Abstract

A vector radiative transfer model has been developed for coupled atmosphere and ocean systems based on the Successive Order of Scattering (SOS) Method. The emphasis of this study is to make the model easy-to-use and computationally efficient. This model provides the full Stokes vector at arbitrary locations which can be conveniently specified by users. The model is capable of tracking and labeling different sources of the photons that are measured, e.g. water leaving radiances and reflected sky lights. This model also has the capability to separate florescence from multi-scattered sunlight. The δ - fit technique has been adopted to reduce computational time associated with the strongly forward-peaked scattering phase matrices. The exponential - linear approximation has been used to reduce the number of discretized vertical layers while maintaining the accuracy. This model is developed to serve the remote sensing community in harvesting physical parameters from multi-platform, multi-sensor measurements that target different components of the atmosphere-oceanic system.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. S. Chandrasekhar, Radiative Transfer(Dover, New York, 1960).
  2. R. W. Preisendorfer, Radiative Transfer on Discrete Spaces(Pergamon Press, Oxford, 1965).
  3. H. C. van de Hulst, Multiple Light Scattering: Tables, Formulas, and Applications1 and 2 (Academic Press, New York, 1980).
  4. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters(Academic, San Diego, Calif., 1994).
  5. K.N. Liou, An Introduction to Atmospheric Radiation 2nd edition, (Academic, San Diego2002).
  6. A. Marshak and A. B. Davis (Eds.), 3D Radiative Transfer in Cloudy Atmospheres(Springer, 2005).
    [Crossref]
  7. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles (Cambridge University Press, New York, 2006).
  8. K. N. Liou, “A numerical experiment on Chandrasekhar’s discrete-ordinate method for radiative transfer: Application to cloudy and hazy atmospheres,” J. Atmos. Sci. 30, 1303–1326 (1973).
    [Crossref]
  9. K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate method radiative trasfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
    [Crossref] [PubMed]
  10. F. Weng, “A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere-I. theory,” J. Quant. Spectrosc. Radiat. Transfer 47, 19–33 (1992).
    [Crossref]
  11. F. Weng, “A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere-II. Application,” J. Quant. Spectrosc. Radiat. Transfer 47, 35–42 (1992).
    [Crossref]
  12. A. Sánchez, T. F. Smith, and W. F. Krajewski, “A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method,” Atmos. Research 33, 283–308 (1994).
    [Crossref]
  13. J. L. Haferman, T. F. Smith, and W. F. Krajewski, “A multi-dimensional discrete-ordinates method for polarized radiative transfer. Part I: validation for randomly oriented axisymmetric particles,” J. Quant. Spectrosc. Radiat. Transfer 58, 379–398 (1997).
    [Crossref]
  14. F. M. Schulz, K. Stanes, and F. Weng, “VDISORT: An improved and generalized discrete ordinate method for polarized vector radiative transfer,” J. Quant. Spectrosc. Radiat. Transfer 61, 105–122 (1999).
    [Crossref]
  15. C. E. Siewert, “A discrete-ordinates solution for radiative-transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 64, 227–254 (2000).
    [Crossref]
  16. V. A. Ambartzumian, “A new method for computing light scattering in turbid media,” Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 3, 97–104 (1942).
  17. V. A. Ambartzumian, Theoretical Astrophysics(Pergamon Press, New York, 1958).
  18. C. N. Adams and G. W. Kattawar, “Solutions of the equation of radiative transfer by an invariant imbedding approach,” J. Quant. Spectrosc. Radiat. Transfer 10, 341–366 (1970).
    [Crossref]
  19. M. I. Mishchenko, “Reflection of polarized light by plane-parallel slabs containing randomly-oriented, nonspherical particles,” J. Quant. Spectrosc. Radiat. Transfer 46, 171–181 (1991).
    [Crossref]
  20. M. I. Mishchenko and L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102, 16989–17013 (1997).
    [Crossref]
  21. G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. Roy. Soc., London  11, 545–556 (1862).
  22. J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres. part II. Sunlight reflected by terrestrial water clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
    [Crossref]
  23. G. N. Plass, G. W. Kattawar, and F. E. Catchings, “Matrix operator theory of radiative transfer. 1: Rayleigh-scattering,” Appl. Opt. 12, 314–329 (1973).
    [Crossref] [PubMed]
  24. G. W. Kattawar, G. N. Plass, and F. E. Catchings, “Matrix operator theory of radiative transfer. 2: scattering from marine haze, Appl. Opt. 12, 1071–1084 (1973).
    [Crossref] [PubMed]
  25. P. C. Waterman, “Matrix-exponential description of radiative transfer, J. Opt. Soc. Am. 71, 410–422 (1981).
  26. T. Nakajima and M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537 (1983).
    [Crossref]
  27. J. Fischer and H. Grassl, “Radiative transfer in an atmosphere-ocean system: an azimuthally dependent matrix operator approach,” Appl. Opt. 23, 1032–1039 (1984).
    [Crossref] [PubMed]
  28. Q. Liu and E. Ruprecht, “Radiative transfer model: matrix operator method,” Appl. Opt. 35, 4229–4237 (1996).
    [Crossref] [PubMed]
  29. P. Zhai, G. W. Kattawar, and P. Yang, “Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. II. The hybrid matrix operator-Monte Carlo method,” Appl. Opt. 47, 1063–1071 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ao-47-8-1063.
    [Crossref] [PubMed]
  30. V. Kourganoff, Basic Methods in Transfer Problems(Clarendon Press, London, 1952).
  31. R. D. M. Garcia and C. E. Siewert, “A generalized spherical harmonics solution for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 36, 401–423 (1986).
    [Crossref]
  32. E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Multicomponent approach to light propagation in clouds and mists,” Appl. Opt. 32, 2803–2812 (1993).
    [Crossref] [PubMed]
  33. E. P. Zege and L. I. Chaikovskaya, “New approach to the polarized radiative transfer problem,” J. Quant. Spec-trosc. Radiat. Transfer 55, 19–31 (1996).
    [Crossref]
  34. K. F. Evans, “The spherical harmonic discrete ordinate method for three-dimensional atmospheric radiative transfer,” J. Atmos. Sci. 55, 429–446 (1998).
    [Crossref]
  35. K. F. Evans, “SHDOMPPDA: A radiative transfer model for cloudy sky data assimilation”. J. Atmos. Sci. 64, 3858–3868 (2007).
    [Crossref]
  36. R. D. M. Garcia and C. E. Siewert, “The FN method for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 41, 117–145 (1989).
    [Crossref]
  37. W. M. F. Wauben and J. W. Hovenier, “Polarized radiation of an atmosphere containing randomly-oriented spheroids,” J. Quant. Spectrosc. Radiat. Transfer 47, 491–504 (1992).
    [Crossref]
  38. R.B. Myneni, G. Asrar, and E. T. Kanemasu, “Light scattering in plant canopies: the method of Successive Orders of Scattering Approximations (SOSA),” Agric. For. Meteorol. 39, 1–12 (1987).
    [Crossref]
  39. J. Lenoble, Atmospheric radiative transfer(A. Deepak Publishing1993).
  40. M. Chami, R. Santer, and E. Dilligeard, “Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing,” Appl. Opt. 40, 2398–2416 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ao-40-15-2398.
    [Crossref]
