Abstract

Marginally stable power recycling cavities are being used by nearly all interferometric gravitational wave detectors. With stability factors very close to unity the frequency separation of the higher order optical modes is smaller than the cavity bandwidth. As a consequence these higher order modes will resonate inside the cavity distorting the spatial mode of the interferometer control sidebands. Without losing generality we study and compare two designs of stable power recycling cavities for the proposed 5 kilometer long Australian International Gravitational Observatory (AIGO), a high power advanced interferometric gravitational wave detector. The length of various optical cavities that form the interferometer and the modulation frequencies that generate the control sidebands are also selected.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Searle, S. M. Scott, and D. E. McClelland, “Network sensitivity to geographical configuration,” Class. Quantum Grav. 19, 1465–1470 (2002).
    [CrossRef]
  2. L. Wen, “Network Analysis of Gravitational Waves,” LIGO Presentation, G050508-00-Z (2005).
  3. E. Gustafson, D. Shoemaker, K. Strain, and R. Weiss, “LSC White Paper on Detector Research and Development,” LIGO Technical Document, T990080-00-D (1999).
  4. K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
    [CrossRef]
  5. R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).
  6. D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
    [CrossRef]
  7. R. W. P. Drever, “Interferometric detectors for gravitational radiation,” in Gravitational Radiation, NATO Advanced Physics Institute, Les Houches, edited by N. Deruelle and T. Piran (North-Holland, Amsterdam, 1983), pp. 321–338.
  8. A. M. Gretarsson, E. D’Ambrosio, V. Frolov, B. O’Reilly, and P. K. Fritschel, “Effects of mode degeneracy in the LIGO Livingstone Observatory recycling cavity,” J. Opt. Soc. Am. B 24, 2821–2828 (2007).
    [CrossRef]
  9. R. Lawrence, M. Zucker, P. Fritschel, P. Marfuta, and D. Shoemaker, “Adaptive thermal compensation of test masses in advanced LIGO,” Class. Quantum Grav. 19, 1803–1812 (2002).
    [CrossRef]
  10. G. Mueller, “Stable Recycling Cavities for Advanced LIGO,” LIGO Presentation, G050423-00-Z (2005).
  11. M. A. Arain, “Thermal Compensation in Stable Recycling Cavity,” LSC Meeting Presentation, G060155-00-Z (2006).
  12. M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, L. Williams, and W. Wu, “Advanced LIGO Input Optics Subsystem Preliminary Design Document,” LIGO Technical Document, T060269-02-D (2007).
  13. Y. Pan, “Optimal degeneracy for the signal-recycling cavity in advanced LIGO,” arXiv:gr-qc/0608128v1 (2006).
  14. M. A. Arain and G. Mueller, “Design of the Advanced LIGO recycling cavities,” Opt. Express 16, 10018–10032 (2008).
    [CrossRef] [PubMed]
  15. R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “AdvLIGO Interferometer Sensing and Control Conceptual Design,” LIGO Technical Document, T070247-01-I (2008).
  16. E. Chin, J. C. Dumas, C. Zhao, and D. G. Blair, “AIGO High Performance Compact Vibration Isolation System,” J. Phys. Conf. Ser. 32, 111 – 116 (2006).
    [CrossRef]
  17. B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D 38, 2317–2326 (1988).
    [CrossRef]
  18. J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rdiger, W. Winkler, and K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detector,” Phys. Lett. A 175, 273–276 (1993).
    [CrossRef]
  19. K. A. Strain, G. Mueller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, “Sensing and Control in Dual-Recycling Laser Interferometer Gravitational-Wave Detectors,” Appl. Opt. 42, 1244–1256 (2003).
    [CrossRef] [PubMed]
  20. G. Mueller, T. Delker, D. B. Tanner, and D. Reitze, “Dual-Recycled Cavity-Enhanced Michelson Interferometer for Gravitational-Wave Detection,” Appl. Opt. 42, 1257–1268 (2003).
    [CrossRef]
  21. J. E. Mason and P. A. Willems, “Signal Extraction and Optical Design for an Advanced Gravitational-Wave Interferometer,” Appl. Opt. 42, 1269–1282 (2003).
    [CrossRef] [PubMed]
  22. D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Power-Recycled Michelson Interferometer with Resonant Sideband Extraction,” Appl. Opt. 42, 1283–1295 (2003).
    [CrossRef] [PubMed]
  23. O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
    [CrossRef]
  24. Y. Levin, “Internal thermal noise in the LIGO test masses: A direct approach,” Phys. Rev. D 57, 659–663 (1998).
    [CrossRef]
  25. A. E. Siegman, Lasers University Science Books, Sausalito CA, (1986).
  26. L. G. Gouy, “Sur une propriété nouvelle des ondes lumineuses,” C. R. Acad. Sci. Paris 110, 1251–1253 (1890).
  27. H. Kogelnik and T. Li, “Laser Beams and Resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [CrossRef] [PubMed]
  28. R. C. Lawrence, “Active Wavefront Correction in Laser Interferometric Gravitational Wave Detectors,” PhD Thesis Department of Physics, Massachusetts Institute of Technology, (2003).
  29. J. Degallaix, “Compensation of Strong Thermal Lensing in Advanced Interferometric Gravitational Waves Detectors,” PhD Thesis School of Physics, The University of Western Australia, (2006).
  30. D. Ottaway, Massachusetts Institute of Technology, internal communication, (2006).
  31. G. Mueller, “Parametric instabilities and the geometry of the recycling cavities,” LIGO Presentation, G070441-00-R (2007).
  32. V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric oscillatory instability in Fabry-Perot interferometer,” Phys. Lett. A 287, 331–338, (2001).
    [CrossRef]
  33. L. Ju, S. Gras, C. Zhao, J. Degallaix, and D. G. Blair, “Multiple modes contributions to parametric instabilities in advanced laser ineterferometer gravitational wave detectors,” Phys. Lett. A 354, 360-–365, (2006).
    [CrossRef]
  34. W. Winkler, K. Danzmann, A. R, and R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detctor,” Phys. Rev. A 44, 7022–7036 (1991).
    [CrossRef] [PubMed]
  35. P. Willems, “Thermal Compensation Experience in LIGO,” LIGO Presentation, G070339-00-Z, (2007).
  36. Suprasil 3001 and 3002 Data Sheet, http://www.optics.heraeus-quarzglas.com/
  37. M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, and G. Orgin, “Thermo-optic noise in coated mirrors for high-precision optical measurements,” arXiv:0807.4774v1 [gr-qc], (2008).
  38. B. J. Meers and K. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44, 4693–4703 (1991).
    [CrossRef] [PubMed]
  39. L. Schnupp, “Internal modulation schemes,” presented at the European Collaboration Meeting on Interferometric Detection of Gravitational Waves, Sorrento (1988).
  40. K. Somiya, P. Beyersdorf, K. Arai, S. Sato, S. Kawamura, O. Miyakawa, F. Kawazoe, S. Sakata, A. Sekido, and N. Mio, “Development of a frequency-detuned interferometer as a prototype experiment for next-generation gravitational-wave detectors,” Appl. Opt. 44, 3179–3191 (2005).
    [CrossRef] [PubMed]
  41. C. Cutler and K. Thorne, “An overview of gravitational-wave sources,” arXiv:gr-qc/0204090v1, (2002).
  42. J. Mizuno, “Comparison of optical configurations for laser-interferometric gravitational-wave detectors,” PhD Thesis Max Planck Institut für Quantenoptik, (1995).
  43. J. E. Mason, “Signal Extraction and Optical Design for an Advanced Gravitational Wave Interferometer,” PhD Thesis California Institute of Technology, (2001).
  44. S. Gras, D. G. Blair, and L. Ju, “Test mass ring dampers with minimum thermal noise,” Phys. Lett. A 372, 1348–1356 (2008).
    [CrossRef]

