Abstract

Dielectric microspheres are shown to be capable of confining light in a three-dimensional region of subwavelength dimensions when they are illuminated by tightly focused Gaussian beams. We show that a simple configuration, not involving resonances, permits one to reach an effective volume as small as 0.6 (λ/n)3. It is shown that this three-dimensional confinement arises from interferences between the field scattered by the sphere and the incident Gaussian beam containing high angular components.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett. 7, 1352-1359 (2007).
    [CrossRef] [PubMed]
  2. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single-molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
    [CrossRef] [PubMed]
  3. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef] [PubMed]
  4. S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102 (1997).
    [CrossRef] [PubMed]
  5. S. Noda, "Seeking the ultimate nanolaser," Science 314, 260-261 (2006).
    [CrossRef] [PubMed]
  6. A. Sentenac and P. C. Chaumet, "Subdiffraction Light Focusing on a Grating Substrate," Phys. Rev. Lett. 101, 013901 (2008).
    [CrossRef] [PubMed]
  7. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, "Bound states in the continuum in photonics," Phys. Rev. Lett. 100, 183902 (2008).
    [CrossRef] [PubMed]
  8. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214 - 1220 (2004).
    [CrossRef] [PubMed]
  9. X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13, 526 - 533 (2005).
    [CrossRef] [PubMed]
  10. S. Lecler, Y. Takakura, and P. Meyrueis, "Properties of a 3D photonic jet," Opt. Lett. 30, 2641-2643 (2005).
    [CrossRef] [PubMed]
  11. A. V. Itagi and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A 22, 2847-2858 (2005).
    [CrossRef]
  12. J. Kofler and N. Arnold, "Axially symmetric focusing as a cuspoid diffraction catastrophe: scalar and vector cases and comparison with the theory of Mie," Phys. Rev. B. 73, 235401 (2006).
    [CrossRef]
  13. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Direct imaging of photonic nanojets," Opt. Express 16, 6930-6940 (2008)
    [CrossRef] [PubMed]
  14. A. Devilez, B. Stout, N. Bonod, and E. Popov, "Spectral analysis of three-dimensional photonic jets," Opt. Express 16, 14200 - 14212 (2008).
    [CrossRef] [PubMed]
  15. M. Mosbacher, H.-J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
    [CrossRef]
  16. B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).
  17. K. Piglmayer, R. Denk, and D. Bäuerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
    [CrossRef]
  18. E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nature Nanotech. 3, 413 - 417 (2008).
    [CrossRef] [PubMed]
  19. A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, "Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays," Small 4, 572-576 (2008)
    [CrossRef] [PubMed]
  20. K. J. Yi, H. Wang, and Y. F. Lu, Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007).
    [CrossRef]
  21. J. Kasim, Y. Ting, Y. Y. Meng, L. J. Ping, A. See, L. L. Jong, and S. Z. Xiang, "Near-field Raman imaging using optically trapped dielectric microsphere," Opt. Express 16, 7976 - 7984 (2008).
    [CrossRef] [PubMed]
  22. S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Opt. Express 16, 13713 - 13719 (2008).
    [CrossRef] [PubMed]
  23. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence," Opt. Express 16, 15297 - 15303 (2008).
    [CrossRef] [PubMed]
  24. B. Stout, M. Neviere, and E. Popov, "Light diffraction by three-dimensional object: differential theory," J. Opt. Soc. Am. A 22, 2385 - 2404 (2005).
    [CrossRef]
  25. L. W. Davis, "Theory of electromagnetic beams," Phys. Rev. A 19, 1177 - 1179 (1978).
    [CrossRef]
  26. B. Stout, J.-C. Auger, and J. Lafait, "A transfert matrix approach to local field calculations in multiple-scattering problems," J. Mod. Opt. 49, 2129 - 2152 (2002).
    [CrossRef]

2008

A. Sentenac and P. C. Chaumet, "Subdiffraction Light Focusing on a Grating Substrate," Phys. Rev. Lett. 101, 013901 (2008).
[CrossRef] [PubMed]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, "Bound states in the continuum in photonics," Phys. Rev. Lett. 100, 183902 (2008).
[CrossRef] [PubMed]

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Direct imaging of photonic nanojets," Opt. Express 16, 6930-6940 (2008)
[CrossRef] [PubMed]

A. Devilez, B. Stout, N. Bonod, and E. Popov, "Spectral analysis of three-dimensional photonic jets," Opt. Express 16, 14200 - 14212 (2008).
[CrossRef] [PubMed]

E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nature Nanotech. 3, 413 - 417 (2008).
[CrossRef] [PubMed]

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, "Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays," Small 4, 572-576 (2008)
[CrossRef] [PubMed]