  41. Q. Min and M. Duan, “A successive order of scattering model for solving vector radiative transfer in the atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 87, 243–259 (2004).
    [Crossref]
  42. M. Duan and Q. Min, “A semi-analytic technique to speed up successive order of scattering model for optically thick media,” J. Quant. Spectrosc. Radiat. Transfer 95, 21–32 (2005).
    [Crossref]
  43. T. Greenwald, R. Bennartz, C. O’Dell, and A. Heidinger, “Fast computation of microwave radiances for data assimilation using the Successive Order of Scattering method,” J. Appl. Meteorol. 44, 960–966 (2005).
    [Crossref]
  44. A. K. Heidinger, C. O’Dell, R. Bennartz, and T. Greenwald, “The successive-order-of-interaction radiative transfer model. part I: model development,” J. Appl. Meteorol. Climatol. 45, 1388–1402 (2005).
    [Crossref]
  45. S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and F. J. Klemm, “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance,” Appl. Opt. 45, 6762–6774 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-26-6762.
    [Crossref] [PubMed]
  46. S. Y. Kotchenova and E. F. Vermote, “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces,” Appl. Opt. 46, 4455–4464 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ao-46-20-4455.
    [Crossref] [PubMed]
  47. J. Lenoble, M. Herman, J.L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
    [Crossref]
  48. T. Suzuki, T. Nakajima, and M. Tanaka, “Scaling algorithms for the calculation of solar radiative fluxes,” J. Quant. Spectrosc. Radiat. Transfer 107, 458–469 (2007).
    [Crossref]
  49. G. N. Plass and G. W. Kattawar, “Monte Carlo calculations of light scattering from clouds,” Appl. Opt. 7, 415–419 (1968).
    [Crossref] [PubMed]
  50. G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7, 1519–1527 (1968).
    [Crossref] [PubMed]
  51. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin, and B. S. Elepov, the Monte Carlo Methods in Atmospheric Optics(Springer-Verlag, Berlin, 1980).
  52. G. W. Kattawar, editor, Selected Papers on Multiple Scattering in Plane Parallel Atmospheres and Oceans: Methods SPIE milestone seres, (MS42, Bellingham, WA, 1991).
  53. L. Roberti and C. Kummerow, “Monte Carlo calculations of polarized microwave radiation emerging from cloud structures,” J. Geophy. Res. 104, 2093–2104 (1999).
    [Crossref]
  54. H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40, 400–412 (2001).
    [Crossref]
  55. D. M. O’Brien, “Accelerated quasi Monte Carlo integration of the radiative transfer equation,” J. Quant. Spec-trosc. Radiat. Transfer 48, 41–59 (1992).
    [Crossref]
  56. I3RC group, “I3RC Monte Carlo community model of 3D radiative transfer,” http://i3rc.gsfc.nasa.gov/I3RC-intro.html.
  57. G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989).
    [Crossref]
  58. H. R. Gordon, “Ship perturbation of irradiance measurements at sea. 1: Monte Carlo simulations,” Appl. Opt. 24, 4172–4182 (1985).
    [Crossref] [PubMed]
  59. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
    [Crossref] [PubMed]
  60. Z. Jin and K. Stamnes, “Radiative transfer in nonuniformly refracting layered media: atmosphere-ocean system,” Appl. Opt. 33, 431–442 (1994).
    [Crossref] [PubMed]
  61. B. Bulgarelli, V. B. Kisselev, and L. Roberti, “Radiative Transfer in the Atmosphere-Ocean System: The Finite-Element Method,” Appl. Opt. 38, 1530–1542 (1999), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1530.
    [Crossref]
  62. P. N. Reinersman and K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34, 4453–4471 (1995).
    [Crossref] [PubMed]
  63. Z. Jin, T. P. Charlock, K. Rutledge, K. Stamnes, and Y. Wang, “Analytical solution of radiative transfer in the coupled atmosphereocean system with a rough surface,” Appl. Opt. 45, 7443–7455 (2006).
    [Crossref] [PubMed]
  64. J. Chowdhary, B. Cairns, and L. D. Travis, “Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters,” Appl. Opt. 45, 5542–5567 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-22-5542.
    [Crossref] [PubMed]
  65. P. Zhai, G. W. Kattawar, and P. Yang, “Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method,” Appl. Opt. 47, 1037–1047 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ao-47-8-1037.
    [Crossref] [PubMed]
  66. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I Waters),” J. Geophys. Res. 93, 10479–10768 (1988).
    [Crossref]
  67. Concise Dictionary of Scientific Biography, (Scribner, New York, 1981), p. 643. Willebrord Snel von Royen used only one l in his last name.
  68. C. Cox and W. Munk, “Statistics of sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).
  69. Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
    [Crossref]
  70. A. Hammad and S. Chapman, “The primary and secondary scattering of sun light in a plane-stratified atmosphere of uniform composition,” Philos. Mag. 28, 99–110 (1939).
  71. J. Lenoble, editor. Radiative transfer in scattering and absorbing atmospheres: standard computational procedures (A. Deepak Publishing, 1985).
  72. I. Kuščer and M. Ribarič, “Matrix formalism in the theory of diffusion of light,” Opt. Acta 6, 42–51 (1959).
    [Crossref]
  73. C. E. Siewert, “On the phase matrix basic to the scattering of polarized light,” Astron. Astrophys. 109, 195–200 (1982).
  74. J. W. Hovenier and C. V. M. van der Mee, “Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere,” Astron. Astrophys. 128, 1–16 (1983).
  75. I. M. Gel’fand and Z. Y. Sapiro, “Representation of the group of rotations of 3-dimensional space and their applications,” Amer. Math. Soc. Transl. 2, 207–316 (1956).
  76. E. P. Wigner, Group theoy and its application to the quantum mechanics of atomic spectra(Academic Press, New York, 1959).
  77. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge2002).
  78. J. L. Deuzé, M. Herman, and R. Santer, “Fourier series expansion of the transfer equation in the oceanatmosphere system,” J. Quant. Spectrosc. Radiat. Transfer 41, 483–494 (1989).
    [Crossref]
  79. C. V. M. Van der Mee and J. W. Hovenier, “Expansion coefcients in polarized light transfer,” Astron. Astrophys. 228, 559–568 (1990).
  80. A. Kylling and K. Stamnes, “Efficient yet accurate solution of the linear transport equation in the presence of internal sources: the exponential-linear-in depth approximation,” J. Comput. Phys. 102, 265–276 (1992).
    [Crossref]
  81. L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [Crossref]
  82. T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters (Scripps Institution of Oceanography, 1977).
  83. K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984).
    [Crossref] [PubMed]
  84. M. Herman, J.L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
    [Crossref]
  85. B. Cairns, E. E. Russell, J. D. LaVeigne, and P. M. W. Tennant. “Research scanning polarimeter and airborne usage for remote sensing of aerosols,” Proc SPIE 5158, 33–44 (2003).
    [Crossref]
  86. M. I. Mishchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission,” Bull. Amer. Meteorol. Soc. 88, 677–691 (2007).
    [Crossref]
  87. W. J. Wiscombe, “The Delta-M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions,” J. Atmos. Sci. 34, 1408–1422 (1977).
    [Crossref]
  88. Y. -X. Hu, B. Wielicki, B. Lin, G. Gibson, S. -C. Tsay, K. Stamnes, and T. Wong, “δ-Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting,” J. Quant. Spectrosc. Radiat. Transfer 65, 681–690 (2000).
    [Crossref]
  89. T. Nakajima and M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
    [Crossref]