2008 (4)

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

M. A. Arain and G. Mueller, “Design of the Advanced LIGO recycling cavities,” Opt. Express 16, 10018–10032 (2008).
[CrossRef] [PubMed]

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “AdvLIGO Interferometer Sensing and Control Conceptual Design,” LIGO Technical Document, T070247-01-I (2008).

S. Gras, D. G. Blair, and L. Ju, “Test mass ring dampers with minimum thermal noise,” Phys. Lett. A 372, 1348–1356 (2008).
[CrossRef]

2007 (1)

2006 (2)

E. Chin, J. C. Dumas, C. Zhao, and D. G. Blair, “AIGO High Performance Compact Vibration Isolation System,” J. Phys. Conf. Ser. 32, 111 – 116 (2006).
[CrossRef]

L. Ju, S. Gras, C. Zhao, J. Degallaix, and D. G. Blair, “Multiple modes contributions to parametric instabilities in advanced laser ineterferometer gravitational wave detectors,” Phys. Lett. A 354, 360-–365, (2006).
[CrossRef]

2005 (1)

2004 (1)

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

2003 (4)

2002 (2)

R. Lawrence, M. Zucker, P. Fritschel, P. Marfuta, and D. Shoemaker, “Adaptive thermal compensation of test masses in advanced LIGO,” Class. Quantum Grav. 19, 1803–1812 (2002).
[CrossRef]

A. C. Searle, S. M. Scott, and D. E. McClelland, “Network sensitivity to geographical configuration,” Class. Quantum Grav. 19, 1465–1470 (2002).
[CrossRef]

2001 (1)

V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric oscillatory instability in Fabry-Perot interferometer,” Phys. Lett. A 287, 331–338, (2001).
[CrossRef]

1999 (1)

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

1998 (1)

Y. Levin, “Internal thermal noise in the LIGO test masses: A direct approach,” Phys. Rev. D 57, 659–663 (1998).
[CrossRef]

1993 (1)

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rdiger, W. Winkler, and K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detector,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

1991 (2)

W. Winkler, K. Danzmann, A. R, and R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detctor,” Phys. Rev. A 44, 7022–7036 (1991).
[CrossRef] [PubMed]

B. J. Meers and K. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44, 4693–4703 (1991).
[CrossRef] [PubMed]

1988 (1)

B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D 38, 2317–2326 (1988).
[CrossRef]

1966 (1)

1890 (1)

L. G. Gouy, “Sur une propriété nouvelle des ondes lumineuses,” C. R. Acad. Sci. Paris 110, 1251–1253 (1890).

Abbott, B.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Abbott, R.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “AdvLIGO Interferometer Sensing and Control Conceptual Design,” LIGO Technical Document, T070247-01-I (2008).