J. Kasim, Y. Ting, Y. Y. Meng, L. J. Ping, A. See, L. L. Jong, and S. Z. Xiang, "Near-field Raman imaging using optically trapped dielectric microsphere," Opt. Express 16, 7976 - 7984 (2008).
[CrossRef] [PubMed]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Opt. Express 16, 13713 - 13719 (2008).
[CrossRef] [PubMed]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence," Opt. Express 16, 15297 - 15303 (2008).
[CrossRef] [PubMed]

2007

K. J. Yi, H. Wang, and Y. F. Lu, Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

2006

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

S. Noda, "Seeking the ultimate nanolaser," Science 314, 260-261 (2006).
[CrossRef] [PubMed]

J. Kofler and N. Arnold, "Axially symmetric focusing as a cuspoid diffraction catastrophe: scalar and vector cases and comparison with the theory of Mie," Phys. Rev. B. 73, 235401 (2006).
[CrossRef]

2005

2004

2003

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).

2002

K. Piglmayer, R. Denk, and D. Bäuerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

B. Stout, J.-C. Auger, and J. Lafait, "A transfert matrix approach to local field calculations in multiple-scattering problems," J. Mod. Opt. 49, 2129 - 2152 (2002).
[CrossRef]

2001

M. Mosbacher, H.-J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

1997

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

1978

L. W. Davis, "Theory of electromagnetic beams," Phys. Rev. A 19, 1177 - 1179 (1978).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Arnold, C. B.

E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nature Nanotech. 3, 413 - 417 (2008).
[CrossRef] [PubMed]

Arnold, N.

J. Kofler and N. Arnold, "Axially symmetric focusing as a cuspoid diffraction catastrophe: scalar and vector cases and comparison with the theory of Mie," Phys. Rev. B. 73, 235401 (2006).
[CrossRef]

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).

Auger, J.-C.

B. Stout, J.-C. Auger, and J. Lafait, "A transfert matrix approach to local field calculations in multiple-scattering problems," J. Mod. Opt. 49, 2129 - 2152 (2002).
[CrossRef]

Backman, V.

Bäuerle, D.

K. Piglmayer, R. Denk, and D. Bäuerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Boneberg, J.

M. Mosbacher, H.-J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

Bonod, N.

Borisov, A. G.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, "Bound states in the continuum in photonics," Phys. Rev. Lett. 100, 183902 (2008).
[CrossRef] [PubMed]

Bouhelier, A.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

Capoulade, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single-molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Chaker, M.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, "Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays," Small 4, 572-576 (2008)
[CrossRef] [PubMed]

Challener, W. A.

Chaumet, P. C.

A. Sentenac and P. C. Chaumet, "Subdiffraction Light Focusing on a Grating Substrate," Phys. Rev. Lett. 101, 013901 (2008).
[CrossRef] [PubMed]

Chen, Z.

Davis, L. W.

L. W. Davis, "Theory of electromagnetic beams," Phys. Rev. A 19, 1177 - 1179 (1978).
[CrossRef]

Delaporte, P.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, "Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays," Small 4, 572-576 (2008)
[CrossRef] [PubMed]

Denk, R.

K. Piglmayer, R. Denk, and D. Bäuerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

Devilez, A.

Dintinger, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single-molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single-molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

Ferrand, P.

Gachet, D.

Gérard, D.

Grojo, D.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, "Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays," Small 4, 572-576 (2008)
[CrossRef] [PubMed]

Guay, D.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, "Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays," Small 4, 572-576 (2008)
[CrossRef] [PubMed]

Hong, M. H.

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).

Huang, S. M.

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).

Itagi, A. V.

Jong, L. L.

Kasim, J.

Kofler, J.

J. Kofler and N. Arnold, "Axially symmetric focusing as a cuspoid diffraction catastrophe: scalar and vector cases and comparison with the theory of Mie," Phys. Rev. B. 73, 235401 (2006).
[CrossRef]

Kong, S.-C.

Lafait, J.

B. Stout, J.-C. Auger, and J. Lafait, "A transfert matrix approach to local field calculations in multiple-scattering problems," J. Mod. Opt. 49, 2129 - 2152 (2002).
[CrossRef]

Lecler, S.

Leiderer, P.

M. Mosbacher, H.-J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

Lenne, P.F.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single-molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Li, X.

Lu, Y. F.

K. J. Yi, H. Wang, and Y. F. Lu, Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Luk’yanchuk, B. S.

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).

Marinica, D. C.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, "Bound states in the continuum in photonics," Phys. Rev. Lett. 100, 183902 (2008).
[CrossRef] [PubMed]

McLeod, E.

