Abstract

We report the axial strain dependence of two types of all-fiber acousto-optic tunable filters based on flexural and torsional acoustic waves. Experimental observation of the resonant wavelength shift under applied axial strain could be explained by theoretical consideration of the combination of acoustic and optical effects. We discuss the possibility of suppressing the strain effect in the filters, or conversely, the possibility of using the strain dependence for wavelength tuning or strain sensors.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Kim, S. H. Yun, I. K. Hwang, and B. Y. Kim, "All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile," Opt. Lett. 22, 1476-1478 (1997).
    [CrossRef]
  2. K. J. Lee, D. -I. Yeom, and B. Y. Kim, "Narrowband, polarization insensitive all-fiber acousto-optic tunable bandpass filter," Opt. Express 15, 2987-2992 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-2987.
    [CrossRef] [PubMed]
  3. K. J. Lee, H. C. Park, and B. Y. Kim, "Highly efficient all-fiber tunable polarization filter using torsional acoustic wave," Opt. Express 15, 12362-12367 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12362.
    [CrossRef] [PubMed]
  4. Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, "Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector," IEEE Photon Technol. Lett. 15, 718-720 (2003).
    [CrossRef]
  5. J. Zhao, X. Liu, Y. Wang, and Y. Luo, "Bending effect on fiber acousto-optic mode coupling," Appl. Opt. 44, 5101-5104 (2005).
    [CrossRef] [PubMed]
  6. H. C. Park, B. Y. Kim, and H. S. Park, "Apodization of elliptical-core two-mode fiber acousto-optic filter based on acoustic polarization control," Opt. Lett. 30, 3126-3128 (2005).
    [CrossRef] [PubMed]
  7. A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "High strain-induced wavelength tunability in tapered fibre acousto-optic filters," Electron. Lett. 36, 1187-1188 (2000).
    [CrossRef]
  8. H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Strain effect on the tunability of cascading all-fiber acoustic-optical tunable filters," Opt. Commun. 247, 65-84 (2005).
    [CrossRef]
  9. H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Tunable stopband filter by using differential strains in all-fiber acoustooptical filter," J. Lightwave Technol. 17, 609-611 (2005).
  10. H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Design of tunable composite spectrums using all-fiber acoustooptical filters subject to strain control," J. Lightwave Technol. 24, 1855-1864 (2006).
    [CrossRef]
  11. K. F. Graff, Wave Motion in Elastic Solids (Ohio State University Press, 1975), Chap. 3.
  12. J. N. Blake, B. Y. Kim, and H. J. Shaw, "Fiber-optic modal coupler using periodic microbending," Opt. Lett. 11, 177-179 (1986).
    [CrossRef] [PubMed]
  13. T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE J. Quantum Electron. 18, 1624-1633 (1982).
    [CrossRef]
  14. J. N. Blake, S. Y. Huang, B. Y. Kim, and H. J. Shaw, "Strain effects on highly elliptical core two-mode fibers," Opt. Lett. 12, 732-734 (1987).
    [CrossRef] [PubMed]
  15. D. Östling and H. E. Engan, "Narrow-band acousto-optic tunable filtering in a two-mode fiber," Opt. Lett. 20, 1247-1249 (1995).
    [CrossRef] [PubMed]
  16. S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, "Highly-efficient broadband acoustic transducer for all-fibre acousto-optic devices," Electron. Lett. 39, 1309-1310 (2003).
    [CrossRef]
  17. K. J. Lee, K. S. Hong, H. C. Park, and B. Y. Kim, "Polarization coupling in a highly birefringent photonic crystal fiber by torsional acoustic wave," Opt. Express 16, 4631-4638 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-7-4631.
    [CrossRef] [PubMed]
  18. M. Berwick, C.N. Pannell, P. St. J. Russell, and D. A. Jackson, "Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves," Electron. Lett. 27, 713-715 (1991).
    [CrossRef]
  19. S. Dey, "Torsional wave under initial stress," Pure Appl. Geophys. 94, 53-59 (1972).
    [CrossRef]
  20. S. Dey and D. Dutta, "Torsional wave propagation in an initially stressed cylinder," Proc. Indian Natl. Sci. Acad. 58, 425-429 (1992).
  21. M. M. Selim, "Torsional waves propagation in an initially stressed dissipative cylinder," Appl. Math. Sci. 1, 1419-1427 (2007).
  22. S. Y. Huang, J. N. Blake, and B. Y. Kim, "Perturbation effects on mode propagation in highly elliptical core two-mode fibers," J. Lightwave Technol. 8, 23-33 (1990).
    [CrossRef]
  23. Y. Ohtsuka, T. Ando, Y. Imai, and M. Imai, "Modal birefringence measurements of polarization-maintaining single-mode fibers without and with stretching by optical heterodyne interferometry," J. Lightwave Technol. 5, 602-607 (1987).
    [CrossRef]

