Abstract

Stable mode-locked operation in a simple normal-cavity-dispersion laser oscillator that consists of only Yb-doped fiber and saturable absorber is studied. The Yb-doped fiber design parameters: group velocity dispersion (GVD), nonlinearity coefficient, bandwidth (Yb-BW), length and gain are considered to be the controlling parameters of the laser cavity. The pulse characteristics such as the temporal width, spectrum and pulse energy as a function of these elements are reported here. A pulse spectrum transition from M-like to П-like and then to parabolic-like shape is observed with different values of the controlling parameters which are similar to that has been observed before in a solid-state laser. The stability limits in the domain of the Yb-BW and length are studied. The stability dependence on GVD, nonlinearity coefficient and gain of the Yb-doped fiber are elucidated. Moreover, the pulse instability dynamics beyond stability limits are found to be similar to that reported before for similariton.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators," New J. Phys. 7, 216 (2005).
    [CrossRef]
  2. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators: Theory and Comparison with Experiment," New J. Phys. 7, 217 (2005).
    [CrossRef]
  3. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-Pulse Oscillators: Theory and Experiment," Appl. Phys. B 83, 503-510 (2006).
    [CrossRef]
  4. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. E. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phy. Rev. Lett. 92, 21, 213902 (2004).
    [CrossRef]
  5. J. R. Buckley, F. O. Ilday, T. Sosnowski, and F. W. Wise, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 1888-1890 (2005).
    [CrossRef] [PubMed]
  6. A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion Femtosecons Fiber Laser," Opt. Express 14, 21, 10095-10100 (2006).
    [CrossRef] [PubMed]
  7. J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. Wise, "Stabilization of high energy femtosecond ytterbium fiber lasers by use of a frequency filter," J. Opt. Soc. Am. B 24, 1803-1806 (2007).
    [CrossRef]
  8. A. Chong, W. H. Renninger, and F. W. Wise, "Properties of Normal-Dispersion Femtosecond Fiber Lasers," J. Opt. Soc. Am B 25, 140-148 (2008).
    [CrossRef]
  9. W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative Soliton in Normal-Dispersion Fiber Lasers," Phys. Rev. A 77, 023814 (2008).
    [CrossRef]
  10. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phy. Lett. A 372, 3124-3128 (2008).
    [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed., (Academic, San Diego, Calif., 1995).
  12. N. Akhmediev and A. Ankiewicz, "Multisoliton solution of the complex Ginzburg-Landau equation," Phy. Rev. Lett. 79, 4047-4051 (1997).
    [CrossRef]
  13. Y. Logvin and H. Anis, "Similariton pulse instability in Mode-Locked Yb-doped Fiber Laser in the Vicinity of Zero Cavity Dispersion, " Opt. Express 15, 13607 - 13612 (2007).
    [CrossRef] [PubMed]

2008 (3)

A. Chong, W. H. Renninger, and F. W. Wise, "Properties of Normal-Dispersion Femtosecond Fiber Lasers," J. Opt. Soc. Am B 25, 140-148 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative Soliton in Normal-Dispersion Fiber Lasers," Phys. Rev. A 77, 023814 (2008).
[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phy. Lett. A 372, 3124-3128 (2008).
[CrossRef]

2007 (2)

2006 (2)

A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion Femtosecons Fiber Laser," Opt. Express 14, 21, 10095-10100 (2006).
[CrossRef] [PubMed]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-Pulse Oscillators: Theory and Experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

2005 (3)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators: Theory and Comparison with Experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

J. R. Buckley, F. O. Ilday, T. Sosnowski, and F. W. Wise, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 1888-1890 (2005).
[CrossRef] [PubMed]

2004 (1)

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. E. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phy. Rev. Lett. 92, 21, 213902 (2004).
[CrossRef]

1997 (1)

N. Akhmediev and A. Ankiewicz, "Multisoliton solution of the complex Ginzburg-Landau equation," Phy. Rev. Lett. 79, 4047-4051 (1997).
[CrossRef]

Akhmediev, N.

