Abstract

Dual-band left-handed transmissions in the near infrared frequencies through the metal-dielectric-metal metamaterial perforated with an array of asymmetric cross holes are demonstrated. It is shown that the left-handed bands originate from the SPP-associated magnetic response excited by different polarized light and their frequencies can be tuned by the arm’s length or width of the cross-gaps. The structures are further optimized at 1.064 μm laser light excitation for elucidating the mechanism and possible application in surface enhanced Raman spectroscopy in sandwiched architectures. This study provides valuable information for the design of compact optical devices with dual left-handed bands in a single structure and may also pave the way toward stable and reproducible substrate design for surface enhanced Raman spectroscopy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  2. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
    [CrossRef]
  3. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  4. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
    [CrossRef] [PubMed]
  5. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2006)
    [CrossRef]
  6. C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E.N. Economou, "The science of negative index materials," J. Phys.: Condens. Matter 20, 304217/1-7 (2008).
    [CrossRef]
  7. A. Mary, S. G.  Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, "Theory of negative-refractive-index response of double-fishnet structures," Phys. Rev. Lett. 101, 103902/1-4 (2008).
    [CrossRef] [PubMed]
  8. T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, "Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial," Phys. Rev.  E 76, 016606/1-5 (2007).
  9. U. K. Chettiar, A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, "Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm," Opt. Lett. 32, 1671-1673 (2007).
    [CrossRef] [PubMed]
  10. D. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, "Near-infrared metamaterials with dual-band negative-index characteristics," Opt. Express 15, 1647-1652 (2007).
    [CrossRef] [PubMed]
  11. Y. Wang, H. Chen, S. Dong, and E. Wang, "Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass," J. Chem. Phys. 124, 074709/1-8 (2006).
    [PubMed]
  12. X. Hu, T. Wang, L. Wang, and S. Dong, "Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition," J. Phys. Chem. C 111, 6962-6969 (2007).
  13. C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2005).
    [CrossRef] [PubMed]
  14. M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M.S. Ayza, "Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays," IEEE Trans. Antennas Propag. 55, 1514-1521(2007).
    [CrossRef]
  15. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006).
    [CrossRef] [PubMed]
  16. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617/1-11 (2005).
  17. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104/1-5 (2002).
  18. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006).
    [CrossRef] [PubMed]
  19. P. Ding, E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, " Numerical simulations of terahertz double negative metamaterial with isotropic-like fishnet structure, " Photonics Nanostruct. Fundam. Appl. doi:10.1016/j.photonics.2008.12.005.
  20. M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fishnet structure and its variations," Phys. Rev. B 75, 235114/1-9 (2007).
  21. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, "Unifying approach to left-handed material design," Opt. Lett. 31, 3620-3622 (2006).
    [CrossRef] [PubMed]
  22. E. J. Liang, C. Engert, and W. Kiefer, "Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region," J. Raman Spectrosc. 24, 775-779 (1993).
    [CrossRef]
  23. R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, Jr., "Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures," Opt. Lett. 32, 3414-3416 (2007).
    [CrossRef] [PubMed]
  24. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
    [CrossRef] [PubMed]
  25. N. Liu, H.g Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater. 19, 3628-3632 (2007).
    [CrossRef]
  26. F. J. Garcia-Vidal and J. B. Pendry, "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77, 1163-1166 (1996).
    [CrossRef] [PubMed]
  27. S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, "Tailoring plasmonic substrates for surface enhanced spectroscopies," Chem. Soc. Rev. 37, 898-911(2008).
    [CrossRef] [PubMed]

2008

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, "Tailoring plasmonic substrates for surface enhanced spectroscopies," Chem. Soc. Rev. 37, 898-911(2008).
[CrossRef] [PubMed]

2007

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

U. K. Chettiar, A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, "Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm," Opt. Lett. 32, 1671-1673 (2007).
[CrossRef] [PubMed]

D. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, "Near-infrared metamaterials with dual-band negative-index characteristics," Opt. Express 15, 1647-1652 (2007).
[CrossRef] [PubMed]

X. Hu, T. Wang, L. Wang, and S. Dong, "Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition," J. Phys. Chem. C 111, 6962-6969 (2007).

M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M.S. Ayza, "Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays," IEEE Trans. Antennas Propag. 55, 1514-1521(2007).
[CrossRef]

R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, Jr., "Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures," Opt. Lett. 32, 3414-3416 (2007).
[CrossRef] [PubMed]

N. Liu, H.g Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater. 19, 3628-3632 (2007).
[CrossRef]

2006

2005

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2005).
[CrossRef] [PubMed]

2004

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
[CrossRef]

2003

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

2002

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

1998

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

1996

F. J. Garcia-Vidal and J. B. Pendry, "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77, 1163-1166 (1996).
[CrossRef] [PubMed]

1993

E. J. Liang, C. Engert, and W. Kiefer, "Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region," J. Raman Spectrosc. 24, 775-779 (1993).
[CrossRef]

Adams, M. M.

