Abstract

We design and fabricate a compact third-order coupled-resonator filter on the silicon-on-insulator platform with focused application for on-chip optical interconnects. The filter shows a large flat bandwidth (3dB 3.3nm), large FSR (~18nm), more than 18dB out-of-band rejection at the drop port and more than 12 dB extinction at the through port, as well as a negligible drop loss (<0.5dB) within a footprint of 0.0004 mm2.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shacham, K. Bergman, and L. P. Carloni, "Photonic Networks-on-Chip for Future Generations of Chip Multi-Processors," IEEE Trans. Comput. 57, 1246-1260 (2008).
    [CrossRef]
  2. Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks," Nature Photon. 2, 242 - 246 (2008).
    [CrossRef]
  3. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects," Opt. Express 15, 11934-11941 (2007).
    [CrossRef] [PubMed]
  4. D. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delage, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, "High bandwidth SOI photonic wire ring resonators using MMI couplers," Opt. Express 15, 3149-3155 (2007).
    [CrossRef] [PubMed]
  5. M. A. Popovic, C. Manolatou, and M. R. Watts, "Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters," Opt. Express 14, 1208-1222 (2006).
    [CrossRef] [PubMed]
  6. Q. Li, S. Yegnanarayanan, A. Atabaki, and A. Adibi, "Calculation and Correction of Coupling-Induced Resonance Frequency Shifts in Traveling-Wave Dielectric Resonators," in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper IWH3, http://www.opticsinfobase.org/abstract.cfm?URI=IPNRA-2008-IWH3.
  7. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides," Opt. Express 12, 90-103 (2004).
    [CrossRef] [PubMed]
  8. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
    [CrossRef]
  9. S. Xiao, M. H. Khan, H. Shen, and M. Qi, "A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion," Opt. Express 15, 14765-14771 (2007).
    [CrossRef] [PubMed]
  10. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
  11. P. Meystre and M. SargentIII, Elements of quantum optics, second edition (Springer-Verlag, Berlin, 1991) Chap.6.
  12. B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, "All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks," IEEE Photon. Technol. Lett. 20, 767-769 (2008).
    [CrossRef]
  13. B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
    [CrossRef]
  14. D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active free carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 1-3(2005).
    [CrossRef]
  15. F. Xia, L. Sekaric, and Y. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators," Opt. Express 14, 3872-3886 (2006).
    [CrossRef] [PubMed]

2008 (4)

A. Shacham, K. Bergman, and L. P. Carloni, "Photonic Networks-on-Chip for Future Generations of Chip Multi-Processors," IEEE Trans. Comput. 57, 1246-1260 (2008).
[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks," Nature Photon. 2, 242 - 246 (2008).
[CrossRef]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, "All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks," IEEE Photon. Technol. Lett. 20, 767-769 (2008).
[CrossRef]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

2007 (3)

2006 (2)

2004 (1)

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Bergman, K.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, "All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks," IEEE Photon. Technol. Lett. 20, 767-769 (2008).
[CrossRef]

A. Shacham, K. Bergman, and L. P. Carloni, "Photonic Networks-on-Chip for Future Generations of Chip Multi-Processors," IEEE Trans. Comput. 57, 1246-1260 (2008).
[CrossRef]

Biberman, A.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, "All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks," IEEE Photon. Technol. Lett. 20, 767-769 (2008).
[CrossRef]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, "Photonic Networks-on-Chip for Future Generations of Chip Multi-Processors," IEEE Trans. Comput. 57, 1246-1260 (2008).
[CrossRef]

Cheben, P.

Chen, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

Chou, C.-Y.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Dadap, J. I.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

Delage, A.

Densmore, A.

Dong, P.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, "All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks," IEEE Photon. Technol. Lett. 20, 767-769 (2008).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks," Nature Photon. 2, 242 - 246 (2008).
[CrossRef]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Hsieh, I-W.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

Huang, Y.

Janz, S.

Khan, M. H.

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Lamontagne, B.

Lapointe, J.

Lee, B. G.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, "All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks," IEEE Photon. Technol. Lett. 20, 767-769 (2008).
[CrossRef]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

Lipson, M.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, "All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks," IEEE Photon. Technol. Lett. 20, 767-769 (2008).
[CrossRef]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Liu, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

Manolatou, C.

Mookherjea, S.

Osgood, R. M.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

Paloczi, G. T.

Poon, J. K. S.

Popovic, M. A.

Post, E.

