Abstract

An investigation of the shrinking behaviour of a zirconium-based sol-gel composite micro-structured by two-photon polymerization is presented and a simple, straightforward methodology allowing the evaluation of shrinkage is suggested. It is shown that volume reduction is directly related to the average laser power (irradiation dose) used for the microfabrication and becomes a critical issue near the polymerization threshold. It is demonstrated that this shrinkage can be employed beneficially to improve the structural resolution. This is demonstrated by the presence of stopbands in the photonic crystal nanostructures fabricated with controlled volume reduction. Well above the polymerization threshold, the studied material exhibits remarkably low shrinkage. Therefore, no additional effort for the pre-compensation of distortion and for the improvement of structural stability is required.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
    [CrossRef] [PubMed]
  2. H-B. Sun and S. Kawata, NMR, 3D analysis, photopolymerization Eds N. Fatkullin (Springer 2004), pp. 169-273.
  3. A. Ovsianikov, S. Passinger, R. Houbertz, and B. N. Chichkov, Laser Ablation and its Applications Eds. Claude R. Phipps, (Springer Series in Optical Sciences 2006), pp. 129-167.
  4. S. Yokoyama, T. Nakahama, H. Miki, and S. Mashiko, "Two-photon-induced polymerization in a laser gain medium for optical microstructure," Appl. Phys. Lett. 82, 3221-3223 (2003)
    [CrossRef]
  5. M. Deubel, G. v. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004).
    [CrossRef] [PubMed]
  6. V. Dinka, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, "Directed three-dimensional patterning of self-assembled peptide fibrils," Nano Lett. 8, 538 - 543 (2008).
    [CrossRef]
  7. A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, "Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials," J. Tissue Engin. Regen. Med. 1, 443 - 449 (2008).
    [CrossRef]
  8. S. Juodkazis, V. Mizeikis, K-K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-848 (2005).
    [CrossRef]
  9. J-F- Xing, X-Z. Dong, W-Q. Chen, X.-M. Duana, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106-1 - 131106-3 (2007).
    [CrossRef]
  10. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, "65 nm feature sizes using visible wavelength 3-D multiphoton lithography," Opt. Express 15, 3426-3436 (2007).
    [CrossRef] [PubMed]
  11. Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303, 5pp (2008).
    [CrossRef] [PubMed]
  12. A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, "Two-photon polymerization of hybrid sol-gel materials for photonics Applications," Laser Chemistry, vol. 2008, Article ID 493059, 7 pages, 2008.
    [CrossRef]
  13. J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express 12, 5221-5228 (2004).
    [CrossRef] [PubMed]
  14. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003).
    [CrossRef] [PubMed]
  15. G. von Freymann, T. Chan, S. John, V. Kitaev, G. A. Ozin, M. Deubel, and M. Wegener, "Sub-nanometer precision modification of the optical properties of three-dimensional polymer-based photonic crystals," Photon. Nanostructures 2, 191-198 (2004).
    [CrossRef]

2008

V. Dinka, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, "Directed three-dimensional patterning of self-assembled peptide fibrils," Nano Lett. 8, 538 - 543 (2008).
[CrossRef]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, "Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials," J. Tissue Engin. Regen. Med. 1, 443 - 449 (2008).
[CrossRef]

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303, 5pp (2008).
[CrossRef] [PubMed]

2007

J-F- Xing, X-Z. Dong, W-Q. Chen, X.-M. Duana, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106-1 - 131106-3 (2007).
[CrossRef]

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, "65 nm feature sizes using visible wavelength 3-D multiphoton lithography," Opt. Express 15, 3426-3436 (2007).
[CrossRef] [PubMed]

2005

S. Juodkazis, V. Mizeikis, K-K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-848 (2005).
[CrossRef]

2004

M. Deubel, G. v. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004).
[CrossRef] [PubMed]

G. von Freymann, T. Chan, S. John, V. Kitaev, G. A. Ozin, M. Deubel, and M. Wegener, "Sub-nanometer precision modification of the optical properties of three-dimensional polymer-based photonic crystals," Photon. Nanostructures 2, 191-198 (2004).
[CrossRef]

J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express 12, 5221-5228 (2004).
[CrossRef] [PubMed]

2003

1997

Barlow, S.

Catherine, J.

V. Dinka, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, "Directed three-dimensional patterning of self-assembled peptide fibrils," Nano Lett. 8, 538 - 543 (2008).
[CrossRef]

Chan, T.

G. von Freymann, T. Chan, S. John, V. Kitaev, G. A. Ozin, M. Deubel, and M. Wegener, "Sub-nanometer precision modification of the optical properties of three-dimensional polymer-based photonic crystals," Photon. Nanostructures 2, 191-198 (2004).
[CrossRef]

Chen, V. W.

Chichkov, B.

Chichkov, B. N.