Arctander, E.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
[CrossRef]

Ayza, M.S.

M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M.S. Ayza, "Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays," IEEE Trans. Antennas Propag. 55, 1514-1521(2007).
[CrossRef]

Beruete, M.

M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M.S. Ayza, "Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays," IEEE Trans. Antennas Propag. 55, 1514-1521(2007).
[CrossRef]

Brolo, A. G.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
[CrossRef]

Cai, W.

Campillo, I.

M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M.S. Ayza, "Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays," IEEE Trans. Antennas Propag. 55, 1514-1521(2007).
[CrossRef]

Chettiar, U. K.

Dadap, J. I.

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Dolling, G.

Dong, S.

X. Hu, T. Wang, L. Wang, and S. Dong, "Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition," J. Phys. Chem. C 111, 6962-6969 (2007).

Dong, Z. G.

Drachev, V. P.

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Economon, E. N.

Engert, C.

E. J. Liang, C. Engert, and W. Kiefer, "Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region," J. Raman Spectrosc. 24, 775-779 (1993).
[CrossRef]

Enkrich, C.

Falcone, F.

M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M.S. Ayza, "Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays," IEEE Trans. Antennas Propag. 55, 1514-1521(2007).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

F. J. Garcia-Vidal and J. B. Pendry, "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77, 1163-1166 (1996).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

Ghaemi, H.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Gole, A.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2005).
[CrossRef] [PubMed]

Gordon, R.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
[CrossRef]

Grady, N.K

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, "Tailoring plasmonic substrates for surface enhanced spectroscopies," Chem. Soc. Rev. 37, 898-911(2008).
[CrossRef] [PubMed]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Hu, X.

X. Hu, T. Wang, L. Wang, and S. Dong, "Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition," J. Phys. Chem. C 111, 6962-6969 (2007).

Kavanagh, K. L.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
[CrossRef]

Kiefer, W.

E. J. Liang, C. Engert, and W. Kiefer, "Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region," J. Raman Spectrosc. 24, 775-779 (1993).
[CrossRef]

Kildishev, A. V.

Koschny, T.

Kundu, J.

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, "Tailoring plasmonic substrates for surface enhanced spectroscopies," Chem. Soc. Rev. 37, 898-911(2008).
[CrossRef] [PubMed]

Kwon, D.

Lal, S.

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, "Tailoring plasmonic substrates for surface enhanced spectroscopies," Chem. Soc. Rev. 37, 898-911(2008).
[CrossRef] [PubMed]

Lassiter, J. B.

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, "Tailoring plasmonic substrates for surface enhanced spectroscopies," Chem. Soc. Rev. 37, 898-911(2008).
[CrossRef] [PubMed]

Leathem, B.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
[CrossRef]

Levin, C. S.

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, "Tailoring plasmonic substrates for surface enhanced spectroscopies," Chem. Soc. Rev. 37, 898-911(2008).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Li, T.

Liang, E. J.

E. J. Liang, C. Engert, and W. Kiefer, "Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region," J. Raman Spectrosc. 24, 775-779 (1993).
[CrossRef]

Linden, S.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Liu, H.

Liu, N.

N. Liu, H.g Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater. 19, 3628-3632 (2007).
[CrossRef]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Murphy, C. J.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2005).
[CrossRef] [PubMed]

Naomi, J. B.

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, "Tailoring plasmonic substrates for surface enhanced spectroscopies," Chem. Soc. Rev. 37, 898-911(2008).
[CrossRef] [PubMed]

Navarro-Cia, M.

M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M.S. Ayza, "Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays," IEEE Trans. Antennas Propag. 55, 1514-1521(2007).
[CrossRef]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Orendorff, C. J.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2005).
[CrossRef] [PubMed]

Osgood, R. M.

Panoiu, N. C.

Pendry, J. B.

F. J. Garcia-Vidal and J. B. Pendry, "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77, 1163-1166 (1996).
[CrossRef] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Roth, R. M.

Sau, T. K.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2005).
[CrossRef] [PubMed]

Shalaev, V. M.

Soukoulis, C. M.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Wang, F. M.

Wang, L.

X. Hu, T. Wang, L. Wang, and S. Dong, "Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition," J. Phys. Chem. C 111, 6962-6969 (2007).

Wang, T.

X. Hu, T. Wang, L. Wang, and S. Dong, "Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition," J. Phys. Chem. C 111, 6962-6969 (2007).

Wegener, M.

Werner, D. H.

Wolf, P. A.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Xiao, S.

Yuan, H.

Zhang, X.

Zhou, J.

Zhu, S. N.

Adv. Mater.

N. Liu, H.g Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater. 19, 3628-3632 (2007).
[CrossRef]

Anal. Chem.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2005).
[CrossRef] [PubMed]

Chem. Soc. Rev.