Adhikari, R.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “AdvLIGO Interferometer Sensing and Control Conceptual Design,” LIGO Technical Document, T070247-01-I (2008).

Ando, M.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Arai, K.

K. Somiya, P. Beyersdorf, K. Arai, S. Sato, S. Kawamura, O. Miyakawa, F. Kawazoe, S. Sakata, A. Sekido, and N. Mio, “Development of a frequency-detuned interferometer as a prototype experiment for next-generation gravitational-wave detectors,” Appl. Opt. 44, 3179–3191 (2005).
[CrossRef] [PubMed]

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Arain, M. A.

M. A. Arain and G. Mueller, “Design of the Advanced LIGO recycling cavities,” Opt. Express 16, 10018–10032 (2008).
[CrossRef] [PubMed]

M. A. Arain, “Thermal Compensation in Stable Recycling Cavity,” LSC Meeting Presentation, G060155-00-Z (2006).

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, L. Williams, and W. Wu, “Advanced LIGO Input Optics Subsystem Preliminary Design Document,” LIGO Technical Document, T060269-02-D (2007).

Araya, A.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Ballmer, S.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “AdvLIGO Interferometer Sensing and Control Conceptual Design,” LIGO Technical Document, T070247-01-I (2008).

M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, and G. Orgin, “Thermo-optic noise in coated mirrors for high-precision optical measurements,” arXiv:0807.4774v1 [gr-qc], (2008).

Barriga, P.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Barsotti, L.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “AdvLIGO Interferometer Sensing and Control Conceptual Design,” LIGO Technical Document, T070247-01-I (2008).

Beyersdorf, P.

Blair, D. G.

S. Gras, D. G. Blair, and L. Ju, “Test mass ring dampers with minimum thermal noise,” Phys. Lett. A 372, 1348–1356 (2008).
[CrossRef]

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

E. Chin, J. C. Dumas, C. Zhao, and D. G. Blair, “AIGO High Performance Compact Vibration Isolation System,” J. Phys. Conf. Ser. 32, 111 – 116 (2006).
[CrossRef]

L. Ju, S. Gras, C. Zhao, J. Degallaix, and D. G. Blair, “Multiple modes contributions to parametric instabilities in advanced laser ineterferometer gravitational wave detectors,” Phys. Lett. A 354, 360-–365, (2006).
[CrossRef]

Bork, R.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Braginsky, V. B.

V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric oscillatory instability in Fabry-Perot interferometer,” Phys. Lett. A 287, 331–338, (2001).
[CrossRef]

Brooks, A. F.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Charlton, P.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Chen, J. M.

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rdiger, W. Winkler, and K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detector,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

Chin, E.

E. Chin, J. C. Dumas, C. Zhao, and D. G. Blair, “AIGO High Performance Compact Vibration Isolation System,” J. Phys. Conf. Ser. 32, 111 – 116 (2006).
[CrossRef]

Coward, D.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Cutler, C.

C. Cutler and K. Thorne, “An overview of gravitational-wave sources,” arXiv:gr-qc/0204090v1, (2002).

D’Ambrosio, E.

Danzmann, K.

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rdiger, W. Winkler, and K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detector,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

W. Winkler, K. Danzmann, A. R, and R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detctor,” Phys. Rev. A 44, 7022–7036 (1991).
[CrossRef] [PubMed]

Degallaix, J.

L. Ju, S. Gras, C. Zhao, J. Degallaix, and D. G. Blair, “Multiple modes contributions to parametric instabilities in advanced laser ineterferometer gravitational wave detectors,” Phys. Lett. A 354, 360-–365, (2006).
[CrossRef]

J. Degallaix, “Compensation of Strong Thermal Lensing in Advanced Interferometric Gravitational Waves Detectors,” PhD Thesis School of Physics, The University of Western Australia, (2006).

Delker, T.

Drever, R. W. P.

R. W. P. Drever, “Interferometric detectors for gravitational radiation,” in Gravitational Radiation, NATO Advanced Physics Institute, Les Houches, edited by N. Deruelle and T. Piran (North-Holland, Amsterdam, 1983), pp. 321–338.

Dumas, J. C.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

E. Chin, J. C. Dumas, C. Zhao, and D. G. Blair, “AIGO High Performance Compact Vibration Isolation System,” J. Phys. Conf. Ser. 32, 111 – 116 (2006).
[CrossRef]

Evans, M.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “AdvLIGO Interferometer Sensing and Control Conceptual Design,” LIGO Technical Document, T070247-01-I (2008).

M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, and G. Orgin, “Thermo-optic noise in coated mirrors for high-precision optical measurements,” arXiv:0807.4774v1 [gr-qc], (2008).

Fan, Y.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Fejer, M.

M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, and G. Orgin, “Thermo-optic noise in coated mirrors for high-precision optical measurements,” arXiv:0807.4774v1 [gr-qc], (2008).

Flaminio, R.

R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).

Freise, A.

R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).

Fritschel, P.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “AdvLIGO Interferometer Sensing and Control Conceptual Design,” LIGO Technical Document, T070247-01-I (2008).