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phy. Lett. A 372, 3124-3128 (2008).
[CrossRef]

N. Akhmediev and A. Ankiewicz, "Multisoliton solution of the complex Ginzburg-Landau equation," Phy. Rev. Lett. 79, 4047-4051 (1997).
[CrossRef]

Anis, H.

Ankiewicz, A.

N. Akhmediev and A. Ankiewicz, "Multisoliton solution of the complex Ginzburg-Landau equation," Phy. Rev. Lett. 79, 4047-4051 (1997).
[CrossRef]

Apolonski, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-Pulse Oscillators: Theory and Experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators: Theory and Comparison with Experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Buckley, J.

Buckley, J. R.

J. R. Buckley, F. O. Ilday, T. Sosnowski, and F. W. Wise, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 1888-1890 (2005).
[CrossRef] [PubMed]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. E. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phy. Rev. Lett. 92, 21, 213902 (2004).
[CrossRef]

Chernykh, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-Pulse Oscillators: Theory and Experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators: Theory and Comparison with Experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Chong, A.

A. Chong, W. H. Renninger, and F. W. Wise, "Properties of Normal-Dispersion Femtosecond Fiber Lasers," J. Opt. Soc. Am B 25, 140-148 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative Soliton in Normal-Dispersion Fiber Lasers," Phys. Rev. A 77, 023814 (2008).
[CrossRef]

J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. Wise, "Stabilization of high energy femtosecond ytterbium fiber lasers by use of a frequency filter," J. Opt. Soc. Am. B 24, 1803-1806 (2007).
[CrossRef]

A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion Femtosecons Fiber Laser," Opt. Express 14, 21, 10095-10100 (2006).
[CrossRef] [PubMed]

Clark, W. G.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. E. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phy. Rev. Lett. 92, 21, 213902 (2004).
[CrossRef]

Dombi, P.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Fernandez, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators: Theory and Comparison with Experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Graf, R.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators: Theory and Comparison with Experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Grelu, Ph.

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phy. Lett. A 372, 3124-3128 (2008).
[CrossRef]

Ilday, F. O.

J. R. Buckley, F. O. Ilday, T. Sosnowski, and F. W. Wise, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 1888-1890 (2005).
[CrossRef] [PubMed]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. E. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phy. Rev. Lett. 92, 21, 213902 (2004).
[CrossRef]

Kalashnikov, V. L.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-Pulse Oscillators: Theory and Experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators: Theory and Comparison with Experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Krausz, F.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Logvin, Y.

Naumov, S.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators: Theory and Comparison with Experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-Pulse Oscillators: Theory and Experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators: Theory and Comparison with Experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Renninger, W.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative Soliton in Normal-Dispersion Fiber Lasers," Phys. Rev. A 77, 023814 (2008).
[CrossRef]

A. Chong, W. H. Renninger, and F. W. Wise, "Properties of Normal-Dispersion Femtosecond Fiber Lasers," J. Opt. Soc. Am B 25, 140-148 (2008).
[CrossRef]

Sosnowski, T.

Soto-Crespo, J. M.

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phy. Lett. A 372, 3124-3128 (2008).
[CrossRef]

Wise, F.

Wise, F. E.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. E. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phy. Rev. Lett. 92, 21, 213902 (2004).
[CrossRef]

Wise, F. W.

A. Chong, W. H. Renninger, and F. W. Wise, "Properties of Normal-Dispersion Femtosecond Fiber Lasers," J. Opt. Soc. Am B 25, 140-148 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative Soliton in Normal-Dispersion Fiber Lasers," Phys. Rev. A 77, 023814 (2008).
[CrossRef]

J. R. Buckley, F. O. Ilday, T. Sosnowski, and F. W. Wise, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 1888-1890 (2005).
[CrossRef] [PubMed]

Zhou, S.