2008 (1)

2007 (3)

2006 (1)

2005 (4)

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Strain effect on the tunability of cascading all-fiber acoustic-optical tunable filters," Opt. Commun. 247, 65-84 (2005).
[CrossRef]

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Tunable stopband filter by using differential strains in all-fiber acoustooptical filter," J. Lightwave Technol. 17, 609-611 (2005).

J. Zhao, X. Liu, Y. Wang, and Y. Luo, "Bending effect on fiber acousto-optic mode coupling," Appl. Opt. 44, 5101-5104 (2005).
[CrossRef] [PubMed]

H. C. Park, B. Y. Kim, and H. S. Park, "Apodization of elliptical-core two-mode fiber acousto-optic filter based on acoustic polarization control," Opt. Lett. 30, 3126-3128 (2005).
[CrossRef] [PubMed]

2003 (2)

S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, "Highly-efficient broadband acoustic transducer for all-fibre acousto-optic devices," Electron. Lett. 39, 1309-1310 (2003).
[CrossRef]

Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, "Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector," IEEE Photon Technol. Lett. 15, 718-720 (2003).
[CrossRef]

2000 (1)

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "High strain-induced wavelength tunability in tapered fibre acousto-optic filters," Electron. Lett. 36, 1187-1188 (2000).
[CrossRef]

1997 (1)

1995 (1)

1992 (1)

S. Dey and D. Dutta, "Torsional wave propagation in an initially stressed cylinder," Proc. Indian Natl. Sci. Acad. 58, 425-429 (1992).

1991 (1)

M. Berwick, C.N. Pannell, P. St. J. Russell, and D. A. Jackson, "Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves," Electron. Lett. 27, 713-715 (1991).
[CrossRef]

1990 (1)

S. Y. Huang, J. N. Blake, and B. Y. Kim, "Perturbation effects on mode propagation in highly elliptical core two-mode fibers," J. Lightwave Technol. 8, 23-33 (1990).
[CrossRef]

1987 (2)

Y. Ohtsuka, T. Ando, Y. Imai, and M. Imai, "Modal birefringence measurements of polarization-maintaining single-mode fibers without and with stretching by optical heterodyne interferometry," J. Lightwave Technol. 5, 602-607 (1987).
[CrossRef]

J. N. Blake, S. Y. Huang, B. Y. Kim, and H. J. Shaw, "Strain effects on highly elliptical core two-mode fibers," Opt. Lett. 12, 732-734 (1987).
[CrossRef] [PubMed]

1986 (1)

1982 (1)

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE J. Quantum Electron. 18, 1624-1633 (1982).
[CrossRef]

1972 (1)

S. Dey, "Torsional wave under initial stress," Pure Appl. Geophys. 94, 53-59 (1972).
[CrossRef]

Ando, T.

Y. Ohtsuka, T. Ando, Y. Imai, and M. Imai, "Modal birefringence measurements of polarization-maintaining single-mode fibers without and with stretching by optical heterodyne interferometry," J. Lightwave Technol. 5, 602-607 (1987).
[CrossRef]

Au, A. A.

Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, "Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector," IEEE Photon Technol. Lett. 15, 718-720 (2003).
[CrossRef]

Berwick, M.