V. Dinka, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, "Directed three-dimensional patterning of self-assembled peptide fibrils," Nano Lett. 8, 538 - 543 (2008).
[CrossRef]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, "Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials," J. Tissue Engin. Regen. Med. 1, 443 - 449 (2008).
[CrossRef]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003).
[CrossRef] [PubMed]

Cronauer, C.

Deubel, M.

M. Deubel, G. v. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004).
[CrossRef] [PubMed]

G. von Freymann, T. Chan, S. John, V. Kitaev, G. A. Ozin, M. Deubel, and M. Wegener, "Sub-nanometer precision modification of the optical properties of three-dimensional polymer-based photonic crystals," Photon. Nanostructures 2, 191-198 (2004).
[CrossRef]

Dinka, V.

V. Dinka, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, "Directed three-dimensional patterning of self-assembled peptide fibrils," Nano Lett. 8, 538 - 543 (2008).
[CrossRef]

Domann, G.

Dong, W.

Dong, X.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303, 5pp (2008).
[CrossRef] [PubMed]

Duan, X.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303, 5pp (2008).
[CrossRef] [PubMed]

Egbert, A.

Farsari, M.

V. Dinka, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, "Directed three-dimensional patterning of self-assembled peptide fibrils," Nano Lett. 8, 538 - 543 (2008).
[CrossRef]

Fotakis, C.

V. Dinka, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, "Directed three-dimensional patterning of self-assembled peptide fibrils," Nano Lett. 8, 538 - 543 (2008).
[CrossRef]

Fröhlich, L.

Gong, Q.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303, 5pp (2008).
[CrossRef] [PubMed]

Hales, J. M.

Haske, W.

Haverich, A.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, "Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials," J. Tissue Engin. Regen. Med. 1, 443 - 449 (2008).
[CrossRef]

Houbertz, R.

John, S.

G. von Freymann, T. Chan, S. John, V. Kitaev, G. A. Ozin, M. Deubel, and M. Wegener, "Sub-nanometer precision modification of the optical properties of three-dimensional polymer-based photonic crystals," Photon. Nanostructures 2, 191-198 (2004).
[CrossRef]

Juodkazis, S.

S. Juodkazis, V. Mizeikis, K-K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-848 (2005).
[CrossRef]

Kasotakis, E.

V. Dinka, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, "Directed three-dimensional patterning of self-assembled peptide fibrils," Nano Lett. 8, 538 - 543 (2008).
[CrossRef]

Kawata, S.

Kitaev, V.

G. von Freymann, T. Chan, S. John, V. Kitaev, G. A. Ozin, M. Deubel, and M. Wegener, "Sub-nanometer precision modification of the optical properties of three-dimensional polymer-based photonic crystals," Photon. Nanostructures 2, 191-198 (2004).
[CrossRef]

Li, Y.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303, 5pp (2008).
[CrossRef] [PubMed]

Marder, S. R.

Maruo, S.

Mashiko, S.

S. Yokoyama, T. Nakahama, H. Miki, and S. Mashiko, "Two-photon-induced polymerization in a laser gain medium for optical microstructure," Appl. Phys. Lett. 82, 3221-3223 (2003)
[CrossRef]

Miki, H.

S. Yokoyama, T. Nakahama, H. Miki, and S. Mashiko, "Two-photon-induced polymerization in a laser gain medium for optical microstructure," Appl. Phys. Lett. 82, 3221-3223 (2003)
[CrossRef]

Misawa, H.

S. Juodkazis, V. Mizeikis, K-K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-848 (2005).
[CrossRef]

Mitraki, A.

V. Dinka, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, "Directed three-dimensional patterning of self-assembled peptide fibrils," Nano Lett. 8, 538 - 543 (2008).
[CrossRef]

Miwa, M.

S. Juodkazis, V. Mizeikis, K-K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-848 (2005).
[CrossRef]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, K-K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-848 (2005).
[CrossRef]

Mourka, A.

V. Dinka, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, "Directed three-dimensional patterning of self-assembled peptide fibrils," Nano Lett. 8, 538 - 543 (2008).
[CrossRef]

Nakahama, T.

S. Yokoyama, T. Nakahama, H. Miki, and S. Mashiko, "Two-photon-induced polymerization in a laser gain medium for optical microstructure," Appl. Phys. Lett. 82, 3221-3223 (2003)
[CrossRef]

Nakamura, O.

Ngezahayo, A.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, "Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials," J. Tissue Engin. Regen. Med. 1, 443 - 449 (2008).
[CrossRef]

Ostendorf, A.

Ovsianikov, A.

V. Dinka, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, "Directed three-dimensional patterning of self-assembled peptide fibrils," Nano Lett. 8, 538 - 543 (2008).
[CrossRef]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, "Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials," J. Tissue Engin. Regen. Med. 1, 443 - 449 (2008).
[CrossRef]

J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express 12, 5221-5228 (2004).
[CrossRef] [PubMed]

Ozin, G. A.