2008 (2)

2007 (5)

S. Y. Kotchenova and E. F. Vermote, “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces,” Appl. Opt. 46, 4455–4464 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ao-46-20-4455.
[Crossref] [PubMed]

J. Lenoble, M. Herman, J.L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

T. Suzuki, T. Nakajima, and M. Tanaka, “Scaling algorithms for the calculation of solar radiative fluxes,” J. Quant. Spectrosc. Radiat. Transfer 107, 458–469 (2007).
[Crossref]

K. F. Evans, “SHDOMPPDA: A radiative transfer model for cloudy sky data assimilation”. J. Atmos. Sci. 64, 3858–3868 (2007).
[Crossref]

M. I. Mishchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission,” Bull. Amer. Meteorol. Soc. 88, 677–691 (2007).
[Crossref]

2006 (3)

2005 (4)

M. Duan and Q. Min, “A semi-analytic technique to speed up successive order of scattering model for optically thick media,” J. Quant. Spectrosc. Radiat. Transfer 95, 21–32 (2005).
[Crossref]

T. Greenwald, R. Bennartz, C. O’Dell, and A. Heidinger, “Fast computation of microwave radiances for data assimilation using the Successive Order of Scattering method,” J. Appl. Meteorol. 44, 960–966 (2005).
[Crossref]

A. K. Heidinger, C. O’Dell, R. Bennartz, and T. Greenwald, “The successive-order-of-interaction radiative transfer model. part I: model development,” J. Appl. Meteorol. Climatol. 45, 1388–1402 (2005).
[Crossref]

M. Herman, J.L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
[Crossref]

2004 (1)

Q. Min and M. Duan, “A successive order of scattering model for solving vector radiative transfer in the atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 87, 243–259 (2004).
[Crossref]

2003 (1)

B. Cairns, E. E. Russell, J. D. LaVeigne, and P. M. W. Tennant. “Research scanning polarimeter and airborne usage for remote sensing of aerosols,” Proc SPIE 5158, 33–44 (2003).
[Crossref]

2002 (1)

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge2002).

2001 (3)

2000 (2)

C. E. Siewert, “A discrete-ordinates solution for radiative-transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 64, 227–254 (2000).
[Crossref]

Y. -X. Hu, B. Wielicki, B. Lin, G. Gibson, S. -C. Tsay, K. Stamnes, and T. Wong, “δ-Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting,” J. Quant. Spectrosc. Radiat. Transfer 65, 681–690 (2000).
[Crossref]

1999 (3)

F. M. Schulz, K. Stanes, and F. Weng, “VDISORT: An improved and generalized discrete ordinate method for polarized vector radiative transfer,” J. Quant. Spectrosc. Radiat. Transfer 61, 105–122 (1999).
[Crossref]

L. Roberti and C. Kummerow, “Monte Carlo calculations of polarized microwave radiation emerging from cloud structures,” J. Geophy. Res. 104, 2093–2104 (1999).
[Crossref]

B. Bulgarelli, V. B. Kisselev, and L. Roberti, “Radiative Transfer in the Atmosphere-Ocean System: The Finite-Element Method,” Appl. Opt. 38, 1530–1542 (1999), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1530.
[Crossref]

1998 (1)

K. F. Evans, “The spherical harmonic discrete ordinate method for three-dimensional atmospheric radiative transfer,” J. Atmos. Sci. 55, 429–446 (1998).
[Crossref]

1997 (2)

M. I. Mishchenko and L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102, 16989–17013 (1997).
[Crossref]

J. L. Haferman, T. F. Smith, and W. F. Krajewski, “A multi-dimensional discrete-ordinates method for polarized radiative transfer. Part I: validation for randomly oriented axisymmetric particles,” J. Quant. Spectrosc. Radiat. Transfer 58, 379–398 (1997).
[Crossref]

1996 (2)

E. P. Zege and L. I. Chaikovskaya, “New approach to the polarized radiative transfer problem,” J. Quant. Spec-trosc. Radiat. Transfer 55, 19–31 (1996).
[Crossref]

Q. Liu and E. Ruprecht, “Radiative transfer model: matrix operator method,” Appl. Opt. 35, 4229–4237 (1996).
[Crossref] [PubMed]

1995 (1)

1994 (2)

Z. Jin and K. Stamnes, “Radiative transfer in nonuniformly refracting layered media: atmosphere-ocean system,” Appl. Opt. 33, 431–442 (1994).
[Crossref] [PubMed]

A. Sánchez, T. F. Smith, and W. F. Krajewski, “A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method,” Atmos. Research 33, 283–308 (1994).
[Crossref]

1993 (2)

1992 (5)

D. M. O’Brien, “Accelerated quasi Monte Carlo integration of the radiative transfer equation,” J. Quant. Spec-trosc. Radiat. Transfer 48, 41–59 (1992).
[Crossref]

A. Kylling and K. Stamnes, “Efficient yet accurate solution of the linear transport equation in the presence of internal sources: the exponential-linear-in depth approximation,” J. Comput. Phys. 102, 265–276 (1992).
[Crossref]

W. M. F. Wauben and J. W. Hovenier, “Polarized radiation of an atmosphere containing randomly-oriented spheroids,” J. Quant. Spectrosc. Radiat. Transfer 47, 491–504 (1992).
[Crossref]

F. Weng, “A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere-I. theory,” J. Quant. Spectrosc. Radiat. Transfer 47, 19–33 (1992).
[Crossref]

F. Weng, “A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere-II. Application,” J. Quant. Spectrosc. Radiat. Transfer 47, 35–42 (1992).
[Crossref]

1991 (1)

M. I. Mishchenko, “Reflection of polarized light by plane-parallel slabs containing randomly-oriented, nonspherical particles,” J. Quant. Spectrosc. Radiat. Transfer 46, 171–181 (1991).
[Crossref]

1990 (1)

C. V. M. Van der Mee and J. W. Hovenier, “Expansion coefcients in polarized light transfer,” Astron. Astrophys. 228, 559–568 (1990).

1989 (3)

J. L. Deuzé, M. Herman, and R. Santer, “Fourier series expansion of the transfer equation in the oceanatmosphere system,” J. Quant. Spectrosc. Radiat. Transfer 41, 483–494 (1989).
[Crossref]

G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989).
[Crossref]

R. D. M. Garcia and C. E. Siewert, “The FN method for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 41, 117–145 (1989).
[Crossref]

1988 (3)

K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate method radiative trasfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
[Crossref] [PubMed]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I Waters),” J. Geophys. Res. 93, 10479–10768 (1988).
[Crossref]

T. Nakajima and M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[Crossref]

1987 (1)

R.B. Myneni, G. Asrar, and E. T. Kanemasu, “Light scattering in plant canopies: the method of Successive Orders of Scattering Approximations (SOSA),” Agric. For. Meteorol. 39, 1–12 (1987).
[Crossref]

1986 (1)

R. D. M. Garcia and C. E. Siewert, “A generalized spherical harmonics solution for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 36, 401–423 (1986).
[Crossref]

1985 (1)

1984 (2)

1983 (2)

T. Nakajima and M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537 (1983).
[Crossref]

J. W. Hovenier and C. V. M. van der Mee, “Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere,” Astron. Astrophys. 128, 1–16 (1983).

1982 (1)

C. E. Siewert, “On the phase matrix basic to the scattering of polarized light,” Astron. Astrophys. 109, 195–200 (1982).

1981 (1)

1977 (1)

W. J. Wiscombe, “The Delta-M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions,” J. Atmos. Sci. 34, 1408–1422 (1977).
[Crossref]

1973 (3)

1971 (1)

J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres. part II. Sunlight reflected by terrestrial water clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
[Crossref]

1970 (1)

C. N. Adams and G. W. Kattawar, “Solutions of the equation of radiative transfer by an invariant imbedding approach,” J. Quant. Spectrosc. Radiat. Transfer 10, 341–366 (1970).
[Crossref]

1968 (2)

1959 (2)

E. P. Wigner, Group theoy and its application to the quantum mechanics of atomic spectra(Academic Press, New York, 1959).