M. Berwick, C.N. Pannell, P. St. J. Russell, and D. A. Jackson, "Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves," Electron. Lett. 27, 713-715 (1991).
[CrossRef]

Birks, T. A.

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "High strain-induced wavelength tunability in tapered fibre acousto-optic filters," Electron. Lett. 36, 1187-1188 (2000).
[CrossRef]

Blake, J. N.

Dey, S.

S. Dey and D. Dutta, "Torsional wave propagation in an initially stressed cylinder," Proc. Indian Natl. Sci. Acad. 58, 425-429 (1992).

S. Dey, "Torsional wave under initial stress," Pure Appl. Geophys. 94, 53-59 (1972).
[CrossRef]

Diez, A.

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "High strain-induced wavelength tunability in tapered fibre acousto-optic filters," Electron. Lett. 36, 1187-1188 (2000).
[CrossRef]

Dutta, D.

S. Dey and D. Dutta, "Torsional wave propagation in an initially stressed cylinder," Proc. Indian Natl. Sci. Acad. 58, 425-429 (1992).

Engan, H. E.

Hong, K. S.

Huang, S. Y.

S. Y. Huang, J. N. Blake, and B. Y. Kim, "Perturbation effects on mode propagation in highly elliptical core two-mode fibers," J. Lightwave Technol. 8, 23-33 (1990).
[CrossRef]

J. N. Blake, S. Y. Huang, B. Y. Kim, and H. J. Shaw, "Strain effects on highly elliptical core two-mode fibers," Opt. Lett. 12, 732-734 (1987).
[CrossRef] [PubMed]

Hwang, I. K.

S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, "Highly-efficient broadband acoustic transducer for all-fibre acousto-optic devices," Electron. Lett. 39, 1309-1310 (2003).
[CrossRef]

H. S. Kim, S. H. Yun, I. K. Hwang, and B. Y. Kim, "All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile," Opt. Lett. 22, 1476-1478 (1997).
[CrossRef]

Imai, M.

Y. Ohtsuka, T. Ando, Y. Imai, and M. Imai, "Modal birefringence measurements of polarization-maintaining single-mode fibers without and with stretching by optical heterodyne interferometry," J. Lightwave Technol. 5, 602-607 (1987).
[CrossRef]

Imai, Y.

Y. Ohtsuka, T. Ando, Y. Imai, and M. Imai, "Modal birefringence measurements of polarization-maintaining single-mode fibers without and with stretching by optical heterodyne interferometry," J. Lightwave Technol. 5, 602-607 (1987).
[CrossRef]

Itoh, K.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE J. Quantum Electron. 18, 1624-1633 (1982).
[CrossRef]

Jackson, D. A.

M. Berwick, C.N. Pannell, P. St. J. Russell, and D. A. Jackson, "Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves," Electron. Lett. 27, 713-715 (1991).
[CrossRef]

Kakarantzas, G.

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "High strain-induced wavelength tunability in tapered fibre acousto-optic filters," Electron. Lett. 36, 1187-1188 (2000).
[CrossRef]

Kim, B. Y.

K. J. Lee, K. S. Hong, H. C. Park, and B. Y. Kim, "Polarization coupling in a highly birefringent photonic crystal fiber by torsional acoustic wave," Opt. Express 16, 4631-4638 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-7-4631.
[CrossRef] [PubMed]

K. J. Lee, D. -I. Yeom, and B. Y. Kim, "Narrowband, polarization insensitive all-fiber acousto-optic tunable bandpass filter," Opt. Express 15, 2987-2992 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-2987.
[CrossRef] [PubMed]

K. J. Lee, H. C. Park, and B. Y. Kim, "Highly efficient all-fiber tunable polarization filter using torsional acoustic wave," Opt. Express 15, 12362-12367 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12362.
[CrossRef] [PubMed]

H. C. Park, B. Y. Kim, and H. S. Park, "Apodization of elliptical-core two-mode fiber acousto-optic filter based on acoustic polarization control," Opt. Lett. 30, 3126-3128 (2005).
[CrossRef] [PubMed]

H. S. Kim, S. H. Yun, I. K. Hwang, and B. Y. Kim, "All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile," Opt. Lett. 22, 1476-1478 (1997).
[CrossRef]

