Abstract

Dual-band left-handed transmissions in the near infrared frequencies through the metal-dielectric-metal metamaterial perforated with an array of asymmetric cross holes are demonstrated. It is shown that the left-handed bands originate from the SPP-associated magnetic response excited by different polarized light and their frequencies can be tuned by the arm’s length or width of the cross-gaps. The structures are further optimized at 1.064 μm laser light excitation for elucidating the mechanism and possible application in surface enhanced Raman spectroscopy in sandwiched architectures. This study provides valuable information for the design of compact optical devices with dual left-handed bands in a single structure and may also pave the way toward stable and reproducible substrate design for surface enhanced Raman spectroscopy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  2. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett.  4, 2015–2018 (2004).
    [Crossref]
  3. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [Crossref] [PubMed]
  4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [Crossref] [PubMed]
  5. V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photonics 1, 41–48 (2006)
    [Crossref]
  6. C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys.: Condens. Matter 20, 304217/1-7 (2008).
    [Crossref]
  7. A. Mary, Sergio G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.  101, 103902/1-4 (2008).
    [Crossref] [PubMed]
  8. T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, “Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial,” Phys. Rev. E  76, 016606/1-5 (2007).
  9. U. K. Chettiar, A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett.  32, 1671–1673 (2007).
    [Crossref] [PubMed]
  10. D. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15, 1647–1652 (2007).
    [Crossref] [PubMed]
  11. Y. Wang, H. Chen, S. Dong, and E. Wang, “Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass,” J. Chem. Phys.  124, 074709/1-8 (2006).
    [PubMed]
  12. X. Hu, T. Wang, L. Wang, and S. Dong, “Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition,” J. Phys. Chem. C  111, 6962–6969 (2007).
  13. C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence,” Anal. Chem.  77, 3261–3266 (2005).
    [Crossref] [PubMed]
  14. M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M. S. Ayza, “Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays,” IEEE Trans. Antennas Propag.  55, 1514–1521(2007).
    [Crossref]
  15. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
    [Crossref] [PubMed]
  16. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E  71, 036617/1-11 (2005).
  17. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B  65, 195104/1-5 (2002).
  18. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett.  31, 1800–1802 (2006).
    [Crossref] [PubMed]
  19. P. Ding, E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, –Numerical simulations of terahertz double negative metamaterial with isotropic-like fishnet structure,” Photonics Nanostruct.: Fundam. Appl., doi:10.1016/j.photonics. 2008.12.005.
  20. M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B  75, 235114/1-9 (2007).
  21. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett.  31, 3620–3622 (2006).
    [Crossref] [PubMed]
  22. E. J. Liang, C. Engert, and W. Kiefer, “Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region,” J. Raman Spectrosc.  24, 775–779 (1993).
    [Crossref]
  23. R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, “Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures,” Opt. Lett.  32, 3414–3416 (2007).
    [Crossref] [PubMed]
  24. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [Crossref] [PubMed]
  25. N. Liu, H.g Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.  19, 3628–3632 (2007).
    [Crossref]
  26. F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett.  77, 1163–1166 (1996).
    [Crossref] [PubMed]
  27. S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and Naomi J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.  37, 898–911(2008).
    [Crossref] [PubMed]

2008 (3)

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys.: Condens. Matter 20, 304217/1-7 (2008).
[Crossref]

A. Mary, Sergio G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.  101, 103902/1-4 (2008).
[Crossref] [PubMed]

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and Naomi J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.  37, 898–911(2008).
[Crossref] [PubMed]

2007 (9)

N. Liu, H.g Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.  19, 3628–3632 (2007).
[Crossref]

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B  75, 235114/1-9 (2007).

R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, “Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures,” Opt. Lett.  32, 3414–3416 (2007).
[Crossref] [PubMed]

T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, “Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial,” Phys. Rev. E  76, 016606/1-5 (2007).

U. K. Chettiar, A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett.  32, 1671–1673 (2007).
[Crossref] [PubMed]

D. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15, 1647–1652 (2007).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M. S. Ayza, “Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays,” IEEE Trans. Antennas Propag.  55, 1514–1521(2007).
[Crossref]

X. Hu, T. Wang, L. Wang, and S. Dong, “Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition,” J. Phys. Chem. C  111, 6962–6969 (2007).