Appl. Phys. B (1)

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-Pulse Oscillators: Theory and Experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

J. Opt. Soc. Am B (1)

A. Chong, W. H. Renninger, and F. W. Wise, "Properties of Normal-Dispersion Femtosecond Fiber Lasers," J. Opt. Soc. Am B 25, 140-148 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

New J. Phys. (2)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the Microjoule Frontier with Femtosecond Laser Oscillators: Theory and Comparison with Experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phy. Lett. A (1)

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phy. Lett. A 372, 3124-3128 (2008).
[CrossRef]

Phy. Rev. Lett. (2)

N. Akhmediev and A. Ankiewicz, "Multisoliton solution of the complex Ginzburg-Landau equation," Phy. Rev. Lett. 79, 4047-4051 (1997).
[CrossRef]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. E. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phy. Rev. Lett. 92, 21, 213902 (2004).
[CrossRef]

Phys. Rev. A (1)

W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative Soliton in Normal-Dispersion Fiber Lasers," Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed., (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic view of the laser cavity: WDM - wavelength division multiplexer coupler, PBS - polarization beam splitter, WP - wave plate, SMF - single mode fiber.

Fig. 2.
Fig. 2.

The stable dissipative soliton at g0 = 65 dB/m, Yb-BW = 40 nm, and Yb-length = 0.6 m Temporal intensity profile fitted with sech-function (dotted ), (b) Output power spectrum and (c) Pulse chirp.

Fig. 3.
Fig. 3.

The variation of the pulse characteristics: (a) the temporal pulse intensity, (b) the spectrum pulse intensity (c) Pulse width, (d) spectrum width, (e) pulse chirp, (f) pulse energy, with the Yb-GVD at γ = 0.005 W-1 m-1, Yb-BW = 50 nm, g0 = 65 dB / m and Yb-length = 0.6 m

Fig. 4.
Fig. 4.

The variation of the pulse characteristics: (a) the temporal pulse intensity, (b) the spectrum pulse intensity (c) Pulse width, (d) spectrum width, (e) pulse chirp, (f) pulse energy, with γ at Yb-GVD = 24000 fs2 /m, Yb-BW = 50 nm, g0 = 65 dB / m and Yb-length = 0.6 m

Fig. 5.
Fig. 5.

The variation of the pulse characteristics: (a) the temporal pulse intensity, (b) the spectrum pulse intensity (c) Pulse width, (d) spectrum width, (e) pulse chirp, (f) pulse energy, with the Yb fiber bandwidth at Yb-GVD = 24000 fs2 /m, γ = 0.005 W-1 m-1, g0 = 65 dB/ m and Yb-length = 0.6 m

Fig. 6.
Fig. 6.

The variation of the pulse characteristics: (a) the temporal pulse intensity, (b) the spectrum pulse intensity (c) Pulse width, (d) spectrum width, (e) pulse chirp, (f) pulse energy, with the Yb fiber length at Yb-GVD = 24000 fs2 /m, γ = 0.005 W-1 m-1 Yb-BW = 40 nm and g0 = 65 dB/m.

Fig. 7.
Fig. 7.

The variation of the pulse characteristics: (a) the temporal pulse intensity, (b) the spectrum pulse intensity, (c) Pulse width, (d) spectrum width, (e) pulse chirp, (f) pulse energy, with the Yb fiber gain (go) at Yb-GVD = 24000 fs2 /m, γ = 0.005 W-1 m-1 Yb-BW = 40 nm and Yb-length = 0.6 m.

Fig. 8.
Fig. 8.

Yb-fiber BW and length domain division according to the generated pulse state at g0 = 65 dB/m

Fig. 9.
Fig. 9.

Pulse characteristics on the edge of the stability region: (a) the temporal pulse intensity, (b) the spectrum (c) pulse width, (d) spectrum width, (e) pulse chirp, (f) pulse energy.

Fig. 10.
Fig. 10.

The edges of the stability area with different values of the Yb-doped fiber small signal gain (g0)

Fig.11.
Fig.11.

The edges of the stability area with different values of the Yb-doped fiber group velocity dispersion (GVD)

Fig.12.
Fig.12.

The edges of the stability area with different values of the Yb-doped fiber nonlinearity (γ)

Fig. 13.
Fig. 13.

The instability dynamics of the initially formed dissipative soliton after (a) 50 round trips and (b) 70 round trips of the pulse around the laser cavity

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z = α 2 A j β 2 2 2 A t 2 + j γ A 2 A + ( g 0 1 + E pulse E sat . ) ( 1 + 1 Ω g 2 2 t 2 ) A ,

Metrics