Abstract

An optical packet switch that shares both limited range and full range wavelength converters for contention resolution is proposed with the aim to guarantee a high conversion cost saving. To optimally dimension the number and the conversion range of the wavelength converters, an analytical model, validated by simulation, is introduced. Numerical results show that the proposed switch architecture allows for a conversion cost saving in the order of 90% with respect to a traditional architecture in which only shared full range wavelength converters are used.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yao, B. Mukherjee and S. Dixit, "Advances in Photonic Packet Switching: an Overview," IEEE Commun. Mag. 38, 84-94 (2000).
    [CrossRef]
  2. S. L. Danielsen, P. B. Hansen, K. E. Stubkjaer, "Wavelength Conversion in Optical Packet Switching," J. Lightwave Technol. 16, 2095-2108 (1998).
    [CrossRef]
  3. V. Eramo, M. Listanti, A. Germoni, "Cost Evaluation of Optical Packet Switches Equipped With Limited-Range and Full-Range Converters for Contention Resolution," J. Lightwave Technol. 26, 390-407 (2008).
    [CrossRef]
  4. H. Li, I. Li-Jin, "Cost-Saving Two-Layer Wavelength Conversion in Optical Switching Network," J. Lightwave Technol. 24, 705-712 (2006).
    [CrossRef]
  5. V. Eramo, M. Listanti, A. Germoni, "Cost Evaluation of Optical Packet Switches using both Limited-Range and Full-Range Converters for Contention Resolution," in proc. IEEE Globecom, December 2007.
  6. C. Guillemot et al., "Transparent Optical Packet Switching: The European ACTS KEOPS Project Approach," Lasers and Electro-Optics Society 1999 12th Annual Meeting. LEOS ’99. IEEE, vol.2, no., pp.401-402 vol.2, 1999.
  7. B. Bostica, M. Burzio, P. Gambini and L. Zucchelli, "Synchronization issues in optical packet switched networks," Photonic Networks, G. Prati, Sringer-Verlag, 1997.
  8. Z. Zhang and Y. Yang, "Distributed Scheduling Algorithms for Wavelength Convertible WDM Optical Interconnects," IEEE IPDPS 2003, April 2003.
  9. Z. Zhang and Y. Yang, "Performance Modelling of Bufferless WDM Packet Switching Networks with Limited Range Wavelength Conversion," IEEE Trans. Commun. 54, 1473-1480 (2006).
    [CrossRef]
  10. V. Eramo, M. Listanti, M. Spaziani, "Resource Sharing in Optical Packet Switches With Limited-Range Wavelength Converters," J. Lightwave Technol. 23, 671-687 (2005).
    [CrossRef]
  11. V. Eramo and M. Listanti, "Packet Loss in a Bufferless WDM Switch Employing Shared Tunable Wavelength Converters," J. Lightwave Technol. 18, 1818-1833 (2000).
    [CrossRef]

2008

2006

H. Li, I. Li-Jin, "Cost-Saving Two-Layer Wavelength Conversion in Optical Switching Network," J. Lightwave Technol. 24, 705-712 (2006).
[CrossRef]

Z. Zhang and Y. Yang, "Performance Modelling of Bufferless WDM Packet Switching Networks with Limited Range Wavelength Conversion," IEEE Trans. Commun. 54, 1473-1480 (2006).
[CrossRef]

2005

2000

V. Eramo and M. Listanti, "Packet Loss in a Bufferless WDM Switch Employing Shared Tunable Wavelength Converters," J. Lightwave Technol. 18, 1818-1833 (2000).
[CrossRef]

S. Yao, B. Mukherjee and S. Dixit, "Advances in Photonic Packet Switching: an Overview," IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

1998

Danielsen, S. L.

Dixit, S.

S. Yao, B. Mukherjee and S. Dixit, "Advances in Photonic Packet Switching: an Overview," IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

Eramo, V.

Germoni, A.

Hansen, P. B.

Li, H.

Li-Jin, I.

Listanti, M.

Mukherjee, B.

S. Yao, B. Mukherjee and S. Dixit, "Advances in Photonic Packet Switching: an Overview," IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

Spaziani, M.

Stubkjaer, K. E.