S. Y. Huang, J. N. Blake, and B. Y. Kim, "Perturbation effects on mode propagation in highly elliptical core two-mode fibers," J. Lightwave Technol. 8, 23-33 (1990).
[CrossRef]

J. N. Blake, S. Y. Huang, B. Y. Kim, and H. J. Shaw, "Strain effects on highly elliptical core two-mode fibers," Opt. Lett. 12, 732-734 (1987).
[CrossRef] [PubMed]

J. N. Blake, B. Y. Kim, and H. J. Shaw, "Fiber-optic modal coupler using periodic microbending," Opt. Lett. 11, 177-179 (1986).
[CrossRef] [PubMed]

Kim, H. S.

S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, "Highly-efficient broadband acoustic transducer for all-fibre acousto-optic devices," Electron. Lett. 39, 1309-1310 (2003).
[CrossRef]

H. S. Kim, S. H. Yun, I. K. Hwang, and B. Y. Kim, "All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile," Opt. Lett. 22, 1476-1478 (1997).
[CrossRef]

Kurosawa, K.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE J. Quantum Electron. 18, 1624-1633 (1982).
[CrossRef]

Lee, H. P.

Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, "Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector," IEEE Photon Technol. Lett. 15, 718-720 (2003).
[CrossRef]

Lee, K. J.

Lee, S. S.

S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, "Highly-efficient broadband acoustic transducer for all-fibre acousto-optic devices," Electron. Lett. 39, 1309-1310 (2003).
[CrossRef]

Li, H.

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Design of tunable composite spectrums using all-fiber acoustooptical filters subject to strain control," J. Lightwave Technol. 24, 1855-1864 (2006).
[CrossRef]

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Tunable stopband filter by using differential strains in all-fiber acoustooptical filter," J. Lightwave Technol. 17, 609-611 (2005).

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Strain effect on the tunability of cascading all-fiber acoustic-optical tunable filters," Opt. Commun. 247, 65-84 (2005).
[CrossRef]

Li, Q.

Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, "Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector," IEEE Photon Technol. Lett. 15, 718-720 (2003).
[CrossRef]

Lin, C.-H.

Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, "Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector," IEEE Photon Technol. Lett. 15, 718-720 (2003).
[CrossRef]

Liu, X.

Luo, Y.

Ohtsuka, Y.

Y. Ohtsuka, T. Ando, Y. Imai, and M. Imai, "Modal birefringence measurements of polarization-maintaining single-mode fibers without and with stretching by optical heterodyne interferometry," J. Lightwave Technol. 5, 602-607 (1987).
[CrossRef]

Ose, T.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE J. Quantum Electron. 18, 1624-1633 (1982).
[CrossRef]

Östling, D.

Pannell, C.N.

M. Berwick, C.N. Pannell, P. St. J. Russell, and D. A. Jackson, "Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves," Electron. Lett. 27, 713-715 (1991).
[CrossRef]

Park, H. C.

Park, H. S.

Russell, P. St. J.

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "High strain-induced wavelength tunability in tapered fibre acousto-optic filters," Electron. Lett. 36, 1187-1188 (2000).
[CrossRef]

M. Berwick, C.N. Pannell, P. St. J. Russell, and D. A. Jackson, "Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves," Electron. Lett. 27, 713-715 (1991).
[CrossRef]

Selim, M. M.

M. M. Selim, "Torsional waves propagation in an initially stressed dissipative cylinder," Appl. Math. Sci. 1, 1419-1427 (2007).

Shaw, H. J.

Soh, Y. C.

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Design of tunable composite spectrums using all-fiber acoustooptical filters subject to strain control," J. Lightwave Technol. 24, 1855-1864 (2006).
[CrossRef]

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Tunable stopband filter by using differential strains in all-fiber acoustooptical filter," J. Lightwave Technol. 17, 609-611 (2005).

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Strain effect on the tunability of cascading all-fiber acoustic-optical tunable filters," Opt. Commun. 247, 65-84 (2005).
[CrossRef]

Tomov, I. V.

Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, "Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector," IEEE Photon Technol. Lett. 15, 718-720 (2003).
[CrossRef]

Wang, Y.

Wen, C.

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Design of tunable composite spectrums using all-fiber acoustooptical filters subject to strain control," J. Lightwave Technol. 24, 1855-1864 (2006).
[CrossRef]

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Tunable stopband filter by using differential strains in all-fiber acoustooptical filter," J. Lightwave Technol. 17, 609-611 (2005).

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Strain effect on the tunability of cascading all-fiber acoustic-optical tunable filters," Opt. Commun. 247, 65-84 (2005).
[CrossRef]

Yeom, D. -I.

Yoshino, T.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE J. Quantum Electron. 18, 1624-1633 (1982).
[CrossRef]

Yun, S. H.

S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, "Highly-efficient broadband acoustic transducer for all-fibre acousto-optic devices," Electron. Lett. 39, 1309-1310 (2003).
[CrossRef]

H. S. Kim, S. H. Yun, I. K. Hwang, and B. Y. Kim, "All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile," Opt. Lett. 22, 1476-1478 (1997).
[CrossRef]

Zhang, Y.

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Design of tunable composite spectrums using all-fiber acoustooptical filters subject to strain control," J. Lightwave Technol. 24, 1855-1864 (2006).
[CrossRef]

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Tunable stopband filter by using differential strains in all-fiber acoustooptical filter," J. Lightwave Technol. 17, 609-611 (2005).

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Strain effect on the tunability of cascading all-fiber acoustic-optical tunable filters," Opt. Commun. 247, 65-84 (2005).
[CrossRef]

Zhao, J.

Appl. Math. Sci. (1)

M. M. Selim, "Torsional waves propagation in an initially stressed dissipative cylinder," Appl. Math. Sci. 1, 1419-1427 (2007).

Appl. Opt. (1)

Electron. Lett. (3)

S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, "Highly-efficient broadband acoustic transducer for all-fibre acousto-optic devices," Electron. Lett. 39, 1309-1310 (2003).
[CrossRef]

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "High strain-induced wavelength tunability in tapered fibre acousto-optic filters," Electron. Lett. 36, 1187-1188 (2000).
[CrossRef]

M. Berwick, C.N. Pannell, P. St. J. Russell, and D. A. Jackson, "Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves," Electron. Lett. 27, 713-715 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE J. Quantum Electron. 18, 1624-1633 (1982).
[CrossRef]

IEEE Photon Technol. Lett. (1)

Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, "Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector," IEEE Photon Technol. Lett. 15, 718-720 (2003).
[CrossRef]

J. Lightwave Technol. (4)

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Tunable stopband filter by using differential strains in all-fiber acoustooptical filter," J. Lightwave Technol. 17, 609-611 (2005).

S. Y. Huang, J. N. Blake, and B. Y. Kim, "Perturbation effects on mode propagation in highly elliptical core two-mode fibers," J. Lightwave Technol. 8, 23-33 (1990).
[CrossRef]

Y. Ohtsuka, T. Ando, Y. Imai, and M. Imai, "Modal birefringence measurements of polarization-maintaining single-mode fibers without and with stretching by optical heterodyne interferometry," J. Lightwave Technol. 5, 602-607 (1987).
[CrossRef]

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Design of tunable composite spectrums using all-fiber acoustooptical filters subject to strain control," J. Lightwave Technol. 24, 1855-1864 (2006).
[CrossRef]

Opt. Commun. (1)

H. Li, Y. Zhang, C. Wen, and Y. C. Soh, "Strain effect on the tunability of cascading all-fiber acoustic-optical tunable filters," Opt. Commun. 247, 65-84 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Proc. Indian Natl. Sci. Acad. (1)

S. Dey and D. Dutta, "Torsional wave propagation in an initially stressed cylinder," Proc. Indian Natl. Sci. Acad. 58, 425-429 (1992).