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

R. Lawrence, M. Zucker, P. Fritschel, P. Marfuta, and D. Shoemaker, “Adaptive thermal compensation of test masses in advanced LIGO,” Class. Quantum Grav. 19, 1803–1812 (2002).
[CrossRef]

M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, and G. Orgin, “Thermo-optic noise in coated mirrors for high-precision optical measurements,” arXiv:0807.4774v1 [gr-qc], (2008).

Fritschel, P. K.

Frolov, V.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “AdvLIGO Interferometer Sensing and Control Conceptual Design,” LIGO Technical Document, T070247-01-I (2008).

A. M. Gretarsson, E. D’Ambrosio, V. Frolov, B. O’Reilly, and P. K. Fritschel, “Effects of mode degeneracy in the LIGO Livingstone Observatory recycling cavity,” J. Opt. Soc. Am. B 24, 2821–2828 (2007).
[CrossRef]

Fujimoto, M.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Fukushima, M.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Galloway, D.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Gennai, A.

R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).

Goggin, L.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Gouy, L. G.

L. G. Gouy, “Sur une propriété nouvelle des ondes lumineuses,” C. R. Acad. Sci. Paris 110, 1251–1253 (1890).

Gras, S.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

S. Gras, D. G. Blair, and L. Ju, “Test mass ring dampers with minimum thermal noise,” Phys. Lett. A 372, 1348–1356 (2008).
[CrossRef]

L. Ju, S. Gras, C. Zhao, J. Degallaix, and D. G. Blair, “Multiple modes contributions to parametric instabilities in advanced laser ineterferometer gravitational wave detectors,” Phys. Lett. A 354, 360-–365, (2006).
[CrossRef]

Gray, M. B.

Gretarsson, A. M.

Gustafson, E.

E. Gustafson, D. Shoemaker, K. Strain, and R. Weiss, “LSC White Paper on Detector Research and Development,” LIGO Technical Document, T990080-00-D (1999).

Harry, G.

M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, and G. Orgin, “Thermo-optic noise in coated mirrors for high-precision optical measurements,” arXiv:0807.4774v1 [gr-qc], (2008).

Haruyama, T.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Heefner, J.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Hello, P.

R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).

Hosken, D. J.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Howell, E.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Hughes, S.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Ishizuka, H.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Ivanov, A.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Ju, L.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

S. Gras, D. G. Blair, and L. Ju, “Test mass ring dampers with minimum thermal noise,” Phys. Lett. A 372, 1348–1356 (2008).
[CrossRef]

L. Ju, S. Gras, C. Zhao, J. Degallaix, and D. G. Blair, “Multiple modes contributions to parametric instabilities in advanced laser ineterferometer gravitational wave detectors,” Phys. Lett. A 354, 360-–365, (2006).
[CrossRef]

Kanda, N.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Kawabe, K.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Kawamura, S.

K. Somiya, P. Beyersdorf, K. Arai, S. Sato, S. Kawamura, O. Miyakawa, F. Kawazoe, S. Sakata, A. Sekido, and N. Mio, “Development of a frequency-detuned interferometer as a prototype experiment for next-generation gravitational-wave detectors,” Appl. Opt. 44, 3179–3191 (2005).
[CrossRef] [PubMed]

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Kawazoe, F.

K. Somiya, P. Beyersdorf, K. Arai, S. Sato, S. Kawamura, O. Miyakawa, F. Kawazoe, S. Sakata, A. Sekido, and N. Mio, “Development of a frequency-detuned interferometer as a prototype experiment for next-generation gravitational-wave detectors,” Appl. Opt. 44, 3179–3191 (2005).
[CrossRef] [PubMed]

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Kogelnik, H.

Kuroda, K.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

La Penna, P.

R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).

Lawrence, R.

R. Lawrence, M. Zucker, P. Fritschel, P. Marfuta, and D. Shoemaker, “Adaptive thermal compensation of test masses in advanced LIGO,” Class. Quantum Grav. 19, 1803–1812 (2002).
[CrossRef]

Lawrence, R. C.

R. C. Lawrence, “Active Wavefront Correction in Laser Interferometric Gravitational Wave Detectors,” PhD Thesis Department of Physics, Massachusetts Institute of Technology, (2003).

Levin, Y.

Y. Levin, “Internal thermal noise in the LIGO test masses: A direct approach,” Phys. Rev. D 57, 659–663 (1998).
[CrossRef]

Li, T.

Losurdo, G.

R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).

Lucianetti, A.

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, L. Williams, and W. Wu, “Advanced LIGO Input Optics Subsystem Preliminary Design Document,” LIGO Technical Document, T060269-02-D (2007).

Lueck, H.

R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).

Man, N.

R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).

Marfuta, P.

R. Lawrence, M. Zucker, P. Fritschel, P. Marfuta, and D. Shoemaker, “Adaptive thermal compensation of test masses in advanced LIGO,” Class. Quantum Grav. 19, 1803–1812 (2002).
[CrossRef]

Martin, R.

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, L. Williams, and W. Wu, “Advanced LIGO Input Optics Subsystem Preliminary Design Document,” LIGO Technical Document, T060269-02-D (2007).

Mason, J. E.

Masserot, A.

R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).