I. Kuščer and M. Ribarič, “Matrix formalism in the theory of diffusion of light,” Opt. Acta 6, 42–51 (1959).
[Crossref]

1956 (1)

I. M. Gel’fand and Z. Y. Sapiro, “Representation of the group of rotations of 3-dimensional space and their applications,” Amer. Math. Soc. Transl. 2, 207–316 (1956).

1954 (1)

C. Cox and W. Munk, “Statistics of sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

1942 (1)

V. A. Ambartzumian, “A new method for computing light scattering in turbid media,” Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 3, 97–104 (1942).

1941 (1)

L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

1939 (1)

A. Hammad and S. Chapman, “The primary and secondary scattering of sun light in a plane-stratified atmosphere of uniform composition,” Philos. Mag. 28, 99–110 (1939).

1862 (1)

G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. Roy. Soc., London  11, 545–556 (1862).

Adams, C. N.

G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989).
[Crossref]

C. N. Adams and G. W. Kattawar, “Solutions of the equation of radiative transfer by an invariant imbedding approach,” J. Quant. Spectrosc. Radiat. Transfer 10, 341–366 (1970).
[Crossref]

Ambartzumian, V. A.

V. A. Ambartzumian, “A new method for computing light scattering in turbid media,” Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 3, 97–104 (1942).

V. A. Ambartzumian, Theoretical Astrophysics(Pergamon Press, New York, 1958).

Asrar, G.

R.B. Myneni, G. Asrar, and E. T. Kanemasu, “Light scattering in plant canopies: the method of Successive Orders of Scattering Approximations (SOSA),” Agric. For. Meteorol. 39, 1–12 (1987).
[Crossref]

Baum, B.

Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
[Crossref]

Bennartz, R.

T. Greenwald, R. Bennartz, C. O’Dell, and A. Heidinger, “Fast computation of microwave radiances for data assimilation using the Successive Order of Scattering method,” J. Appl. Meteorol. 44, 960–966 (2005).
[Crossref]

A. K. Heidinger, C. O’Dell, R. Bennartz, and T. Greenwald, “The successive-order-of-interaction radiative transfer model. part I: model development,” J. Appl. Meteorol. Climatol. 45, 1388–1402 (2005).
[Crossref]

Bulgarelli, B.

Cairns, B.

M. I. Mishchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission,” Bull. Amer. Meteorol. Soc. 88, 677–691 (2007).
[Crossref]

J. Chowdhary, B. Cairns, and L. D. Travis, “Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters,” Appl. Opt. 45, 5542–5567 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-22-5542.
[Crossref] [PubMed]

B. Cairns, E. E. Russell, J. D. LaVeigne, and P. M. W. Tennant. “Research scanning polarimeter and airborne usage for remote sensing of aerosols,” Proc SPIE 5158, 33–44 (2003).
[Crossref]

Carder, K. L.

Catchings, F. E.

Chaikovskaya, L. I.

Chami, M.

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer(Dover, New York, 1960).

Chapman, S.

A. Hammad and S. Chapman, “The primary and secondary scattering of sun light in a plane-stratified atmosphere of uniform composition,” Philos. Mag. 28, 99–110 (1939).

Charlock, T. P.

Chowdhary, J.

Cox, C.

C. Cox and W. Munk, “Statistics of sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

Darbinjan, R. A.

G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin, and B. S. Elepov, the Monte Carlo Methods in Atmospheric Optics(Springer-Verlag, Berlin, 1980).

Davis, A. B.

A. Marshak and A. B. Davis (Eds.), 3D Radiative Transfer in Cloudy Atmospheres(Springer, 2005).
[Crossref]

Deuzé, J. L.

J. L. Deuzé, M. Herman, and R. Santer, “Fourier series expansion of the transfer equation in the oceanatmosphere system,” J. Quant. Spectrosc. Radiat. Transfer 41, 483–494 (1989).
[Crossref]

Deuzé, J.L.

J. Lenoble, M. Herman, J.L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

M. Herman, J.L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
[Crossref]

Dilligeard, E.

Duan, M.

M. Duan and Q. Min, “A semi-analytic technique to speed up successive order of scattering model for optically thick media,” J. Quant. Spectrosc. Radiat. Transfer 95, 21–32 (2005).
[Crossref]

Q. Min and M. Duan, “A successive order of scattering model for solving vector radiative transfer in the atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 87, 243–259 (2004).
[Crossref]

Elepov, B. S.

G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin, and B. S. Elepov, the Monte Carlo Methods in Atmospheric Optics(Springer-Verlag, Berlin, 1980).

Evans, K. F.

K. F. Evans, “SHDOMPPDA: A radiative transfer model for cloudy sky data assimilation”. J. Atmos. Sci. 64, 3858–3868 (2007).
[Crossref]

K. F. Evans, “The spherical harmonic discrete ordinate method for three-dimensional atmospheric radiative transfer,” J. Atmos. Sci. 55, 429–446 (1998).
[Crossref]

Fafaul, B. A.

M. I. Mishchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission,” Bull. Amer. Meteorol. Soc. 88, 677–691 (2007).
[Crossref]

Fischer, J.

Fry, E. S.

Garcia, R. D. M.

R. D. M. Garcia and C. E. Siewert, “The FN method for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 41, 117–145 (1989).
[Crossref]

R. D. M. Garcia and C. E. Siewert, “A generalized spherical harmonics solution for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 36, 401–423 (1986).
[Crossref]

Gel’fand, I. M.

I. M. Gel’fand and Z. Y. Sapiro, “Representation of the group of rotations of 3-dimensional space and their applications,” Amer. Math. Soc. Transl. 2, 207–316 (1956).

Gentili, B.

Gibson, G.

Y. -X. Hu, B. Wielicki, B. Lin, G. Gibson, S. -C. Tsay, K. Stamnes, and T. Wong, “δ-Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting,” J. Quant. Spectrosc. Radiat. Transfer 65, 681–690 (2000).
[Crossref]

Gordon, H. R.

Grassl, H.

Greenstein, J. L.

L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Greenwald, T.

A. K. Heidinger, C. O’Dell, R. Bennartz, and T. Greenwald, “The successive-order-of-interaction radiative transfer model. part I: model development,” J. Appl. Meteorol. Climatol. 45, 1388–1402 (2005).
[Crossref]

T. Greenwald, R. Bennartz, C. O’Dell, and A. Heidinger, “Fast computation of microwave radiances for data assimilation using the Successive Order of Scattering method,” J. Appl. Meteorol. 44, 960–966 (2005).
[Crossref]

Haferman, J. L.

J. L. Haferman, T. F. Smith, and W. F. Krajewski, “A multi-dimensional discrete-ordinates method for polarized radiative transfer. Part I: validation for randomly oriented axisymmetric particles,” J. Quant. Spectrosc. Radiat. Transfer 58, 379–398 (1997).
[Crossref]

Hammad, A.

A. Hammad and S. Chapman, “The primary and secondary scattering of sun light in a plane-stratified atmosphere of uniform composition,” Philos. Mag. 28, 99–110 (1939).

Hansen, J. E.

M. I. Mishchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission,” Bull. Amer. Meteorol. Soc. 88, 677–691 (2007).
[Crossref]

J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres. part II. Sunlight reflected by terrestrial water clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
[Crossref]

Heidinger, A.