Pure Appl. Geophys. (1)

S. Dey, "Torsional wave under initial stress," Pure Appl. Geophys. 94, 53-59 (1972).
[CrossRef]

Other (1)

K. F. Graff, Wave Motion in Elastic Solids (Ohio State University Press, 1975), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Acoustic wavelength variation as a function of the fiber radius for the 1%-axial strain at the acoustic frequency of 2.0 MHz, 2.5 MHz, and 3.0 MHz, respectively.

Fig. 2.
Fig. 2.

(a) Variation of the acoustic wavelength and the optical beatlength as a function of the axial strain at the acoustic frequency of 1.89 MHz, and (b) the resonant wavelength shift of the AOTF using flexural acoustic wave by the strain.

Fig. 3.
Fig. 3.

Schematic for measurement of the axial strain dependence of the all-fiber AOTF using traveling flexural acoustic wave. OSA, optical spectrum analyzer.

Fig. 4.
Fig. 4.

(a) Measured transmission spectra of the all-fiber AOTF for the several applied the strain at the acoustic frequency of 1.89 MHz, and (b) the center wavelength shift of the AOTF as a function of the axial strain.

Fig. 5.
Fig. 5.

(a) Setup for measurement of the variation of the polarization beatlength by the axial strain induced in the HB fiber, (b) the typical transmission spectrum at the OSA when the strain is being applied and not, and (c) the shift of the several modulation peaks by the strain induced in the measured HB fiber (stress-induced birefringence). Each value of εm means the axial strain required to shift the original peak to m-th peak in the direction of the short wavelength region. The inset shows the cross-section view of the HB fiber with elliptical stress member used in this experiment.

Fig. 6.
Fig. 6.

(a) Variation of the acoustic wavelength and polarization beatlength as a function of the axial strain at the acoustic frequency of 1.332 MHz, and (b) the resonant wavelength shift of the AOTF using torsional acoustic wave by the strain.

Fig. 7.
Fig. 7.

Schmatic for measurement of the axial strain dependence of the all-fiber AOTF using traveling torsional acoustic wave.

Fig. 8.
Fig. 8.

(a) Measured transmission spectra of the all-fiber AOTF for the several applied the strain at the acoustic frequency of 1.332 MHz, and (b) the center wavelength shift of the AOTF as a function of the axial strain induced in the stress type HB fiber.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Λ ( ε ) = L B λ ε ,
f = 2 π Λ 2 [ ( EI ρ A ) ( 1 + Λ 2 T 4 π 2 EI ) ] 1 2 ,
I = π 4 a 4 ,
E T A δl l = T A ε ,
δ Λ Λ = [ E ρ 2 πaf { ε + ( ε 2 + 4 π 2 a 2 f 2 E ρ ) 1 2 } ] 1 2 1 ,
L B = 2 π a co ( 2 Δ ) 1 2 f ( V ) ,
δ L B = L B l δ l = ( L B a a l + L B Δ Δ l + L B f f V V l ) δ l ,
L B a a l = σ L B l ,
L B Δ Δ l = 1 2 [ p 12 σ ( p 11 + p 12 ) ] n 2 L B l ,
L B f f V V l = ( σ + [ p 12 σ ( p 11 + p 12 ) ] n 2 ) V f f V L B l ,
δ L B L B = ε ( σ + 1 2 [ p 12 σ ( p 11 + p 12 ) ] n 2 + ( σ + [ p 12 σ ( p 11 + p 12 ) ] n 2 ) λ L B L B λ ) .
G ( 2 u θ r 2 u θ r 2 + 1 r u θ r ) + ( G T 2 ) 2 u θ z 2 = ρ 2 u θ t 2 ,
ρ = ρ + δ ρ = ρ ( 1 + ε 2 ε σ ) .
v v = 1 + ε 1 ε + 2 σε .
δ Λ Λ = 1 + ε 1 + ε 2 σε 1 .
Δ β ( λ + Δ λ ) l Δβ ( λ ) l = 2 π L B 2 L B λ Δ λ l .
Δ β ( λ + Δ λ ) l + 2 = Δ β ( λ ) l .
δ ( Δ β ) l + Δ β δl = 2 π ( L B ) 2 δ L B l + 2 π L B δl = 2 .
δ L B L B = ε m m L B l .

Metrics