McClelland, D. E.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

K. A. Strain, G. Mueller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, “Sensing and Control in Dual-Recycling Laser Interferometer Gravitational-Wave Detectors,” Appl. Opt. 42, 1244–1256 (2003).
[CrossRef] [PubMed]

D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Power-Recycled Michelson Interferometer with Resonant Sideband Extraction,” Appl. Opt. 42, 1283–1295 (2003).
[CrossRef] [PubMed]

A. C. Searle, S. M. Scott, and D. E. McClelland, “Network sensitivity to geographical configuration,” Class. Quantum Grav. 19, 1465–1470 (2002).
[CrossRef]

Meers, B. J.

B. J. Meers and K. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44, 4693–4703 (1991).
[CrossRef] [PubMed]

B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D 38, 2317–2326 (1988).
[CrossRef]

Melatos, A.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Miao, H.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Mio, N.

K. Somiya, P. Beyersdorf, K. Arai, S. Sato, S. Kawamura, O. Miyakawa, F. Kawazoe, S. Sakata, A. Sekido, and N. Mio, “Development of a frequency-detuned interferometer as a prototype experiment for next-generation gravitational-wave detectors,” Appl. Opt. 44, 3179–3191 (2005).
[CrossRef] [PubMed]

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Miyakawa, O.

K. Somiya, P. Beyersdorf, K. Arai, S. Sato, S. Kawamura, O. Miyakawa, F. Kawazoe, S. Sakata, A. Sekido, and N. Mio, “Development of a frequency-detuned interferometer as a prototype experiment for next-generation gravitational-wave detectors,” Appl. Opt. 44, 3179–3191 (2005).
[CrossRef] [PubMed]

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Miyoki, S.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Mizuno, J.

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rdiger, W. Winkler, and K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detector,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

J. Mizuno, “Comparison of optical configurations for laser-interferometric gravitational-wave detectors,” PhD Thesis Max Planck Institut für Quantenoptik, (1995).

Moriwaki, S.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Mours, B.

R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).

Mow-Lowry, C.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

K. A. Strain, G. Mueller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, “Sensing and Control in Dual-Recycling Laser Interferometer Gravitational-Wave Detectors,” Appl. Opt. 42, 1244–1256 (2003).
[CrossRef] [PubMed]

Mueller, G.

M. A. Arain and G. Mueller, “Design of the Advanced LIGO recycling cavities,” Opt. Express 16, 10018–10032 (2008).
[CrossRef] [PubMed]

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “AdvLIGO Interferometer Sensing and Control Conceptual Design,” LIGO Technical Document, T070247-01-I (2008).

G. Mueller, T. Delker, D. B. Tanner, and D. Reitze, “Dual-Recycled Cavity-Enhanced Michelson Interferometer for Gravitational-Wave Detection,” Appl. Opt. 42, 1257–1268 (2003).
[CrossRef]

K. A. Strain, G. Mueller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, “Sensing and Control in Dual-Recycling Laser Interferometer Gravitational-Wave Detectors,” Appl. Opt. 42, 1244–1256 (2003).
[CrossRef] [PubMed]

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, L. Williams, and W. Wu, “Advanced LIGO Input Optics Subsystem Preliminary Design Document,” LIGO Technical Document, T060269-02-D (2007).

G. Mueller, “Stable Recycling Cavities for Advanced LIGO,” LIGO Presentation, G050423-00-Z (2005).

G. Mueller, “Parametric instabilities and the geometry of the recycling cavities,” LIGO Presentation, G070441-00-R (2007).

Munch, J.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Musha, M.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Nelson, P. G.

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rdiger, W. Winkler, and K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detector,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

O’Reilly, B.

Ohashi, M.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Orgin, G.

M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, and G. Orgin, “Thermo-optic noise in coated mirrors for high-precision optical measurements,” arXiv:0807.4774v1 [gr-qc], (2008).

Ottaway, D.

D. Ottaway, Massachusetts Institute of Technology, internal communication, (2006).

Ourjoumtsev, A.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Pan, Y.

Y. Pan, “Optimal degeneracy for the signal-recycling cavity in advanced LIGO,” arXiv:gr-qc/0608128v1 (2006).

Punturo, M.

R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).

Quetschke, V.

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, L. Williams, and W. Wu, “Advanced LIGO Input Optics Subsystem Preliminary Design Document,” LIGO Technical Document, T060269-02-D (2007).

R, A.

W. Winkler, K. Danzmann, A. R, and R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detctor,” Phys. Rev. A 44, 7022–7036 (1991).
[CrossRef] [PubMed]

Rdiger, A.

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rdiger, W. Winkler, and K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detector,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

Reitze, D.

G. Mueller, T. Delker, D. B. Tanner, and D. Reitze, “Dual-Recycled Cavity-Enhanced Michelson Interferometer for Gravitational-Wave Detection,” Appl. Opt. 42, 1257–1268 (2003).
[CrossRef]

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, L. Williams, and W. Wu, “Advanced LIGO Input Optics Subsystem Preliminary Design Document,” LIGO Technical Document, T060269-02-D (2007).

Reitze, D. H.

Saito, Y.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Sakata, S.

K. Somiya, P. Beyersdorf, K. Arai, S. Sato, S. Kawamura, O. Miyakawa, F. Kawazoe, S. Sakata, A. Sekido, and N. Mio, “Development of a frequency-detuned interferometer as a prototype experiment for next-generation gravitational-wave detectors,” Appl. Opt. 44, 3179–3191 (2005).
[CrossRef] [PubMed]

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Sato, N.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Sato, S.