T. Greenwald, R. Bennartz, C. O’Dell, and A. Heidinger, “Fast computation of microwave radiances for data assimilation using the Successive Order of Scattering method,” J. Appl. Meteorol. 44, 960–966 (2005).
[Crossref]

Heidinger, A. K.

A. K. Heidinger, C. O’Dell, R. Bennartz, and T. Greenwald, “The successive-order-of-interaction radiative transfer model. part I: model development,” J. Appl. Meteorol. Climatol. 45, 1388–1402 (2005).
[Crossref]

Henyey, L. C.

L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Herman, M.

J. Lenoble, M. Herman, J.L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

M. Herman, J.L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
[Crossref]

J. L. Deuzé, M. Herman, and R. Santer, “Fourier series expansion of the transfer equation in the oceanatmosphere system,” J. Quant. Spectrosc. Radiat. Transfer 41, 483–494 (1989).
[Crossref]

Hooker, R. J.

M. I. Mishchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission,” Bull. Amer. Meteorol. Soc. 88, 677–691 (2007).
[Crossref]

Hovenier, J. W.

W. M. F. Wauben and J. W. Hovenier, “Polarized radiation of an atmosphere containing randomly-oriented spheroids,” J. Quant. Spectrosc. Radiat. Transfer 47, 491–504 (1992).
[Crossref]

C. V. M. Van der Mee and J. W. Hovenier, “Expansion coefcients in polarized light transfer,” Astron. Astrophys. 228, 559–568 (1990).

J. W. Hovenier and C. V. M. van der Mee, “Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere,” Astron. Astrophys. 128, 1–16 (1983).

Hu, Y.

Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
[Crossref]

Hu, Y. -X.

Y. -X. Hu, B. Wielicki, B. Lin, G. Gibson, S. -C. Tsay, K. Stamnes, and T. Wong, “δ-Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting,” J. Quant. Spectrosc. Radiat. Transfer 65, 681–690 (2000).
[Crossref]

Itchkawich, T.

M. I. Mishchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission,” Bull. Amer. Meteorol. Soc. 88, 677–691 (2007).
[Crossref]

Jayaweera, K.

Jin, Z.

Kanemasu, E. T.

R.B. Myneni, G. Asrar, and E. T. Kanemasu, “Light scattering in plant canopies: the method of Successive Orders of Scattering Approximations (SOSA),” Agric. For. Meteorol. 39, 1–12 (1987).
[Crossref]

Kargin, B. A.

G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin, and B. S. Elepov, the Monte Carlo Methods in Atmospheric Optics(Springer-Verlag, Berlin, 1980).

Katsev, I. L.

Kattawar, G. W.

P. Zhai, G. W. Kattawar, and P. Yang, “Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method,” Appl. Opt. 47, 1037–1047 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ao-47-8-1037.
[Crossref] [PubMed]

P. Zhai, G. W. Kattawar, and P. Yang, “Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. II. The hybrid matrix operator-Monte Carlo method,” Appl. Opt. 47, 1063–1071 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ao-47-8-1063.
[Crossref] [PubMed]

H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40, 400–412 (2001).
[Crossref]

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[Crossref] [PubMed]

G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989).
[Crossref]

G. N. Plass, G. W. Kattawar, and F. E. Catchings, “Matrix operator theory of radiative transfer. 1: Rayleigh-scattering,” Appl. Opt. 12, 314–329 (1973).
[Crossref] [PubMed]

G. W. Kattawar, G. N. Plass, and F. E. Catchings, “Matrix operator theory of radiative transfer. 2: scattering from marine haze, Appl. Opt. 12, 1071–1084 (1973).
[Crossref] [PubMed]

C. N. Adams and G. W. Kattawar, “Solutions of the equation of radiative transfer by an invariant imbedding approach,” J. Quant. Spectrosc. Radiat. Transfer 10, 341–366 (1970).
[Crossref]

G. N. Plass and G. W. Kattawar, “Monte Carlo calculations of light scattering from clouds,” Appl. Opt. 7, 415–419 (1968).
[Crossref] [PubMed]

G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7, 1519–1527 (1968).
[Crossref] [PubMed]

Kisselev, V. B.

Klemm, F. J.

Kopp, G.

M. I. Mishchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission,” Bull. Amer. Meteorol. Soc. 88, 677–691 (2007).
[Crossref]

Kotchenova, S. Y.

Kourganoff, V.

V. Kourganoff, Basic Methods in Transfer Problems(Clarendon Press, London, 1952).

Krajewski, W. F.

J. L. Haferman, T. F. Smith, and W. F. Krajewski, “A multi-dimensional discrete-ordinates method for polarized radiative transfer. Part I: validation for randomly oriented axisymmetric particles,” J. Quant. Spectrosc. Radiat. Transfer 58, 379–398 (1997).
[Crossref]

A. Sánchez, T. F. Smith, and W. F. Krajewski, “A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method,” Atmos. Research 33, 283–308 (1994).
[Crossref]

Kummerow, C.

L. Roberti and C. Kummerow, “Monte Carlo calculations of polarized microwave radiation emerging from cloud structures,” J. Geophy. Res. 104, 2093–2104 (1999).
[Crossref]

Kušcer, I.

I. Kuščer and M. Ribarič, “Matrix formalism in the theory of diffusion of light,” Opt. Acta 6, 42–51 (1959).
[Crossref]

Kylling, A.

A. Kylling and K. Stamnes, “Efficient yet accurate solution of the linear transport equation in the presence of internal sources: the exponential-linear-in depth approximation,” J. Comput. Phys. 102, 265–276 (1992).
[Crossref]

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge2002).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles (Cambridge University Press, New York, 2006).

Lafrance, B.

J. Lenoble, M. Herman, J.L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

Lallart, P.

M. Herman, J.L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
[Crossref]

LaVeigne, J. D.

B. Cairns, E. E. Russell, J. D. LaVeigne, and P. M. W. Tennant. “Research scanning polarimeter and airborne usage for remote sensing of aerosols,” Proc SPIE 5158, 33–44 (2003).
[Crossref]

Lenoble, J.

J. Lenoble, M. Herman, J.L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

J. Lenoble, Atmospheric radiative transfer(A. Deepak Publishing1993).

Lin, B.

Y. -X. Hu, B. Wielicki, B. Lin, G. Gibson, S. -C. Tsay, K. Stamnes, and T. Wong, “δ-Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting,” J. Quant. Spectrosc. Radiat. Transfer 65, 681–690 (2000).
[Crossref]

Liou, K. N.

K. N. Liou, “A numerical experiment on Chandrasekhar’s discrete-ordinate method for radiative transfer: Application to cloudy and hazy atmospheres,” J. Atmos. Sci. 30, 1303–1326 (1973).
[Crossref]

Liou, K.N.

K.N. Liou, An Introduction to Atmospheric Radiation 2nd edition, (Academic, San Diego2002).

Liu, Q.

Marchand, A.

M. Herman, J.L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
[Crossref]

Marchuk, G. I.

G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin, and B. S. Elepov, the Monte Carlo Methods in Atmospheric Optics(Springer-Verlag, Berlin, 1980).

Maring, H. B.

M. I. Mishchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission,” Bull. Amer. Meteorol. Soc. 88, 677–691 (2007).
[Crossref]

Marshak, A.

A. Marshak and A. B. Davis (Eds.), 3D Radiative Transfer in Cloudy Atmospheres(Springer, 2005).
[Crossref]

Matarrese, R.

Mikhailov, G. A.

G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin, and B. S. Elepov, the Monte Carlo Methods in Atmospheric Optics(Springer-Verlag, Berlin, 1980).

