nelson, J. S.

Noh, H.

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, "Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle," Opt. Commun. 267, 264-270 (2006).
[CrossRef]

Noh, H. R.

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, "Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle," Opt. Commun. 267, 264-270 (2006).
[CrossRef]

Noh, Y. C.

Ohtsu, M.

S. Mononobe and M. Ohtsu, "Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231-2235 (1996).
[CrossRef]

Peng, G. D.

E. B. Li, G. D. Peng, and X. Ding, "High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity," Appl. Phys. Lett. 92,10117 (2008).

Peterson, K. A.

Piquerey, V.

T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, "Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams," App. Opt. 46, 8061-8067 (2007).
[CrossRef]

Popp, A.

A. Popp, M. Wendel, L. Knels, P. Knuschke, M. Mehner, T. Koch, D. Boller, P. Koch, and E. Koch, "Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs," Proc. SPIE 5861, 58610Q (2005).

Považay, B.

A. R. Tumlinson, B. Považay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sartmann, W. Drexler, and J. K. Barton, "In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope," J. Biomed. Opt. 11, 064003 (2006).
[CrossRef]

Puliafito, C. A.

E. A. S. D. Huang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Ren, H. W.

Rolland, L. P.

Ryu, S. Y.

Saleh, S. S.

T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, "Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams," App. Opt. 46, 8061-8067 (2007).
[CrossRef]

Sandoz, P.

T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, "Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams," App. Opt. 46, 8061-8067 (2007).
[CrossRef]

Sartmann, H.

A. R. Tumlinson, B. Považay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sartmann, W. Drexler, and J. K. Barton, "In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope," J. Biomed. Opt. 11, 064003 (2006).
[CrossRef]

Schuman, J. S.

E. A. S. D. Huang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Sharma, U.

U. Sharma and J. U. Kang, "Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography," Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef] [PubMed]

Sohn, I. B.

Stinson, W. G.

E. A. S. D. Huang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Suarez, M. A.

T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, "Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams," App. Opt. 46, 8061-8067 (2007).
[CrossRef]

Tumlinson, A. R.

A. R. Tumlinson, B. Považay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sartmann, W. Drexler, and J. K. Barton, "In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope," J. Biomed. Opt. 11, 064003 (2006).
[CrossRef]

Unterhuber, A.

A. R. Tumlinson, B. Považay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sartmann, W. Drexler, and J. K. Barton, "In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope," J. Biomed. Opt. 11, 064003 (2006).
[CrossRef]

Vakhtin, A. B.

Wendel, M.

A. Popp, M. Wendel, L. Knels, P. Knuschke, M. Mehner, T. Koch, D. Boller, P. Koch, and E. Koch, "Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs," Proc. SPIE 5861, 58610Q (2005).

Wood, W. R.

Yu, Y. J.

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, "Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle," Opt. Commun. 267, 264-270 (2006).
[CrossRef]

Zhao, Y. H.

Zysk, A. M.

A. M. Zysk, E. J. Chaney, and S. A. Boppart "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
[CrossRef] [PubMed]

App. Opt.

T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, "Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams," App. Opt. 46, 8061-8067 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

E. B. Li, G. D. Peng, and X. Ding, "High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity," Appl. Phys. Lett. 92,10117 (2008).

J. Biomed. Opt.

G. Häusler, and M. W. Lindner, "Coherence Radar and Spectral Radar—New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

A. R. Tumlinson, B. Považay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sartmann, W. Drexler, and J. K. Barton, "In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope," J. Biomed. Opt. 11, 064003 (2006).
[CrossRef]

W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

J. Lightwave Technol.

S. Mononobe and M. Ohtsu, "Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231-2235 (1996).
[CrossRef]

Opt. Commun.

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, "Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle," Opt. Commun. 267, 264-270 (2006).
[CrossRef]

Opt. Lett.

Phys. Med. Biol.

A. M. Zysk, E. J. Chaney, and S. A. Boppart "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
[CrossRef] [PubMed]

Proc. SPIE

A. Popp, M. Wendel, L. Knels, P. Knuschke, M. Mehner, T. Koch, D. Boller, P. Koch, and E. Koch, "Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs," Proc. SPIE 5861, 58610Q (2005).

Rev. Sci. Instrum.

S. K. Eah, W. Jhe, and Y. Arakawa, "Nearly diffraction-limited focusing of a fiber axicon microlens," Rev. Sci. Instrum. 74, 4969-4971 (2003).
[CrossRef]

U. Sharma and J. U. Kang, "Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography," Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef] [PubMed]

Science

E. A. S. D. Huang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Other

S. Y. Ryu, Department of Information and Communications, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712, South Korea (personal communication, 2008).

X. D. Li, X. M. Liu, Y. C. Chen, M. J. Cobb, and M. B. Kimmey, "Development of a fast scanning miniature probe and methods of dispersion management for high-resolution optical coherence tomography," in 26th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (2004), pp. 5289-5291.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Modeling of the in-fiber CPOCT system. (a) Illustration of a 2-D finite element simulation of the light field propagating from the fiber to the sample and back. The inset shows the magnified SEM image of the fiber probe where the conical microlens is clearly visible. (b) Inverse Fourier transform of the interference signal for a cleaved fiber (black) and a conical fiber tip (red). Inset shows the interference signal. (c) Angular divergence of beam output from the fiber end. The first order rings marked corresponds to the beam side lobs visible in (a).

Fig. 2.
Fig. 2.

In-fiber CPOCT system: (a) schematic of the in-fiber CPOCT setup incorporating the conical-tip fiber probe and (b) the conical-tip fiber probe is incorporated into a surgical needle (19 gauge needle).

Fig. 3.
Fig. 3.

Measured signal to noise ratio and axial resolution with the 128° conical-tip fiber for different axial position between the fiber tip and mirror.

Fig. 4.
Fig. 4.

(a). Bright-field image of the USAF resolution target card showing element E2 to E6 of group 6. Description of element E2 and E6 is explained in the text. White dotted arrow line indicates the scanning direction and path. (b). Lateral plot from element E2 to E6 of a single scan OCT data performed with the 128° conical-tip fiber and the cleaved fiber.

Fig. 5.
Fig. 5.

Angular dependence on the light collection for the 128° conical-tip fiber and the cleaved fiber.

Fig. 6.
Fig. 6.

A cross-section OCT tomogram of the onion sample using the 128° conical-tip fiber in the CPOCT setup.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( k ) = S ( k ) [ a R ( k ) 2 + 2 a R ( k ) Zo a ( z ) cos ( 2 knz ) dz
Zo Zo a ( z ) a ( z ' ) exp [ i 2 kn ( z z ' ) dzdz ' ]

Metrics