E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nature Nanotech. 3, 413 - 417 (2008).
[CrossRef] [PubMed]

Meng, Y. Y.

Meyrueis, P.

Mosbacher, M.

M. Mosbacher, H.-J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

Münzer, H.-J.

M. Mosbacher, H.-J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

Neviere, M.

Nie, S.

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

Noda, S.

S. Noda, "Seeking the ultimate nanolaser," Science 314, 260-261 (2006).
[CrossRef] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Pereira, A.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, "Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays," Small 4, 572-576 (2008)
[CrossRef] [PubMed]

Pianta, M.

Piglmayer, K.

K. Piglmayer, R. Denk, and D. Bäuerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

Ping, L. J.

Popov, E.

Rigneault, H.

Sahakian, A.

See, A.

Sentenac, A.

A. Sentenac and P. C. Chaumet, "Subdiffraction Light Focusing on a Grating Substrate," Phys. Rev. Lett. 101, 013901 (2008).
[CrossRef] [PubMed]

Sentis, M.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, "Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays," Small 4, 572-576 (2008)
[CrossRef] [PubMed]

Shabanov, S. V.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, "Bound states in the continuum in photonics," Phys. Rev. Lett. 100, 183902 (2008).
[CrossRef] [PubMed]

Solis, J.

M. Mosbacher, H.-J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

Stout, B.

Taflove, A.

Takakura, Y.

Ting, Y.

Wang, H.

K. J. Yi, H. Wang, and Y. F. Lu, Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Wang, Z. B.

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).

Weeber, J.-C.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

Wenger, J.

Xiang, S. Z.

Yang, Z. Y.

K. J. Yi, H. Wang, and Y. F. Lu, Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Yi, K. J.

K. J. Yi, H. Wang, and Y. F. Lu, Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Zimmermann, J.

M. Mosbacher, H.-J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

Appl. Phys. A: Mater. Sci. Process.

M. Mosbacher, H.-J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).

Appl. Phys. Lett.

K. Piglmayer, R. Denk, and D. Bäuerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

J. Appl. Phys.

K. J. Yi, H. Wang, and Y. F. Lu, Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

J. Mod. Opt.

B. Stout, J.-C. Auger, and J. Lafait, "A transfert matrix approach to local field calculations in multiple-scattering problems," J. Mod. Opt. 49, 2129 - 2152 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

Nature nanotechnology

E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nature Nanotech. 3, 413 - 417 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

L. W. Davis, "Theory of electromagnetic beams," Phys. Rev. A 19, 1177 - 1179 (1978).
[CrossRef]

Phys. Rev. B.

J. Kofler and N. Arnold, "Axially symmetric focusing as a cuspoid diffraction catastrophe: scalar and vector cases and comparison with the theory of Mie," Phys. Rev. B. 73, 235401 (2006).
[CrossRef]

Phys. Rev. Lett.

A. Sentenac and P. C. Chaumet, "Subdiffraction Light Focusing on a Grating Substrate," Phys. Rev. Lett. 101, 013901 (2008).
[CrossRef] [PubMed]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, "Bound states in the continuum in photonics," Phys. Rev. Lett. 100, 183902 (2008).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single-molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Science

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

S. Noda, "Seeking the ultimate nanolaser," Science 314, 260-261 (2006).
[CrossRef] [PubMed]

Small

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, "Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays," Small 4, 572-576 (2008)
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MOV (2464 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Total electric field intensity map in logarithmic scale for d = 1.62 μm. The white circle represents the microsphere section, the thin black line represents the Imax /e 2 intensity contour. (b) and (c) display the intensity maps of the incident and scattered fields. The coherent summation of these two fields leads to the total intensity presented in (a).

Fig. 2.
Fig. 2.

Electric field intensity maps in logarithmic scale of (a) the scattered field and (b) the total field in the same conditions than previously but the sphere is illuminated by a plane wave. The incident intensity is normalized to be unitary per surface unit.

Fig. 3.
Fig. 3.

Effective volume as a function of the numerical aperture of the incident beam. The volumes are derived as in table 1 for the optimal value of d and normalized by (λ/n)3.

Fig. 4.
Fig. 4.

(2000KB) Movie of the electric field intensity map in logarithmic scale for d decreasing from d = 7 μm to d = 0 μm and N.A. ≈ 1 (Media 1). The white circle represents the sphere cross-section.

Tables (1)

Tables Icon

Table 1. Summary of the characteristics widths at Imax/e2 corresponding to the intensity maps displayed in Fig. 1. The volume is derived for the incident beam as V = π3/2 wxy 2 wz, and for the focus by the microsphere V = π3/2 wxy 2 wz/2 (let us recall that only the beam exiting the microsphere is considered here).

Metrics