Min, Q.

M. Duan and Q. Min, “A semi-analytic technique to speed up successive order of scattering model for optically thick media,” J. Quant. Spectrosc. Radiat. Transfer 95, 21–32 (2005).
[Crossref]

Q. Min and M. Duan, “A successive order of scattering model for solving vector radiative transfer in the atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 87, 243–259 (2004).
[Crossref]

Mishchenko, M. I.

M. I. Mishchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission,” Bull. Amer. Meteorol. Soc. 88, 677–691 (2007).
[Crossref]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge2002).

M. I. Mishchenko and L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102, 16989–17013 (1997).
[Crossref]

M. I. Mishchenko, “Reflection of polarized light by plane-parallel slabs containing randomly-oriented, nonspherical particles,” J. Quant. Spectrosc. Radiat. Transfer 46, 171–181 (1991).
[Crossref]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles (Cambridge University Press, New York, 2006).

Mobley, C. D.

Morel, A.

Munk, W.

C. Cox and W. Munk, “Statistics of sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

Myneni, R.B.

R.B. Myneni, G. Asrar, and E. T. Kanemasu, “Light scattering in plant canopies: the method of Successive Orders of Scattering Approximations (SOSA),” Agric. For. Meteorol. 39, 1–12 (1987).
[Crossref]

Nakajima, T.

T. Suzuki, T. Nakajima, and M. Tanaka, “Scaling algorithms for the calculation of solar radiative fluxes,” J. Quant. Spectrosc. Radiat. Transfer 107, 458–469 (2007).
[Crossref]

T. Nakajima and M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[Crossref]

T. Nakajima and M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537 (1983).
[Crossref]

Nazaraliev, M. A.

G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin, and B. S. Elepov, the Monte Carlo Methods in Atmospheric Optics(Springer-Verlag, Berlin, 1980).

O’Brien, D. M.

D. M. O’Brien, “Accelerated quasi Monte Carlo integration of the radiative transfer equation,” J. Quant. Spec-trosc. Radiat. Transfer 48, 41–59 (1992).
[Crossref]

O’Dell, C.

A. K. Heidinger, C. O’Dell, R. Bennartz, and T. Greenwald, “The successive-order-of-interaction radiative transfer model. part I: model development,” J. Appl. Meteorol. Climatol. 45, 1388–1402 (2005).
[Crossref]

T. Greenwald, R. Bennartz, C. O’Dell, and A. Heidinger, “Fast computation of microwave radiances for data assimilation using the Successive Order of Scattering method,” J. Appl. Meteorol. 44, 960–966 (2005).
[Crossref]

Petzold, T. J.

T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters (Scripps Institution of Oceanography, 1977).

Plass, G. N.

Polonsky, I. N.

Poole, L.

Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
[Crossref]

Preisendorfer, R. W.

R. W. Preisendorfer, Radiative Transfer on Discrete Spaces(Pergamon Press, Oxford, 1965).

Prikhach, A. S.

Reinersman, P.

Reinersman, P. N.

Ribaric, M.

I. Kuščer and M. Ribarič, “Matrix formalism in the theory of diffusion of light,” Opt. Acta 6, 42–51 (1959).
[Crossref]

Roberti, L.

L. Roberti and C. Kummerow, “Monte Carlo calculations of polarized microwave radiation emerging from cloud structures,” J. Geophy. Res. 104, 2093–2104 (1999).
[Crossref]

B. Bulgarelli, V. B. Kisselev, and L. Roberti, “Radiative Transfer in the Atmosphere-Ocean System: The Finite-Element Method,” Appl. Opt. 38, 1530–1542 (1999), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1530.
[Crossref]

Roger, B.

M. Herman, J.L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
[Crossref]

Ruprecht, E.

Russell, E. E.

B. Cairns, E. E. Russell, J. D. LaVeigne, and P. M. W. Tennant. “Research scanning polarimeter and airborne usage for remote sensing of aerosols,” Proc SPIE 5158, 33–44 (2003).
[Crossref]

Rutledge, K.

Sánchez, A.

A. Sánchez, T. F. Smith, and W. F. Krajewski, “A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method,” Atmos. Research 33, 283–308 (1994).
[Crossref]

Santer, R.

J. Lenoble, M. Herman, J.L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

M. Chami, R. Santer, and E. Dilligeard, “Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing,” Appl. Opt. 40, 2398–2416 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ao-40-15-2398.
[Crossref]

J. L. Deuzé, M. Herman, and R. Santer, “Fourier series expansion of the transfer equation in the oceanatmosphere system,” J. Quant. Spectrosc. Radiat. Transfer 41, 483–494 (1989).
[Crossref]

Sapiro, Z. Y.

I. M. Gel’fand and Z. Y. Sapiro, “Representation of the group of rotations of 3-dimensional space and their applications,” Amer. Math. Soc. Transl. 2, 207–316 (1956).

Schueler, C. F.

M. I. Mishchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission,” Bull. Amer. Meteorol. Soc. 88, 677–691 (2007).
[Crossref]

Schulz, F. M.

F. M. Schulz, K. Stanes, and F. Weng, “VDISORT: An improved and generalized discrete ordinate method for polarized vector radiative transfer,” J. Quant. Spectrosc. Radiat. Transfer 61, 105–122 (1999).
[Crossref]

Siewert, C. E.

C. E. Siewert, “A discrete-ordinates solution for radiative-transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 64, 227–254 (2000).
[Crossref]

R. D. M. Garcia and C. E. Siewert, “The FN method for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 41, 117–145 (1989).
[Crossref]

R. D. M. Garcia and C. E. Siewert, “A generalized spherical harmonics solution for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 36, 401–423 (1986).
[Crossref]

C. E. Siewert, “On the phase matrix basic to the scattering of polarized light,” Astron. Astrophys. 109, 195–200 (1982).

Smith, T. F.

J. L. Haferman, T. F. Smith, and W. F. Krajewski, “A multi-dimensional discrete-ordinates method for polarized radiative transfer. Part I: validation for randomly oriented axisymmetric particles,” J. Quant. Spectrosc. Radiat. Transfer 58, 379–398 (1997).
[Crossref]

A. Sánchez, T. F. Smith, and W. F. Krajewski, “A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method,” Atmos. Research 33, 283–308 (1994).
[Crossref]

Stamnes, K.

Stanes, K.

F. M. Schulz, K. Stanes, and F. Weng, “VDISORT: An improved and generalized discrete ordinate method for polarized vector radiative transfer,” J. Quant. Spectrosc. Radiat. Transfer 61, 105–122 (1999).
[Crossref]

Stavn, R. H.

Stokes, G. G.

G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. Roy. Soc., London  11, 545–556 (1862).

Suzuki, T.

T. Suzuki, T. Nakajima, and M. Tanaka, “Scaling algorithms for the calculation of solar radiative fluxes,” J. Quant. Spectrosc. Radiat. Transfer 107, 458–469 (2007).
[Crossref]

Tanaka, M.

T. Suzuki, T. Nakajima, and M. Tanaka, “Scaling algorithms for the calculation of solar radiative fluxes,” J. Quant. Spectrosc. Radiat. Transfer 107, 458–469 (2007).
[Crossref]

T. Nakajima and M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[Crossref]

T. Nakajima and M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537 (1983).
[Crossref]

Tanré, D.

J. Lenoble, M. Herman, J.L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

Tennant, P. M. W.

B. Cairns, E. E. Russell, J. D. LaVeigne, and P. M. W. Tennant. “Research scanning polarimeter and airborne usage for remote sensing of aerosols,” Proc SPIE 5158, 33–44 (2003).
[Crossref]

Travis, L. D.