Yang, Y.

Z. Zhang and Y. Yang, "Performance Modelling of Bufferless WDM Packet Switching Networks with Limited Range Wavelength Conversion," IEEE Trans. Commun. 54, 1473-1480 (2006).
[CrossRef]

Yao, S.

S. Yao, B. Mukherjee and S. Dixit, "Advances in Photonic Packet Switching: an Overview," IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

Zhang, Z.

Z. Zhang and Y. Yang, "Performance Modelling of Bufferless WDM Packet Switching Networks with Limited Range Wavelength Conversion," IEEE Trans. Commun. 54, 1473-1480 (2006).
[CrossRef]

IEEE Commun. Mag.

S. Yao, B. Mukherjee and S. Dixit, "Advances in Photonic Packet Switching: an Overview," IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

IEEE Trans. Commun.

Z. Zhang and Y. Yang, "Performance Modelling of Bufferless WDM Packet Switching Networks with Limited Range Wavelength Conversion," IEEE Trans. Commun. 54, 1473-1480 (2006).
[CrossRef]

J. Lightwave Technol.

Other

V. Eramo, M. Listanti, A. Germoni, "Cost Evaluation of Optical Packet Switches using both Limited-Range and Full-Range Converters for Contention Resolution," in proc. IEEE Globecom, December 2007.

C. Guillemot et al., "Transparent Optical Packet Switching: The European ACTS KEOPS Project Approach," Lasers and Electro-Optics Society 1999 12th Annual Meeting. LEOS ’99. IEEE, vol.2, no., pp.401-402 vol.2, 1999.

B. Bostica, M. Burzio, P. Gambini and L. Zucchelli, "Synchronization issues in optical packet switched networks," Photonic Networks, G. Prati, Sringer-Verlag, 1997.

Z. Zhang and Y. Yang, "Distributed Scheduling Algorithms for Wavelength Convertible WDM Optical Interconnects," IEEE IPDPS 2003, April 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

FLSPN OPS equipped with rl LRWC and rf FRWCs.

Fig. 2.
Fig. 2.

Scheduling algorithm for FLSPN architecture

Fig. 3.
Fig. 3.

LRWCs Assignment (LRA) sub-phase

Fig. 4.
Fig. 4.

FRWCs Assignment (FRA) sub-phase

Fig. 5.
Fig. 5.

Comparison between the analytical and simulation results for the Packet Loss Probability in the FLSPN switch as a function of the used number of FRWCs. Switch and traffic parameters are N = 8, M = 16, p = 0,4, d = 1. The used number rl of LRWCs varies from 0 to 120.

Fig. 6.
Fig. 6.

Comparison between the analytical and simulation results for the Packet Loss Probability in the FLSPN switch as a function of the used number of FRWCs. Switch and traffic parameters are N = 8, M = 32, p = 0,8, d = 2. The used number rl of LRWCs varies from 0 to 240.

Fig. 7.
Fig. 7.

Conversion cost of the FLSPN and TLWC-SPN switches as a function of the conversion range d. The switch and traffic parameters are N = 8, p = 0,8 and M varying from 16 to 64. A linear cost model (b = 1) is assumed.

Fig. 8.
Fig. 8.

Conversion cost percentage reduction of the FLSPN and TLWC-SPN switches with respect to the OLWC-SPN switch as a function of the conversion range d. The switch and traffic parameters are N = 8, p = 0,8 and M varying from 16 to 64. A linear cost model (b = 1) is assumed.

Fig. 9.
Fig. 9.

Cconversion cost of FLSPN and TLWC-SPN switches as a function of the conversion range d. The switch and traffic parameters are N = 8, p = 0,8, M = 64 and b varying from 0,5 to 2.

Fig. 10.
Fig. 10.