G. von Freymann, T. Chan, S. John, V. Kitaev, G. A. Ozin, M. Deubel, and M. Wegener, "Sub-nanometer precision modification of the optical properties of three-dimensional polymer-based photonic crystals," Photon. Nanostructures 2, 191-198 (2004).
[CrossRef]

Perry, J. W.

Popall, M.

Qi, F.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303, 5pp (2008).
[CrossRef] [PubMed]

Ranella, A.

V. Dinka, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, "Directed three-dimensional patterning of self-assembled peptide fibrils," Nano Lett. 8, 538 - 543 (2008).
[CrossRef]

Schlie, S.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, "Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials," J. Tissue Engin. Regen. Med. 1, 443 - 449 (2008).
[CrossRef]

Schulz, J.

Seet, K-K.

S. Juodkazis, V. Mizeikis, K-K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-848 (2005).
[CrossRef]

Serbin, J.

von Freymann, G.

G. von Freymann, T. Chan, S. John, V. Kitaev, G. A. Ozin, M. Deubel, and M. Wegener, "Sub-nanometer precision modification of the optical properties of three-dimensional polymer-based photonic crystals," Photon. Nanostructures 2, 191-198 (2004).
[CrossRef]

Wegener, M.

G. von Freymann, T. Chan, S. John, V. Kitaev, G. A. Ozin, M. Deubel, and M. Wegener, "Sub-nanometer precision modification of the optical properties of three-dimensional polymer-based photonic crystals," Photon. Nanostructures 2, 191-198 (2004).
[CrossRef]

Yang, H.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303, 5pp (2008).
[CrossRef] [PubMed]

Yokoyama, S.

S. Yokoyama, T. Nakahama, H. Miki, and S. Mashiko, "Two-photon-induced polymerization in a laser gain medium for optical microstructure," Appl. Phys. Lett. 82, 3221-3223 (2003)
[CrossRef]

Appl. Phys. Lett.

S. Yokoyama, T. Nakahama, H. Miki, and S. Mashiko, "Two-photon-induced polymerization in a laser gain medium for optical microstructure," Appl. Phys. Lett. 82, 3221-3223 (2003)
[CrossRef]

J-F- Xing, X-Z. Dong, W-Q. Chen, X.-M. Duana, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106-1 - 131106-3 (2007).
[CrossRef]

J. Tissue Engin. Regen. Med.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, "Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials," J. Tissue Engin. Regen. Med. 1, 443 - 449 (2008).
[CrossRef]

Nano Lett.

V. Dinka, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, "Directed three-dimensional patterning of self-assembled peptide fibrils," Nano Lett. 8, 538 - 543 (2008).
[CrossRef]

Nanotechnology

S. Juodkazis, V. Mizeikis, K-K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-848 (2005).
[CrossRef]

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303, 5pp (2008).
[CrossRef] [PubMed]

Nature Materials

M. Deubel, G. v. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photon. Nanostructures

G. von Freymann, T. Chan, S. John, V. Kitaev, G. A. Ozin, M. Deubel, and M. Wegener, "Sub-nanometer precision modification of the optical properties of three-dimensional polymer-based photonic crystals," Photon. Nanostructures 2, 191-198 (2004).
[CrossRef]

Other

H-B. Sun and S. Kawata, NMR, 3D analysis, photopolymerization Eds N. Fatkullin (Springer 2004), pp. 169-273.

A. Ovsianikov, S. Passinger, R. Houbertz, and B. N. Chichkov, Laser Ablation and its Applications Eds. Claude R. Phipps, (Springer Series in Optical Sciences 2006), pp. 129-167.

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, "Two-photon polymerization of hybrid sol-gel materials for photonics Applications," Laser Chemistry, vol. 2008, Article ID 493059, 7 pages, 2008.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

SEM images of representative woodpile structures, applied for investigations of shrinkage. From bottom to the top: structure side view, top view, and a close-up view on the upper layers are presented. The applied average laser powers from left to right are accordingly (a) 8.0 mW; (b) 5.5 mW and (c) 4.5mW. It is observed that the decrease of laser power results in increased material/structure shrinkage, and deformation of the supporting columns.

Fig. 2.
Fig. 2.

Characteristics of the polymerized structures: a) linear shrinkage strain in [%] as a function of the applied laser power; b) line width (lateral resolution) dependence on the applied laser power.

Fig. 3.
Fig. 3.

(a) schematic illustration of the polymerization process at low (A) and high (B) average laser powers; (b) the reflectance and transmittance spectra obtained by a microscope coupled to FTIR spectrometer, indicate a bandstop at 1330 nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d = w 0 ln ( P P t h )

Metrics