M. I. Mishchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission,” Bull. Amer. Meteorol. Soc. 88, 677–691 (2007).
[Crossref]

J. Chowdhary, B. Cairns, and L. D. Travis, “Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters,” Appl. Opt. 45, 5542–5567 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-22-5542.
[Crossref] [PubMed]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge2002).

M. I. Mishchenko and L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102, 16989–17013 (1997).
[Crossref]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles (Cambridge University Press, New York, 2006).

Tsay, S. -C.

Y. -X. Hu, B. Wielicki, B. Lin, G. Gibson, S. -C. Tsay, K. Stamnes, and T. Wong, “δ-Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting,” J. Quant. Spectrosc. Radiat. Transfer 65, 681–690 (2000).
[Crossref]

Tsay, S.-C.

Tynes, H. H.

van de Hulst, H. C.

H. C. van de Hulst, Multiple Light Scattering: Tables, Formulas, and Applications1 and 2 (Academic Press, New York, 1980).

Van der Mee, C. V. M.

C. V. M. Van der Mee and J. W. Hovenier, “Expansion coefcients in polarized light transfer,” Astron. Astrophys. 228, 559–568 (1990).

J. W. Hovenier and C. V. M. van der Mee, “Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere,” Astron. Astrophys. 128, 1–16 (1983).

Vann, L.

Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
[Crossref]

Vermote, E. F.

Voss, K. J.

Wang, Y.

Waterman, P. C.

Wauben, W. M. F.

W. M. F. Wauben and J. W. Hovenier, “Polarized radiation of an atmosphere containing randomly-oriented spheroids,” J. Quant. Spectrosc. Radiat. Transfer 47, 491–504 (1992).
[Crossref]

Weng, F.

F. M. Schulz, K. Stanes, and F. Weng, “VDISORT: An improved and generalized discrete ordinate method for polarized vector radiative transfer,” J. Quant. Spectrosc. Radiat. Transfer 61, 105–122 (1999).
[Crossref]

F. Weng, “A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere-I. theory,” J. Quant. Spectrosc. Radiat. Transfer 47, 19–33 (1992).
[Crossref]

F. Weng, “A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere-II. Application,” J. Quant. Spectrosc. Radiat. Transfer 47, 35–42 (1992).
[Crossref]

Wielicki, B.

Y. -X. Hu, B. Wielicki, B. Lin, G. Gibson, S. -C. Tsay, K. Stamnes, and T. Wong, “δ-Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting,” J. Quant. Spectrosc. Radiat. Transfer 65, 681–690 (2000).
[Crossref]

Wigner, E. P.

E. P. Wigner, Group theoy and its application to the quantum mechanics of atomic spectra(Academic Press, New York, 1959).

Winker, D.

Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
[Crossref]

Wiscombe, W.

Wiscombe, W. J.

W. J. Wiscombe, “The Delta-M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions,” J. Atmos. Sci. 34, 1408–1422 (1977).
[Crossref]

Wong, T.

Y. -X. Hu, B. Wielicki, B. Lin, G. Gibson, S. -C. Tsay, K. Stamnes, and T. Wong, “δ-Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting,” J. Quant. Spectrosc. Radiat. Transfer 65, 681–690 (2000).
[Crossref]

Yang, P.

Zege, E. P.

Zhai, P.

Agric. For. Meteorol. (1)

R.B. Myneni, G. Asrar, and E. T. Kanemasu, “Light scattering in plant canopies: the method of Successive Orders of Scattering Approximations (SOSA),” Agric. For. Meteorol. 39, 1–12 (1987).
[Crossref]

Amer. Math. Soc. Transl. (1)

I. M. Gel’fand and Z. Y. Sapiro, “Representation of the group of rotations of 3-dimensional space and their applications,” Amer. Math. Soc. Transl. 2, 207–316 (1956).

Appl. Opt. (22)

K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984).
[Crossref] [PubMed]

M. Chami, R. Santer, and E. Dilligeard, “Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing,” Appl. Opt. 40, 2398–2416 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ao-40-15-2398.
[Crossref]

S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and F. J. Klemm, “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance,” Appl. Opt. 45, 6762–6774 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-26-6762.
[Crossref] [PubMed]

S. Y. Kotchenova and E. F. Vermote, “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces,” Appl. Opt. 46, 4455–4464 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ao-46-20-4455.
[Crossref] [PubMed]

G. N. Plass and G. W. Kattawar, “Monte Carlo calculations of light scattering from clouds,” Appl. Opt. 7, 415–419 (1968).
[Crossref] [PubMed]

G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7, 1519–1527 (1968).
[Crossref] [PubMed]

H. R. Gordon, “Ship perturbation of irradiance measurements at sea. 1: Monte Carlo simulations,” Appl. Opt. 24, 4172–4182 (1985).
[Crossref] [PubMed]

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[Crossref] [PubMed]

Z. Jin and K. Stamnes, “Radiative transfer in nonuniformly refracting layered media: atmosphere-ocean system,” Appl. Opt. 33, 431–442 (1994).
[Crossref] [PubMed]

B. Bulgarelli, V. B. Kisselev, and L. Roberti, “Radiative Transfer in the Atmosphere-Ocean System: The Finite-Element Method,” Appl. Opt. 38, 1530–1542 (1999), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1530.
[Crossref]

P. N. Reinersman and K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34, 4453–4471 (1995).
[Crossref] [PubMed]

Z. Jin, T. P. Charlock, K. Rutledge, K. Stamnes, and Y. Wang, “Analytical solution of radiative transfer in the coupled atmosphereocean system with a rough surface,” Appl. Opt. 45, 7443–7455 (2006).
[Crossref] [PubMed]

J. Chowdhary, B. Cairns, and L. D. Travis, “Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters,” Appl. Opt. 45, 5542–5567 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-22-5542.
[Crossref] [PubMed]

P. Zhai, G. W. Kattawar, and P. Yang, “Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method,” Appl. Opt. 47, 1037–1047 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ao-47-8-1037.
[Crossref] [PubMed]

H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40, 400–412 (2001).
[Crossref]

K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate method radiative trasfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
[Crossref] [PubMed]

G. N. Plass, G. W. Kattawar, and F. E. Catchings, “Matrix operator theory of radiative transfer. 1: Rayleigh-scattering,” Appl. Opt. 12, 314–329 (1973).
[Crossref] [PubMed]

G. W. Kattawar, G. N. Plass, and F. E. Catchings, “Matrix operator theory of radiative transfer. 2: scattering from marine haze, Appl. Opt. 12, 1071–1084 (1973).
[Crossref] [PubMed]

J. Fischer and H. Grassl, “Radiative transfer in an atmosphere-ocean system: an azimuthally dependent matrix operator approach,” Appl. Opt. 23, 1032–1039 (1984).
[Crossref] [PubMed]

Q. Liu and E. Ruprecht, “Radiative transfer model: matrix operator method,” Appl. Opt. 35, 4229–4237 (1996).
[Crossref] [PubMed]

P. Zhai, G. W. Kattawar, and P. Yang, “Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. II. The hybrid matrix operator-Monte Carlo method,” Appl. Opt. 47, 1063–1071 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ao-47-8-1063.
[Crossref] [PubMed]

E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Multicomponent approach to light propagation in clouds and mists,” Appl. Opt. 32, 2803–2812 (1993).
[Crossref] [PubMed]

Astron. Astrophys. (3)

C. E. Siewert, “On the phase matrix basic to the scattering of polarized light,” Astron. Astrophys. 109, 195–200 (1982).

J. W. Hovenier and C. V. M. van der Mee, “Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere,” Astron. Astrophys. 128, 1–16 (1983).