2006 (5)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett.  31, 1800–1802 (2006).
[Crossref] [PubMed]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[Crossref] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photonics 1, 41–48 (2006)
[Crossref]

Y. Wang, H. Chen, S. Dong, and E. Wang, “Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass,” J. Chem. Phys.  124, 074709/1-8 (2006).
[PubMed]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett.  31, 3620–3622 (2006).
[Crossref] [PubMed]

2005 (2)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E  71, 036617/1-11 (2005).

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence,” Anal. Chem.  77, 3261–3266 (2005).
[Crossref] [PubMed]

2004 (1)

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett.  4, 2015–2018 (2004).
[Crossref]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

2002 (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B  65, 195104/1-5 (2002).

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

1996 (1)

F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett.  77, 1163–1166 (1996).
[Crossref] [PubMed]

1993 (1)

E. J. Liang, C. Engert, and W. Kiefer, “Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region,” J. Raman Spectrosc.  24, 775–779 (1993).
[Crossref]

Adams, M. M.

R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, “Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures,” Opt. Lett.  32, 3414–3416 (2007).
[Crossref] [PubMed]

Arctander, E.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett.  4, 2015–2018 (2004).
[Crossref]

Ayza, M. S.

M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M. S. Ayza, “Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays,” IEEE Trans. Antennas Propag.  55, 1514–1521(2007).
[Crossref]

Beruete, M.

M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M. S. Ayza, “Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays,” IEEE Trans. Antennas Propag.  55, 1514–1521(2007).
[Crossref]

Brolo, A. G.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett.  4, 2015–2018 (2004).
[Crossref]

Cai, W.

U. K. Chettiar, A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett.  32, 1671–1673 (2007).
[Crossref] [PubMed]

Campillo, I.

M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M. S. Ayza, “Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays,” IEEE Trans. Antennas Propag.  55, 1514–1521(2007).
[Crossref]

Chen, H.

Y. Wang, H. Chen, S. Dong, and E. Wang, “Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass,” J. Chem. Phys.  124, 074709/1-8 (2006).
[PubMed]

Chettiar, U. K.

U. K. Chettiar, A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett.  32, 1671–1673 (2007).
[Crossref] [PubMed]

Dadap, J. I.

R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, “Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures,” Opt. Lett.  32, 3414–3416 (2007).
[Crossref] [PubMed]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Ding, P.

P. Ding, E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, –Numerical simulations of terahertz double negative metamaterial with isotropic-like fishnet structure,” Photonics Nanostruct.: Fundam. Appl., doi:10.1016/j.photonics. 2008.12.005.

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett.  31, 1800–1802 (2006).
[Crossref] [PubMed]

Dong, S.

X. Hu, T. Wang, L. Wang, and S. Dong, “Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition,” J. Phys. Chem. C  111, 6962–6969 (2007).

Y. Wang, H. Chen, S. Dong, and E. Wang, “Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass,” J. Chem. Phys.  124, 074709/1-8 (2006).
[PubMed]

Dong, Z. G.

Drachev, V. P.

U. K. Chettiar, A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett.  32, 1671–1673 (2007).
[Crossref] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Economon, E. N.

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett.  31, 3620–3622 (2006).
[Crossref] [PubMed]

Economou, E. N.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys.: Condens. Matter 20, 304217/1-7 (2008).
[Crossref]

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B  75, 235114/1-9 (2007).

Engert, C.

E. J. Liang, C. Engert, and W. Kiefer, “Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region,” J. Raman Spectrosc.  24, 775–779 (1993).
[Crossref]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett.  31, 1800–1802 (2006).
[Crossref] [PubMed]

Falcone, F.

M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M. S. Ayza, “Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays,” IEEE Trans. Antennas Propag.  55, 1514–1521(2007).
[Crossref]

Fu, L.

N. Liu, H.g Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.  19, 3628–3632 (2007).
[Crossref]

Garcia-Vidal, F. J.

A. Mary, Sergio G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.  101, 103902/1-4 (2008).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett.  77, 1163–1166 (1996).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Giessen, H.

N. Liu, H.g Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.  19, 3628–3632 (2007).
[Crossref]

Gole, A.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence,” Anal. Chem.  77, 3261–3266 (2005).
[Crossref] [PubMed]

Gordon, R.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett.  4, 2015–2018 (2004).
[Crossref]

Grady, N. K

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and Naomi J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.  37, 898–911(2008).
[Crossref] [PubMed]

Guo, H.g

N. Liu, H.g Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.  19, 3628–3632 (2007).
[Crossref]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Halas, Naomi J.

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and Naomi J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.  37, 898–911(2008).
[Crossref] [PubMed]

Hu, W. Q.