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, "Tailoring plasmonic substrates for surface enhanced spectroscopies," Chem. Soc. Rev. 37, 898-911(2008).
[CrossRef] [PubMed]

IEEE Trans. Antennas Propag.

M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M.S. Ayza, "Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays," IEEE Trans. Antennas Propag. 55, 1514-1521(2007).
[CrossRef]

J. Phys. Chem. C

X. Hu, T. Wang, L. Wang, and S. Dong, "Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition," J. Phys. Chem. C 111, 6962-6969 (2007).

J. Raman Spectrosc.

E. J. Liang, C. Engert, and W. Kiefer, "Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region," J. Raman Spectrosc. 24, 775-779 (1993).
[CrossRef]

Nano Lett.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004).
[CrossRef]

Nat. Photonics

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2006)
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

F. J. Garcia-Vidal and J. B. Pendry, "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77, 1163-1166 (1996).
[CrossRef] [PubMed]

Science

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Other

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E.N. Economou, "The science of negative index materials," J. Phys.: Condens. Matter 20, 304217/1-7 (2008).
[CrossRef]

A. Mary, S. G.  Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, "Theory of negative-refractive-index response of double-fishnet structures," Phys. Rev. Lett. 101, 103902/1-4 (2008).
[CrossRef] [PubMed]

T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, "Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial," Phys. Rev.  E 76, 016606/1-5 (2007).

Y. Wang, H. Chen, S. Dong, and E. Wang, "Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass," J. Chem. Phys. 124, 074709/1-8 (2006).
[PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617/1-11 (2005).

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104/1-5 (2002).

P. Ding, E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, " Numerical simulations of terahertz double negative metamaterial with isotropic-like fishnet structure, " Photonics Nanostruct. Fundam. Appl. doi:10.1016/j.photonics.2008.12.005.

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fishnet structure and its variations," Phys. Rev. B 75, 235114/1-9 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Scheme of symmetric cross hole arrays with two unit cells denoted; (b) Top view and (c) side view of the unit cell of type-I.

Fig. 2.
Fig. 2.

FOM and index versus incident wavelength for the symmetric cross hole arrays (L 1=L 2=480 nm and W 1=W 2=100 nm). The double-negative (or left-handed) passband is highlighted by yellow shadow with the maximum FOM marked out by vertical dashed line.

Fig. 3.
Fig. 3.

(a) Left-handed passband as a function of the geometry parameter L 2 for configuration A (W 1=W 2=100 nm, L 1=480 nm and L 2< L 1); (b) Left-handed passband as a function of W 2 for configuration B (L 1=L 2=480 nm, W 1=100 nm and W 2>W 1). Here, black and red spots correspond to the wavelength at which maximum FOM obtained with respect to various L 2 or W 2 for both polarizations, and the error bars are used to show the wavelength range of left-handed band. The insets display the value of maximum FOM versus the geometry parameter L 2 and W 2.

Fig. 4.
Fig. 4.

(a)-(b) Magnitude distributions of the electric fields for configuration A (L 2=400 nm) on the middle plane between two electrically conducting plates for both polarizations; (c) Comparison of the effective refractive indexes obtained from the retrieval procedures with increasing number of stacked layers along the propagation direction (lines) with those obtained from the wedge-shaped model (scatters) for configuration A at X-polarized light incidence. The normalized scale bar is the same for both field maps.

Fig. 5.
Fig. 5.

Surface currents distributions for configuration A (L 2=400 nm) at the frequency just above the magnetic resonance. Here, 1st and 2nd are the top and bottom metal-layer surfaces adjacent the MgF2 spacer. The incident light is Y-polarized.

Fig. 6.
Fig. 6.

Calculated transmission spectra of the Ag/MgF2/Ag sandwich structure with an array of asymmetric cross aperture for both polarizations (the black or red line with solid scatters), in which the fundamental modes M1 and E1 are marked. The geometrical parameters defined here are: P=440 nm, t=30 nm, s=40 nm, W 1=W 2=90 nm, L 1=360 nm and L 2=220 nm. The transmission spectra of a single sliver layer (the thickness of 60 nm) with the identical asymmetric cross apertures are also provided for comparisons (gray scatters).

Fig. 7.
Fig. 7.

Both the calculated E-field distribution map in x-y plane (z=0) and the corresponding E-field enhancement of the asymmetric cross hole arrays for E1 and M1 modes (indicated in Fig. 6). (a)-(c) X-polarization; (d)-(f)Y-polarization. In (b)-(c) and (e)-(f), E is the actual polarization dependent local electric field and E 0 is the incident field. The first scale bar is given for (a) and (d), and the second scale bar is for (b)-(c) and (e)-(f).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ω m 2 = 1 LC = 1 C ( 1 L s + 1 L n ) ,
C ~ ( P W 1 ) ( P W 2 ) t ,
L s ~ ( P W 1 ( 2 ) ) t P W 2 ( 1 ) ,
L n ~ W 1 ( 2 ) t P L 1 ( 2 )

Metrics