K. Somiya, P. Beyersdorf, K. Arai, S. Sato, S. Kawamura, O. Miyakawa, F. Kawazoe, S. Sakata, A. Sekido, and N. Mio, “Development of a frequency-detuned interferometer as a prototype experiment for next-generation gravitational-wave detectors,” Appl. Opt. 44, 3179–3191 (2005).
[CrossRef] [PubMed]

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Schilling, R.

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rdiger, W. Winkler, and K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detector,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

W. Winkler, K. Danzmann, A. R, and R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detctor,” Phys. Rev. A 44, 7022–7036 (1991).
[CrossRef] [PubMed]

Schnupp, L.

L. Schnupp, “Internal modulation schemes,” presented at the European Collaboration Meeting on Interferometric Detection of Gravitational Waves, Sorrento (1988).

Scott, S. M.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

A. C. Searle, S. M. Scott, and D. E. McClelland, “Network sensitivity to geographical configuration,” Class. Quantum Grav. 19, 1465–1470 (2002).
[CrossRef]

Searle, A. C.

A. C. Searle, S. M. Scott, and D. E. McClelland, “Network sensitivity to geographical configuration,” Class. Quantum Grav. 19, 1465–1470 (2002).
[CrossRef]

Sekido, A.

Shaddock, D. A.

Shintomi, T.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Shoemaker, D.

R. Lawrence, M. Zucker, P. Fritschel, P. Marfuta, and D. Shoemaker, “Adaptive thermal compensation of test masses in advanced LIGO,” Class. Quantum Grav. 19, 1803–1812 (2002).
[CrossRef]

E. Gustafson, D. Shoemaker, K. Strain, and R. Weiss, “LSC White Paper on Detector Research and Development,” LIGO Technical Document, T990080-00-D (1999).

Siegman, A. E.

A. E. Siegman, Lasers University Science Books, Sausalito CA, (1986).

Slagmolen, B.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “AdvLIGO Interferometer Sensing and Control Conceptual Design,” LIGO Technical Document, T070247-01-I (2008).

Slagmolen, B. J. J.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Smith, M.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Somiya, K.

Spallacci, A.

R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).

Strain, K.

B. J. Meers and K. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44, 4693–4703 (1991).
[CrossRef] [PubMed]

E. Gustafson, D. Shoemaker, K. Strain, and R. Weiss, “LSC White Paper on Detector Research and Development,” LIGO Technical Document, T990080-00-D (1999).

Strain, K. A.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

K. A. Strain, G. Mueller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, “Sensing and Control in Dual-Recycling Laser Interferometer Gravitational-Wave Detectors,” Appl. Opt. 42, 1244–1256 (2003).
[CrossRef] [PubMed]

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rdiger, W. Winkler, and K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detector,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

Strigin, S. E.

V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric oscillatory instability in Fabry-Perot interferometer,” Phys. Lett. A 287, 331–338, (2001).
[CrossRef]

Suzuki, T.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Takahashi, R.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Tanner, D.

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, L. Williams, and W. Wu, “Advanced LIGO Input Optics Subsystem Preliminary Design Document,” LIGO Technical Document, T060269-02-D (2007).

Tanner, D. B.

Tatsumi, D.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Taylor, R.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Telada, S.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Thorne, K.

C. Cutler and K. Thorne, “An overview of gravitational-wave sources,” arXiv:gr-qc/0204090v1, (2002).

Tobar, M. E.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Tsubono, K.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Ueda, A.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Ueda, K.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Ugolini, D.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Vass, S.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Veitch, P. J.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Vicer, A.

R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).

Vyatchanin, S. P.

V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric oscillatory instability in Fabry-Perot interferometer,” Phys. Lett. A 287, 331–338, (2001).
[CrossRef]

Waldman, S.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “AdvLIGO Interferometer Sensing and Control Conceptual Design,” LIGO Technical Document, T070247-01-I (2008).

Ward, R.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Waseda, K.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Webb, J. K.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Weinstein, A.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Weiss, R.

E. Gustafson, D. Shoemaker, K. Strain, and R. Weiss, “LSC White Paper on Detector Research and Development,” LIGO Technical Document, T990080-00-D (1999).

Wen, L.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

L. Wen, “Network Analysis of Gravitational Waves,” LIGO Presentation, G050508-00-Z (2005).

Willems, P.

P. Willems, “Thermal Compensation Experience in LIGO,” LIGO Presentation, G070339-00-Z, (2007).

Willems, P. A.

Williams, L.

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, L. Williams, and W. Wu, “Advanced LIGO Input Optics Subsystem Preliminary Design Document,” LIGO Technical Document, T060269-02-D (2007).

Winkler, W.

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rdiger, W. Winkler, and K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detector,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

W. Winkler, K. Danzmann, A. R, and R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detctor,” Phys. Rev. A 44, 7022–7036 (1991).
[CrossRef] [PubMed]

Wolley, A.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Wu, W.

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, L. Williams, and W. Wu, “Advanced LIGO Input Optics Subsystem Preliminary Design Document,” LIGO Technical Document, T060269-02-D (2007).