P. Ding, E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, –Numerical simulations of terahertz double negative metamaterial with isotropic-like fishnet structure,” Photonics Nanostruct.: Fundam. Appl., doi:10.1016/j.photonics. 2008.12.005.

Hu, X.

X. Hu, T. Wang, L. Wang, and S. Dong, “Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition,” J. Phys. Chem. C  111, 6962–6969 (2007).

Kafesaki, M.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys.: Condens. Matter 20, 304217/1-7 (2008).
[Crossref]

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B  75, 235114/1-9 (2007).

Kaiser, S.

N. Liu, H.g Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.  19, 3628–3632 (2007).
[Crossref]

Katsarakis, N.

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B  75, 235114/1-9 (2007).

Kavanagh, K. L.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett.  4, 2015–2018 (2004).
[Crossref]

Kiefer, W.

E. J. Liang, C. Engert, and W. Kiefer, “Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region,” J. Raman Spectrosc.  24, 775–779 (1993).
[Crossref]

Kildishev, A. V.

U. K. Chettiar, A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett.  32, 1671–1673 (2007).
[Crossref] [PubMed]

D. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15, 1647–1652 (2007).
[Crossref] [PubMed]

Koschny, T.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys.: Condens. Matter 20, 304217/1-7 (2008).
[Crossref]

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B  75, 235114/1-9 (2007).

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett.  31, 3620–3622 (2006).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E  71, 036617/1-11 (2005).

Kundu, J.

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and Naomi J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.  37, 898–911(2008).
[Crossref] [PubMed]

Kwon, D.

Lal, S.

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and Naomi J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.  37, 898–911(2008).
[Crossref] [PubMed]

Lassiter, J. B.

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and Naomi J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.  37, 898–911(2008).
[Crossref] [PubMed]

Leathem, B.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett.  4, 2015–2018 (2004).
[Crossref]

Levin, C. S.

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and Naomi J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.  37, 898–911(2008).
[Crossref] [PubMed]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Li, J. Q.

T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, “Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial,” Phys. Rev. E  76, 016606/1-5 (2007).

Li, T.

T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, “Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial,” Phys. Rev. E  76, 016606/1-5 (2007).

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[Crossref] [PubMed]

Liang, E. J.

E. J. Liang, C. Engert, and W. Kiefer, “Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region,” J. Raman Spectrosc.  24, 775–779 (1993).
[Crossref]

P. Ding, E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, –Numerical simulations of terahertz double negative metamaterial with isotropic-like fishnet structure,” Photonics Nanostruct.: Fundam. Appl., doi:10.1016/j.photonics. 2008.12.005.

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett.  31, 1800–1802 (2006).
[Crossref] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Liu, H.

T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, “Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial,” Phys. Rev. E  76, 016606/1-5 (2007).

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[Crossref] [PubMed]

Liu, N.

N. Liu, H.g Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.  19, 3628–3632 (2007).
[Crossref]

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B  65, 195104/1-5 (2002).

Martin-Moreno, L.

A. Mary, Sergio G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.  101, 103902/1-4 (2008).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Mary, A.

A. Mary, Sergio G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.  101, 103902/1-4 (2008).
[Crossref] [PubMed]

Murphy, C. J.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence,” Anal. Chem.  77, 3261–3266 (2005).
[Crossref] [PubMed]

Navarro-Cia, M.

M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M. S. Ayza, “Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays,” IEEE Trans. Antennas Propag.  55, 1514–1521(2007).
[Crossref]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Orendorff, C. J.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence,” Anal. Chem.  77, 3261–3266 (2005).
[Crossref] [PubMed]

Osgood, R. M.

R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, “Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures,” Opt. Lett.  32, 3414–3416 (2007).
[Crossref] [PubMed]

Panoiu, N. C.

R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, “Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures,” Opt. Lett.  32, 3414–3416 (2007).
[Crossref] [PubMed]

Pendry, J. B.

F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett.  77, 1163–1166 (1996).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Rodrigo, Sergio G.

A. Mary, Sergio G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.  101, 103902/1-4 (2008).
[Crossref] [PubMed]

Roth, R. M.

R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, “Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures,” Opt. Lett.  32, 3414–3416 (2007).
[Crossref] [PubMed]

Sau, T. K.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence,” Anal. Chem.  77, 3261–3266 (2005).
[Crossref] [PubMed]

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B  65, 195104/1-5 (2002).

Schweizer, H.

N. Liu, H.g Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.  19, 3628–3632 (2007).
[Crossref]

Shalaev, V. M.

D. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15, 1647–1652 (2007).
[Crossref] [PubMed]

U. K. Chettiar, A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett.  32, 1671–1673 (2007).
[Crossref] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photonics 1, 41–48 (2006)
[Crossref]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E  71, 036617/1-11 (2005).

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B  65, 195104/1-5 (2002).

Soukoulis, C. M.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys.: Condens. Matter 20, 304217/1-7 (2008).
[Crossref]

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B  75, 235114/1-9 (2007).

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett.  31, 3620–3622 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett.  31, 1800–1802 (2006).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E  71, 036617/1-11 (2005).

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B  65, 195104/1-5 (2002).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Tsiapa, I.

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B  75, 235114/1-9 (2007).

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E  71, 036617/1-11 (2005).

Wang, E.

Y. Wang, H. Chen, S. Dong, and E. Wang, “Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass,” J. Chem. Phys.  124, 074709/1-8 (2006).
[PubMed]

Wang, F. M.

T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, “Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial,” Phys. Rev. E  76, 016606/1-5 (2007).

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[Crossref] [PubMed]

Wang, L.

X. Hu, T. Wang, L. Wang, and S. Dong, “Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition,” J. Phys. Chem. C  111, 6962–6969 (2007).

Wang, T.

X. Hu, T. Wang, L. Wang, and S. Dong, “Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition,” J. Phys. Chem. C  111, 6962–6969 (2007).

Wang, Y.

Y. Wang, H. Chen, S. Dong, and E. Wang, “Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass,” J. Chem. Phys.  124, 074709/1-8 (2006).
[PubMed]

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett.  31, 1800–1802 (2006).
[Crossref] [PubMed]

Werner, D. H.

Wolf, P. A.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Xiao, S.

U. K. Chettiar, A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett.  32, 1671–1673 (2007).
[Crossref] [PubMed]

Xue, Q. Z.

P. Ding, E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, –Numerical simulations of terahertz double negative metamaterial with isotropic-like fishnet structure,” Photonics Nanostruct.: Fundam. Appl., doi:10.1016/j.photonics. 2008.12.005.

Yuan, H.

U. K. Chettiar, A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett.  32, 1671–1673 (2007).
[Crossref] [PubMed]

Zhang, L.

P. Ding, E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, –Numerical simulations of terahertz double negative metamaterial with isotropic-like fishnet structure,” Photonics Nanostruct.: Fundam. Appl., doi:10.1016/j.photonics. 2008.12.005.

Zhang, X.

Zhou, J.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys.: Condens. Matter 20, 304217/1-7 (2008).
[Crossref]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett.  31, 3620–3622 (2006).
[Crossref] [PubMed]

Zhou, Q.

P. Ding, E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, –Numerical simulations of terahertz double negative metamaterial with isotropic-like fishnet structure,” Photonics Nanostruct.: Fundam. Appl., doi:10.1016/j.photonics. 2008.12.005.

Zhu, S. N.

T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, “Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial,” Phys. Rev. E  76, 016606/1-5 (2007).

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[Crossref] [PubMed]

Zhu, Y. Y.

T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, “Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial,” Phys. Rev. E  76, 016606/1-5 (2007).

Adv. Mater (1)

N. Liu, H.g Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.  19, 3628–3632 (2007).
[Crossref]

Anal. Chem (1)

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence,” Anal. Chem.  77, 3261–3266 (2005).
[Crossref] [PubMed]

Chem. Soc. Rev (1)

S. Lal, N. K Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and Naomi J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.  37, 898–911(2008).
[Crossref] [PubMed]

IEEE Trans. Antennas Propag (1)

M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M. S. Ayza, “Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays,” IEEE Trans. Antennas Propag.  55, 1514–1521(2007).
[Crossref]

J. Chem. Phys (1)

Y. Wang, H. Chen, S. Dong, and E. Wang, “Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass,” J. Chem. Phys.  124, 074709/1-8 (2006).
[PubMed]

J. Phys. Chem (1)

X. Hu, T. Wang, L. Wang, and S. Dong, “Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition,” J. Phys. Chem. C  111, 6962–6969 (2007).