Qi, M.

Rooks, M.

Scheuer, J.

Schmid, J. H.

Sekaric, L.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects," Opt. Express 15, 11934-11941 (2007).
[CrossRef] [PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators," Opt. Express 14, 3872-3886 (2006).
[CrossRef] [PubMed]

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, "Photonic Networks-on-Chip for Future Generations of Chip Multi-Processors," IEEE Trans. Comput. 57, 1246-1260 (2008).
[CrossRef]

Shen, H.

Vlasov, Y.

Vlasov, Y. A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

Waldron, P.

Watts, M. R.

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks," Nature Photon. 2, 242 - 246 (2008).
[CrossRef]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects," Opt. Express 15, 11934-11941 (2007).
[CrossRef] [PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators," Opt. Express 14, 3872-3886 (2006).
[CrossRef] [PubMed]

Xiao, S.

Xu, D.

Yariv, A.

IEEE Photon. Technol. Lett. (2)

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, "All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks," IEEE Photon. Technol. Lett. 20, 767-769 (2008).
[CrossRef]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, Jr., and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks," IEEE Photon. Technol. Lett. 20, 398-400 (2008).
[CrossRef]

IEEE Trans. Comput. (1)

A. Shacham, K. Bergman, and L. P. Carloni, "Photonic Networks-on-Chip for Future Generations of Chip Multi-Processors," IEEE Trans. Comput. 57, 1246-1260 (2008).
[CrossRef]

J. Lightwave Technol. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Nature Photon. (1)

Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks," Nature Photon. 2, 242 - 246 (2008).
[CrossRef]

Opt. Express (6)

Other (4)

Q. Li, S. Yegnanarayanan, A. Atabaki, and A. Adibi, "Calculation and Correction of Coupling-Induced Resonance Frequency Shifts in Traveling-Wave Dielectric Resonators," in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper IWH3, http://www.opticsinfobase.org/abstract.cfm?URI=IPNRA-2008-IWH3.

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).

P. Meystre and M. SargentIII, Elements of quantum optics, second edition (Springer-Verlag, Berlin, 1991) Chap.6.

D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active free carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 1-3(2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of a 3rd-order filter made of three racetrack resonators; the length of the center resonator is adjustable, as shown by the length parameter D, to compensate the CIFS effect; the two vertical dash lines are the symmetry axis of the waveguide-resonator coupling structure, as proposed in the symmetric-coupling scheme [6] (b) drop port transmission response of the 3rd-order filter given by transfer matrix analysis and the modified CMT, respectively.

Fig. 2.
Fig. 2.

Scanning-electron micrographs of the fabricated 3rd-order filter made of three coupled racetrack resonators. Each individual resonator is made of a waveguide with a 500 nm width and a 215 nm height and an outer bending radius of 3μm. The figures at the right show a portion of the coupling regions with the gaps as specified.

Fig. 3.
Fig. 3.

(a) Experimental responses of the drop and through ports of the 3rd-order filter shown in Fig. 2(a); (b) Experimental (solid) and simulated (dashed) responses of the filter around 1550nm showing one FSR.

Fig. 4.
Fig. 4.

(a) Schematic of a resonator coupled to a waveguide; (b) power distribution inside the resonator with a strong coupling to the bus waveguide, where a source is implemented. The simulation details are provided in the right box: the waveguide (WG) width is 400nm; the refractive indices of the waveguide and cladding are 2.83 and 1, respectively. The bending radius of the resonator is 3 μm; the straight coupling length is 5 μm and the gap between the resonator and waveguide is 100nm. In this simulation the polarization is TE (magnetic field is normal to the plane of the paper) and the racetrack resonance wavelength is 1572nm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

[ s 2 s t ] = [ 1 κ 2 i κ i κ 1 κ 2 ] [ s 1 s i ]
s 1 = s 2 exp ( iβL )
s 1 = exp ( iβL ) 1 κ 2 s i
s 1 ( 1 1 κ 2 ) i L v g Δ ω s i
da dt = ( i ω 0 + 1 τ ) a + i μ s i
a = 1 τ i Δ ω s i
Power = Energy T = a 2 v g L
a 2 = Power L v g = s 1 2 L v g ( L > L )
L = 2 1 + 1 κ 2 L
μ 2 = 2 v g L ( 1 1 κ 2 )
Q = π n g L λ ( 1 1 κ 2 )
κ p 2 = sin 2 ( Δ β 1 z )

Metrics