Yamamoto, A.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Yamazaki, T.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Yan, Z.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Yoneda, H.

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

Zhao, C.

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

E. Chin, J. C. Dumas, C. Zhao, and D. G. Blair, “AIGO High Performance Compact Vibration Isolation System,” J. Phys. Conf. Ser. 32, 111 – 116 (2006).
[CrossRef]

L. Ju, S. Gras, C. Zhao, J. Degallaix, and D. G. Blair, “Multiple modes contributions to parametric instabilities in advanced laser ineterferometer gravitational wave detectors,” Phys. Lett. A 354, 360-–365, (2006).
[CrossRef]

Zucker, M.

R. Lawrence, M. Zucker, P. Fritschel, P. Marfuta, and D. Shoemaker, “Adaptive thermal compensation of test masses in advanced LIGO,” Class. Quantum Grav. 19, 1803–1812 (2002).
[CrossRef]

Appl. Opt. (6)

C. R. Acad. Sci. Paris (1)

L. G. Gouy, “Sur une propriété nouvelle des ondes lumineuses,” C. R. Acad. Sci. Paris 110, 1251–1253 (1890).

Class. Quantum Grav. (2)

A. C. Searle, S. M. Scott, and D. E. McClelland, “Network sensitivity to geographical configuration,” Class. Quantum Grav. 19, 1465–1470 (2002).
[CrossRef]

R. Lawrence, M. Zucker, P. Fritschel, P. Marfuta, and D. Shoemaker, “Adaptive thermal compensation of test masses in advanced LIGO,” Class. Quantum Grav. 19, 1803–1812 (2002).
[CrossRef]

Int. J. Mod. Phys. D (1)

K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, and M. E. Tobar, “Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557–579 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Conf. Ser. (2)

E. Chin, J. C. Dumas, C. Zhao, and D. G. Blair, “AIGO High Performance Compact Vibration Isolation System,” J. Phys. Conf. Ser. 32, 111 – 116 (2006).
[CrossRef]

D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, “The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO,” J. Phys. Conf. Ser. 122, 012001, (2008).
[CrossRef]

Opt. Express (1)

Phys. Lett. A (4)

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rdiger, W. Winkler, and K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detector,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric oscillatory instability in Fabry-Perot interferometer,” Phys. Lett. A 287, 331–338, (2001).
[CrossRef]

L. Ju, S. Gras, C. Zhao, J. Degallaix, and D. G. Blair, “Multiple modes contributions to parametric instabilities in advanced laser ineterferometer gravitational wave detectors,” Phys. Lett. A 354, 360-–365, (2006).
[CrossRef]

S. Gras, D. G. Blair, and L. Ju, “Test mass ring dampers with minimum thermal noise,” Phys. Lett. A 372, 1348–1356 (2008).
[CrossRef]

Phys. Rev. A (2)

W. Winkler, K. Danzmann, A. R, and R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detctor,” Phys. Rev. A 44, 7022–7036 (1991).
[CrossRef] [PubMed]

B. J. Meers and K. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44, 4693–4703 (1991).
[CrossRef] [PubMed]

Phys. Rev. D (2)

Y. Levin, “Internal thermal noise in the LIGO test masses: A direct approach,” Phys. Rev. D 57, 659–663 (1998).
[CrossRef]

B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D 38, 2317–2326 (1988).
[CrossRef]

Proc. SPIE (1)

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” Proc. SPIE 5500, 92–104 (2004).
[CrossRef]

Other (21)

R. C. Lawrence, “Active Wavefront Correction in Laser Interferometric Gravitational Wave Detectors,” PhD Thesis Department of Physics, Massachusetts Institute of Technology, (2003).

J. Degallaix, “Compensation of Strong Thermal Lensing in Advanced Interferometric Gravitational Waves Detectors,” PhD Thesis School of Physics, The University of Western Australia, (2006).

D. Ottaway, Massachusetts Institute of Technology, internal communication, (2006).

G. Mueller, “Parametric instabilities and the geometry of the recycling cavities,” LIGO Presentation, G070441-00-R (2007).

A. E. Siegman, Lasers University Science Books, Sausalito CA, (1986).

L. Schnupp, “Internal modulation schemes,” presented at the European Collaboration Meeting on Interferometric Detection of Gravitational Waves, Sorrento (1988).

P. Willems, “Thermal Compensation Experience in LIGO,” LIGO Presentation, G070339-00-Z, (2007).

Suprasil 3001 and 3002 Data Sheet, http://www.optics.heraeus-quarzglas.com/

M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, and G. Orgin, “Thermo-optic noise in coated mirrors for high-precision optical measurements,” arXiv:0807.4774v1 [gr-qc], (2008).

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “AdvLIGO Interferometer Sensing and Control Conceptual Design,” LIGO Technical Document, T070247-01-I (2008).

R. W. P. Drever, “Interferometric detectors for gravitational radiation,” in Gravitational Radiation, NATO Advanced Physics Institute, Les Houches, edited by N. Deruelle and T. Piran (North-Holland, Amsterdam, 1983), pp. 321–338.

R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, and A. Vicer, “Advanced VIRGO White Paper,” VIR-NOT-DIR-1390-304, (2005).

