Abstract

We investigate numerically the effect of a finite metal film thickness on the propagation characteristics of the channel plasmon polariton (CPP) and wedge plasmon polariton (WPP) modes, both in a symmetric and asymmetric environment. We observe that decreasing the metal thickness results in an improvement of the field localization near the groove tip and an increase of the losses for both types of mode. This behavior stems from the typical symmetric charge distribution of both modes across the metal film. When considering an asymmetric dielectric environment, the CPP mode is found to evolve into short range plasmon modes propagating along the groove walls, in contrast to the WPP mode which remains essentially confined at the tip apex. These results can be useful to tailor the properties of such plasmon modes, using the metal thickness as the variable parameter.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fulbert and T. Pearsall, "A European roadmap for photonics and nanotechnology," MONA, Merging Optics & Nanotechnologies (2008).
  2. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  4. J. T. Kim, J. J. Ju, S. Park, M.-s. Kim, S. K. Park, and M.-H. Lee, "Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides," Opt. Express 16, 13133-13138 (2008).
    [CrossRef] [PubMed]
  5. S. Sidorenko, and O. J. F. Martin, "Resonant tunneling of surface plasmon-polaritons," Opt. Express 15, 6380-6388 (2007).
    [CrossRef] [PubMed]
  6. H. Raether, "Surface-Plasmons on Smooth and Rough Surfaces and on Gratings," Springer Tracts Mod. Phys. 111, 1-133 (1988).
  7. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 61, 44-50 (2008).
    [CrossRef]
  8. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, "Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths," Opt. Express 16, 5252-5260 (2008).
    [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  11. D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004).
    [CrossRef]
  12. D. K. Gramotnev and K. C. Vernon, "Adiabatic nano-focusing of plasmons by sharp metallic wedges," Appl. Phys. B Lasers Opt. 86, 7-17 (2007).
    [CrossRef]
  13. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
    [CrossRef] [PubMed]
  14. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).
    [CrossRef] [PubMed]
  15. I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
    [CrossRef]
  16. S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 9467-9476 (2006).
    [CrossRef] [PubMed]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York 1985).
  18. D. K. Gramotnev, "Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach," J. Appl. Phy. 98 (2005).
    [CrossRef]
  19. COMSOL Multiphysics version 3.4.
  20. M. Yan and M. Qiu, "Guided plasmon polariton at 2D metal corners," J. Opt. Soc. Am. B-Opt. Phys. 24, 2333-2342 (2007).
    [CrossRef]
  21. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, "Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides," Opt. Express,  16,14902-14909 (2008).
  22. E. N. Economou, "Surface Plasmons in Thin Films," Phys. Rev. 182, 539-554 (1969).
    [CrossRef]
  23. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986).
    [CrossRef]
  24. J. Van Bladel, Singular electromagnetic fields and sources (Oxford Univ. Press, Oxford 1995).
  25. L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon Press, Oxford 1984).
  26. R. Zia, M. D. Selker, and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005).
    [CrossRef]

2008 (5)

2007 (3)

M. Yan and M. Qiu, "Guided plasmon polariton at 2D metal corners," J. Opt. Soc. Am. B-Opt. Phys. 24, 2333-2342 (2007).
[CrossRef]

D. K. Gramotnev and K. C. Vernon, "Adiabatic nano-focusing of plasmons by sharp metallic wedges," Appl. Phys. B Lasers Opt. 86, 7-17 (2007).
[CrossRef]

S. Sidorenko, and O. J. F. Martin, "Resonant tunneling of surface plasmon-polaritons," Opt. Express 15, 6380-6388 (2007).
[CrossRef] [PubMed]

2006 (4)

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 9467-9476 (2006).
[CrossRef] [PubMed]

2005 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

R. Zia, M. D. Selker, and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005).
[CrossRef]

2004 (1)

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2002 (1)

I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

1988 (1)

H. Raether, "Surface-Plasmons on Smooth and Rough Surfaces and on Gratings," Springer Tracts Mod. Phys. 111, 1-133 (1988).

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986).
[CrossRef]

1969 (1)

E. N. Economou, "Surface Plasmons in Thin Films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Boltasseva, A.

Bozhevolnyi, S. I.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, "Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths," Opt. Express 16, 5252-5260 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 61, 44-50 (2008).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 9467-9476 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Brongersma, M. L.

R. Zia, M. D. Selker, and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005).
[CrossRef]

Brueck, S. R. J.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Chen, J.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 61, 44-50 (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Economou, E. N.

E. N. Economou, "Surface Plasmons in Thin Films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Garcia-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
[CrossRef] [PubMed]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 61, 44-50 (2008).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and K. C. Vernon, "Adiabatic nano-focusing of plasmons by sharp metallic wedges," Appl. Phys. B Lasers Opt. 86, 7-17 (2007).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004).
[CrossRef]

Ju, J. J.

Kim, J. T.

Kim, M.-s.

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Lee, M.-H.

Malloy, K. J.

Maradudin, A. A.

I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Martin, O. J. F.

Martin-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
[CrossRef] [PubMed]

Moreno, E.

Nielsen, R. B.

Novikov, I. V.

I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Ozbay, E.

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Park, S.

Park, S. K.

Pile, D. F. P.

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004).
[CrossRef]

Qiu, M.

M. Yan and M. Qiu, "Guided plasmon polariton at 2D metal corners," J. Opt. Soc. Am. B-Opt. Phys. 24, 2333-2342 (2007).
[CrossRef]

Raether, H.