J. Phys.: Condens. Matter (1)

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys.: Condens. Matter 20, 304217/1-7 (2008).
[Crossref]

J. Raman Spectrosc (1)

E. J. Liang, C. Engert, and W. Kiefer, “Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region,” J. Raman Spectrosc.  24, 775–779 (1993).
[Crossref]

Nano Lett (1)

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett.  4, 2015–2018 (2004).
[Crossref]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Nature Photonics (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photonics 1, 41–48 (2006)
[Crossref]

Opt. Express (2)

Opt. Lett (4)

U. K. Chettiar, A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett.  32, 1671–1673 (2007).
[Crossref] [PubMed]

R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, “Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures,” Opt. Lett.  32, 3414–3416 (2007).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett.  31, 1800–1802 (2006).
[Crossref] [PubMed]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett.  31, 3620–3622 (2006).
[Crossref] [PubMed]

Photonics Nanostruct.: Fundam. Appl., doi:10.1016/j.photonics (1)

P. Ding, E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, –Numerical simulations of terahertz double negative metamaterial with isotropic-like fishnet structure,” Photonics Nanostruct.: Fundam. Appl., doi:10.1016/j.photonics. 2008.12.005.

Phys. Rev (4)

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B  75, 235114/1-9 (2007).

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E  71, 036617/1-11 (2005).

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B  65, 195104/1-5 (2002).

T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, “Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial,” Phys. Rev. E  76, 016606/1-5 (2007).

Phys. Rev. Lett (2)

A. Mary, Sergio G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.  101, 103902/1-4 (2008).
[Crossref] [PubMed]

F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett.  77, 1163–1166 (1996).
[Crossref] [PubMed]

Science (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Scheme of symmetric cross hole arrays with two unit cells denoted; (b) Top view and (c) side view of the unit cell of type-I.

Fig. 2.
Fig. 2.

FOM and index versus incident wavelength for the symmetric cross hole arrays (L 1=L 2=480 nm and W 1=W 2=100 nm). The double-negative (or left-handed) passband is highlighted by yellow shadow with the maximum FOM marked out by vertical dashed line.

Fig. 3.
Fig. 3.

(a) Left-handed passband as a function of the geometry parameter L 2 for configuration A (W 1=W 2=100 nm, L 1=480 nm and L 2< L 1); (b) Left-handed passband as a function of W 2 for configuration B (L 1=L 2=480 nm, W 1=100 nm and W 2>W 1). Here, black and red spots correspond to the wavelength at which maximum FOM obtained with respect to various L 2 or W 2 for both polarizations, and the error bars are used to show the wavelength range of left-handed band. The insets display the value of maximum FOM versus the geometry parameter L 2 and W 2.

Fig. 4.
Fig. 4.

(a)-(b) Magnitude distributions of the electric fields for configuration A (L 2=400 nm) on the middle plane between two electrically conducting plates for both polarizations; (c) Comparison of the effective refractive indexes obtained from the retrieval procedures with increasing number of stacked layers along the propagation direction (lines) with those obtained from the wedge-shaped model (scatters) for configuration A at X-polarized light incidence. The normalized scale bar is the same for both field maps.

Fig. 5.
Fig. 5.

Surface currents distributions for configuration A (L 2=400 nm) at the frequency just above the magnetic resonance. Here, 1st and 2nd are the top and bottom metal-layer surfaces adjacent the MgF2 spacer. The incident light is Y-polarized.

Fig. 6.
Fig. 6.

Calculated transmission spectra of the Ag/MgF2/Ag sandwich structure with an array of asymmetric cross aperture for both polarizations (the black or red line with solid scatters), in which the fundamental modes M1 and E1 are marked. The geometrical parameters defined here are: P=440 nm, t=30 nm, s=40 nm, W 1=W 2=90 nm, L 1=360 nm and L 2=220 nm. The transmission spectra of a single sliver layer (the thickness of 60 nm) with the identical asymmetric cross apertures are also provided for comparisons (gray scatters).

Fig. 7.
Fig. 7.

Both the calculated E-field distribution map in x-y plane (z=0) and the corresponding E-field enhancement of the asymmetric cross hole arrays for E1 and M1 modes (indicated in Fig. 6). (a)-(c) X-polarization; (d)-(f)Y-polarization. In (b)-(c) and (e)-(f), E is the actual polarization dependent local electric field and E 0 is the incident field. The first scale bar is given for (a) and (d), and the second scale bar is for (b)-(c) and (e)-(f).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ω m 2 = 1 LC = 1 C ( 1 L s + 1 L n ) ,
C ~ ( P W 1 ) ( P W 2 ) t ,
L s ~ ( P W 1 ( 2 ) ) t P W 2 ( 1 ) ,
L n ~ W 1 ( 2 ) t P L 1 ( 2 )

Metrics