Conversion cost percentage reductions of the FLSPN and TLWC-SPN switches with respect to the OLWC-SPN as a function of the conversion range d. The switch and traffic parameters are N = 8, p = 0,8, M = 64 and b varying from 0,5 to 2.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

C LRWC = a d b , C FRWC = a ( M 1 ) b
a = C norm d = 1 M 1 d b .
C FLSPN = r l C LRWC + r f C FRWC .
P loss FLSPN ( r l , r f ) = i = 0 N ( M 1 ) j = 0 N ( M 1 ) p R l av , R f av ( i , j ) P loss FLSPN , OF ( r l av , r f av ) r l av = i r f av = j
P loss FLSPN , OF ( r l av , r f av ) = E [ N l , WB ] + E [ N l , CB ] E [ N O ]
E [ N l , WB ] = j = M + 1 NM ( j M ) ( NM j ) ( P N ) j ( 1 P N ) NM j
E [ N l , CB ] = i = 0 M 1 j = 0 M i E [ N l , CB / d = i , w = j ] p D , W ( i , j )
E [ N l , CB / d = i , w = j ] = { j r f av i r l av , j > r f av i ( r l av + r f av ) + j i > r l av + r f av min ( 0 , j ( r l av + r f av i ) ) r l av < i r l av + r f av 0 otherwise
p D , W ( i , j ) = k = j M p α , β , γ ( j , k , i ) + h = j + 1 NM p α , β , γ ( h , j , i )
p r ( i ) = ( N i ) ( p N ) i ( 1 p N ) N i i = 0,1 , , N ;
p A ( k ) ( i ) = ( Nk i ) ( p N ) i ( 1 p N ) N i i = 0,1 , , N ;
p α , β , γ ( 1 , q , i , j , h ) = { p r ( q + i ) i N q , j = 0 , h = q 1 p r ( q j ) i = 0 , 1 j q , h = q j 0 otherwise
p α , β , γ ( 1 , d + 2 , i , j , h ) = { p α , β , γ ( 1 , d + 1 , i , j 1 , h ) j 0 0 j = 0
p α , β , γ ( p , q , i , j , h ) = k = 0 N Prob ( α p , q = i , β p , q = j , γ p , q = h / r M p = k ) Prob ( r M p = k )
p α , β , γ ( p , q , i , j , h ) = { k = 0 q 1 p r ( k ) p α , β , γ ( p 1 , q k , i , 0 , min ( 0 , h k ) ) + k = q min ( N , i + q ) p A ( p - 1 ) ( i ( k q ) ) δ ( h q ) j = 0 k = 0 q 1 p r ( k ) p α , β , γ ( p 1 , q k , i , 0 , min ( 0 , h k ) ) j 0
where :
δ ( i ) = { 1 if i = 0 0 otherwise
p α , β , γ ( p , q , i , j , h ) = { k = 0 q p 1 p r ( k ) p α , β , γ ( p 1 , q k , i , 0 , min ( 0 , h k ) ) + + k = q p q 1 p r ( k ) p α , β , γ ( p 1 , q k , i , 0 , min ( 0 , h ( k 1 ) ) ) + + k = q min ( N , i + q ) p r ( k ) p A ( p 1 ) ( i ( k q ) ) δ ( h ( q 1 ) ) j = 0 k = 0 q p 1 p r ( k ) p α , β , γ ( p 1 , q k , i , j , min ( 0 , h k ) ) + + k = q p q 1 p r ( k ) p α , β , γ ( p 1 , q k , i , j , min ( 0 , h ( k 1 ) ) ) j 0
p α , β , γ ( p , p + d + 1 , i , j , h ) = { p α , β , γ ( p 1 , p + d , i , j 1 , h ) j 0 0 j = 0
p D s , W s ( k , h ) = 1 N i = 1 N p D i , W i ( k , h )
p D 1 , W 1 = { 1 k = 0 ; h = 0 0 k 0 ; h 0
p D i , w i ( k , h ) = p D , W ( k , h ) p D , W ( k , h ) ⋯⋯ p D , W ( k , h ) ( i 1 ) times ,
p R l av , R f av ( i , j ) = { p D s , W s ( r l i , r f j ) i 0 ; j 0 k = r l r l + r f j p D s , W s ( k , r f ( k r l ) j ) i = 0 ; j 0 h = r f N ( M 1 ) p D s , W s ( r l i , h ) i 0 ; j = 0 k = r l N ( M 1 ) h = r f ( k r l ) N ( M 1 ) p D s , W s ( k , h ) i = 0 ; j = 0

Metrics