H. Raether, "Surface-Plasmons on Smooth and Rough Surfaces and on Gratings," Springer Tracts Mod. Phys. 111, 1-133 (1988).

Rodrigo, S. G.

Selker, M. D.

R. Zia, M. D. Selker, and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005).
[CrossRef]

Sidorenko, S.

Smolyakov, G. A.

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Vernon, K. C.

D. K. Gramotnev and K. C. Vernon, "Adiabatic nano-focusing of plasmons by sharp metallic wedges," Appl. Phys. B Lasers Opt. 86, 7-17 (2007).
[CrossRef]

Volkov, V. S.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, "Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths," Opt. Express 16, 5252-5260 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Yan, M.

M. Yan and M. Qiu, "Guided plasmon polariton at 2D metal corners," J. Opt. Soc. Am. B-Opt. Phys. 24, 2333-2342 (2007).
[CrossRef]

Zia, R.

R. Zia, M. D. Selker, and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005).
[CrossRef]

Appl. Phys. B Lasers Opt. (1)

D. K. Gramotnev and K. C. Vernon, "Adiabatic nano-focusing of plasmons by sharp metallic wedges," Appl. Phys. B Lasers Opt. 86, 7-17 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004).
[CrossRef]

J. Opt. Soc. Am. B-Opt. Phys. (1)

M. Yan and M. Qiu, "Guided plasmon polariton at 2D metal corners," J. Opt. Soc. Am. B-Opt. Phys. 24, 2333-2342 (2007).
[CrossRef]

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. (1)

E. N. Economou, "Surface Plasmons in Thin Films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Phys. Rev. B (3)

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986).
[CrossRef]

I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

R. Zia, M. D. Selker, and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 61, 44-50 (2008).
[CrossRef]

Science (1)

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Springer Tracts Mod. Phys. (1)

H. Raether, "Surface-Plasmons on Smooth and Rough Surfaces and on Gratings," Springer Tracts Mod. Phys. 111, 1-133 (1988).

Other (6)

A. Fulbert and T. Pearsall, "A European roadmap for photonics and nanotechnology," MONA, Merging Optics & Nanotechnologies (2008).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York 1985).

D. K. Gramotnev, "Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach," J. Appl. Phy. 98 (2005).
[CrossRef]

COMSOL Multiphysics version 3.4.

J. Van Bladel, Singular electromagnetic fields and sources (Oxford Univ. Press, Oxford 1995).

L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon Press, Oxford 1984).

Supplementary Material (8)

» Media 1: MOV (340 KB)     
» Media 2: MOV (283 KB)     
» Media 3: MOV (358 KB)     
» Media 4: MOV (234 KB)     
» Media 5: MOV (877 KB)     
» Media 6: MOV (380 KB)     
» Media 7: MOV (119 KB)     
» Media 8: MOV (182 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Sketch of the simulated structure. (b) Symmetries of the charge distribution associated with the different SP coupled modes for two thin films and the corresponding CPP and WPP modes. The symmetry of a mode is described with a symbol αβ with α=s, respectively a, for symmetric, respectively antisymmetric charge distributions across the gap (β=g) or the film (β=f).

Fig. 2.
Fig. 2.

(a) Distribution of the different components of the electric field near the tip for the CPP mode and (b) for the WPP mode of a 40nm-thick gold film. The magnitudes are normalized to the maximum of the dominant field component. (c) Cross-section of the electric field amplitude (normalized to the field maximum) measured perpendicularly to the metal film at the location of the field maxima (as shown by the green dashed line in (a) and (b)) for the CPP mode and (d) for the WPP mode.

Fig. 3.
Fig. 3.

(a) Modal properties of the CPP mode for different gold thicknesses: effective index neff (right), modal area A (center) and propagation length Lp (right). Insets show the evolution of these parameters as a function of t for two fixed wavelengths: 700 nm (blue) and 1,55 μm (red). (b) Evolution of the electric field distribution of the CPP with t at λ=700nm (close to tip) (Media 1). (c) Idem at λ =1,55 μm (Media 2).

Fig. 4.
Fig. 4.

(a) Modal properties of the WPP mode for different gold thicknesses: effective index neff (right), modal area A (center) and propagation length Lp (right). The dashed curves correspond to the short range surface plasmon mode (SRP) of an infinite thin gold film of the corresponding thickness. (b) Evolution of the electric field distribution of the WPP with t at λ=700nm, close to tip, (Media 3). (c) Idem at λ =1,55 μm (Media 4).

Fig. 5.
Fig. 5.

Modal properties of the CPP mode as a function of the dielectric constant of the substrate ε2 at λ = 700 nm (a) and λ = 1,55 μm (b): effective index neff (right), modal area A (center) and propagation length Lp (right). The dashed curves correspond to the short range surface plasmon mode (SRP) of an infinite thin gold film of the corresponding thickness. (c) Evolution of the mode profile with ε2 at λ = 700 nm for t=50 nm (Media 5). (d) Idem at λ = 1,55 μm for t= 20 nm (Media 6).

Fig. 6.
Fig. 6.

Modal properties of the WPP mode as a function of the dielectric constant of the substrate μ2 at λ = 700 nm (a) and λ = 1,55 μm (b): effective index neff (right), modal area A (center) and propagation length Lp (right). The dashed curves correspond to the light line in the cladding. (c) Evolution of the mode profile with ε2 at λ = 700 nm for t=20 nm (Media 7). (d) Idem at λ = 1,55 μm for t= 10 nm (Media 8).Note that the color scale is saturated at Emax/10.

Metrics