L. Wen, “Network Analysis of Gravitational Waves,” LIGO Presentation, G050508-00-Z (2005).

E. Gustafson, D. Shoemaker, K. Strain, and R. Weiss, “LSC White Paper on Detector Research and Development,” LIGO Technical Document, T990080-00-D (1999).

G. Mueller, “Stable Recycling Cavities for Advanced LIGO,” LIGO Presentation, G050423-00-Z (2005).

M. A. Arain, “Thermal Compensation in Stable Recycling Cavity,” LSC Meeting Presentation, G060155-00-Z (2006).

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, L. Williams, and W. Wu, “Advanced LIGO Input Optics Subsystem Preliminary Design Document,” LIGO Technical Document, T060269-02-D (2007).

Y. Pan, “Optimal degeneracy for the signal-recycling cavity in advanced LIGO,” arXiv:gr-qc/0608128v1 (2006).

C. Cutler and K. Thorne, “An overview of gravitational-wave sources,” arXiv:gr-qc/0204090v1, (2002).

J. Mizuno, “Comparison of optical configurations for laser-interferometric gravitational-wave detectors,” PhD Thesis Max Planck Institut für Quantenoptik, (1995).

J. E. Mason, “Signal Extraction and Optical Design for an Advanced Gravitational Wave Interferometer,” PhD Thesis California Institute of Technology, (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Configuration of the proposed AIGO interferometer as a dual recycling interferometer with marginally stable recycling cavities. The figure shows a pre-stabilized 100 W Nd:YAG laser and the input mode cleaner (IMC). The power recycling mirror (PRM), beamsplitter (BS), both input test masses (ITM1 and ITM2), and both end test masses (ETM1 and ETM2). It shows the power recycling cavity (PRC) formed by the power recycling mirror (PRM) and both input test masses (ITM1 and ITM2) passing through the BS. Also the signal recycling cavity (SRC) formed by the signal recycling mirror (SRM) and both ITMs. It also shows the different degrees of freedom that need to be controlled.

Fig. 2.
Fig. 2.

Transmission of HOM as function of the Gouy phase shift. All HOM resonate at Ψ G = 0, however only even modes resonate at Ψ G = 0.5π. By selecting a Gouy phase around 0.18π the highest transmission is for modes of order 5 and 6, while at Ψ G close to 0.15π it will be orders 6 and 7, but with a higher transmission for order 1. From 0.5π to π the transmission of HOM mirrors the transmission here presented.

Fig. 3.
Fig. 3.

Comparison of the intensity suppression of HOM between a 12 m long marginally stable recycling cavity, a 500 m long inline PRC, a 1 km long inline PRC, and the proposed design for a stable PRC. The graph shows HOM up to order 10.

Fig. 4.
Fig. 4.

Schematic diagram for the proposed stable PRC design for AIGO advanced interferometer (figure not to scale). This solution includes a lens inside the recycling cavity in order to achieve the required Gouy phase.

Fig. 5.
Fig. 5.

(a) Mode-matching drop as a function of PR1 radius of curvature and PR2 focal length. Note that mode-matching drops mainly due to PR2 radius of curvature error. (b) The optimized mode-matching after repositioning PR1.

Fig. 6.
Fig. 6.

Schematic diagram for the proposed stable PRC design for AIGO advanced interferometer (figure not to scale).

Fig. 7.
Fig. 7.

(a) Mode-matching as a function of proposed radius of curvature tolerance limits on PR2 and PR3 for a fixed folded PRC design. The contour lines are lines of constant mode-matching. (b) Improved mode-matching as a function of expected values of ITM and ETM radius of curvature after optimizing PR2 position.

Fig. 8.
Fig. 8.

(a) Variation of the accumulated Gouy phase in the straight PRC design and spot size radius at PR1 as a function of the PR2 lens normalized focal length. (b) Variation of the accumulated Gouy phase in the folded PRC design and spot size radius at PR1 as a function of the normalized PR2 ROC.

Tables (6)

Tables Icon

Table 1. Parameters of the arm cavities for the AIGO interferometer. The proposed design assumes sapphire test masses with a diameter of 32 cm and a spot size radius of 55 mm in order to keep diffraction losses of the fundamental mode below 1 ppm.

Tables Icon

Table 2. Distance between the different optical components in both cavity recycling designs.

Tables Icon

Table 3. Focal length of the different components that form the inline PRC with a lens to obtain the necessary Gouy phase and the folded PRC, which uses three mirrors to obtain the necessary Gouy phase.

Tables Icon

Table 4. Development of the spot size radius on different optical components starting from the arm waist through the ITM back to the PRC input mirror PR1. In the inline design the lens PR2 is between the ITM and the BS, while in the folded design the mirrors are between the input mirror PR1 and the BS. Note the difference in spot size radius at the BS.

Tables Icon

Table 5. Optical length of the different cavities proposed for the AIGO dual recycled interferometer.

Tables Icon

Table 6. Distance (in meters) between the different mirrors that form the proposed stable recycling cavities for the AIGO interferometer.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϕ = 2 kL
Ψ G = arccos ± g
g = A + D + 2 4
Ψ nm = ( n + m + 1 ) Ψ G
f m = ( n 1 + 1 2 ) c 2 L PRC .
f m = n 2 c 2 L IMC .
L SRC + Δ L SRC = c 2 π f m 2 ( n 3 π + ϕ s ) .

Metrics