C. V. M. Van der Mee and J. W. Hovenier, “Expansion coefcients in polarized light transfer,” Astron. Astrophys. 228, 559–568 (1990).

Astrophys. J. (1)

L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Atmos. Research (1)

A. Sánchez, T. F. Smith, and W. F. Krajewski, “A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method,” Atmos. Research 33, 283–308 (1994).
[Crossref]

Bull. Amer. Meteorol. Soc. (1)

M. I. Mishchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission,” Bull. Amer. Meteorol. Soc. 88, 677–691 (2007).
[Crossref]

Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. (1)

V. A. Ambartzumian, “A new method for computing light scattering in turbid media,” Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 3, 97–104 (1942).

J. Appl. Meteorol. (1)

T. Greenwald, R. Bennartz, C. O’Dell, and A. Heidinger, “Fast computation of microwave radiances for data assimilation using the Successive Order of Scattering method,” J. Appl. Meteorol. 44, 960–966 (2005).
[Crossref]

J. Appl. Meteorol. Climatol. (1)

A. K. Heidinger, C. O’Dell, R. Bennartz, and T. Greenwald, “The successive-order-of-interaction radiative transfer model. part I: model development,” J. Appl. Meteorol. Climatol. 45, 1388–1402 (2005).
[Crossref]

J. Atmos. Sci. (5)

K. N. Liou, “A numerical experiment on Chandrasekhar’s discrete-ordinate method for radiative transfer: Application to cloudy and hazy atmospheres,” J. Atmos. Sci. 30, 1303–1326 (1973).
[Crossref]

J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres. part II. Sunlight reflected by terrestrial water clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
[Crossref]

K. F. Evans, “The spherical harmonic discrete ordinate method for three-dimensional atmospheric radiative transfer,” J. Atmos. Sci. 55, 429–446 (1998).
[Crossref]

K. F. Evans, “SHDOMPPDA: A radiative transfer model for cloudy sky data assimilation”. J. Atmos. Sci. 64, 3858–3868 (2007).
[Crossref]

W. J. Wiscombe, “The Delta-M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions,” J. Atmos. Sci. 34, 1408–1422 (1977).
[Crossref]

J. Comput. Phys. (1)

A. Kylling and K. Stamnes, “Efficient yet accurate solution of the linear transport equation in the presence of internal sources: the exponential-linear-in depth approximation,” J. Comput. Phys. 102, 265–276 (1992).
[Crossref]

J. Geophy. Res. (1)

L. Roberti and C. Kummerow, “Monte Carlo calculations of polarized microwave radiation emerging from cloud structures,” J. Geophy. Res. 104, 2093–2104 (1999).
[Crossref]

J. Geophys. Res. (3)

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I Waters),” J. Geophys. Res. 93, 10479–10768 (1988).
[Crossref]

M. I. Mishchenko and L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102, 16989–17013 (1997).
[Crossref]

M. Herman, J.L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
[Crossref]

J. Mar. Res. (1)

C. Cox and W. Munk, “Statistics of sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

J. Opt. Soc. Am. (1)

J. Quant. Spec-trosc. Radiat. Transfer (2)

E. P. Zege and L. I. Chaikovskaya, “New approach to the polarized radiative transfer problem,” J. Quant. Spec-trosc. Radiat. Transfer 55, 19–31 (1996).
[Crossref]

D. M. O’Brien, “Accelerated quasi Monte Carlo integration of the radiative transfer equation,” J. Quant. Spec-trosc. Radiat. Transfer 48, 41–59 (1992).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (19)

Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
[Crossref]

R. D. M. Garcia and C. E. Siewert, “A generalized spherical harmonics solution for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 36, 401–423 (1986).
[Crossref]

J. Lenoble, M. Herman, J.L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

T. Suzuki, T. Nakajima, and M. Tanaka, “Scaling algorithms for the calculation of solar radiative fluxes,” J. Quant. Spectrosc. Radiat. Transfer 107, 458–469 (2007).
[Crossref]

Q. Min and M. Duan, “A successive order of scattering model for solving vector radiative transfer in the atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 87, 243–259 (2004).
[Crossref]

M. Duan and Q. Min, “A semi-analytic technique to speed up successive order of scattering model for optically thick media,” J. Quant. Spectrosc. Radiat. Transfer 95, 21–32 (2005).
[Crossref]

R. D. M. Garcia and C. E. Siewert, “The FN method for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 41, 117–145 (1989).
[Crossref]

W. M. F. Wauben and J. W. Hovenier, “Polarized radiation of an atmosphere containing randomly-oriented spheroids,” J. Quant. Spectrosc. Radiat. Transfer 47, 491–504 (1992).
[Crossref]

T. Nakajima and M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537 (1983).
[Crossref]

C. N. Adams and G. W. Kattawar, “Solutions of the equation of radiative transfer by an invariant imbedding approach,” J. Quant. Spectrosc. Radiat. Transfer 10, 341–366 (1970).
[Crossref]

M. I. Mishchenko, “Reflection of polarized light by plane-parallel slabs containing randomly-oriented, nonspherical particles,” J. Quant. Spectrosc. Radiat. Transfer 46, 171–181 (1991).
[Crossref]

F. Weng, “A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere-I. theory,” J. Quant. Spectrosc. Radiat. Transfer 47, 19–33 (1992).
[Crossref]

F. Weng, “A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere-II. Application,” J. Quant. Spectrosc. Radiat. Transfer 47, 35–42 (1992).
[Crossref]

J. L. Haferman, T. F. Smith, and W. F. Krajewski, “A multi-dimensional discrete-ordinates method for polarized radiative transfer. Part I: validation for randomly oriented axisymmetric particles,” J. Quant. Spectrosc. Radiat. Transfer 58, 379–398 (1997).
[Crossref]

F. M. Schulz, K. Stanes, and F. Weng, “VDISORT: An improved and generalized discrete ordinate method for polarized vector radiative transfer,” J. Quant. Spectrosc. Radiat. Transfer 61, 105–122 (1999).
[Crossref]

C. E. Siewert, “A discrete-ordinates solution for radiative-transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 64, 227–254 (2000).
[Crossref]

J. L. Deuzé, M. Herman, and R. Santer, “Fourier series expansion of the transfer equation in the oceanatmosphere system,” J. Quant. Spectrosc. Radiat. Transfer 41, 483–494 (1989).
[Crossref]

Y. -X. Hu, B. Wielicki, B. Lin, G. Gibson, S. -C. Tsay, K. Stamnes, and T. Wong, “δ-Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting,” J. Quant. Spectrosc. Radiat. Transfer 65, 681–690 (2000).
[Crossref]

T. Nakajima and M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[Crossref]

Limnol. Oceanogr. (1)

G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989).
[Crossref]

Opt. Acta (1)

I. Kuščer and M. Ribarič, “Matrix formalism in the theory of diffusion of light,” Opt. Acta 6, 42–51 (1959).
[Crossref]

Philos. Mag. (1)

A. Hammad and S. Chapman, “The primary and secondary scattering of sun light in a plane-stratified atmosphere of uniform composition,” Philos. Mag. 28, 99–110 (1939).

Proc SPIE (1)

B. Cairns, E. E. Russell, J. D. LaVeigne, and P. M. W. Tennant. “Research scanning polarimeter and airborne usage for remote sensing of aerosols,” Proc SPIE 5158, 33–44 (2003).
[Crossref]

Proc. Roy. Soc. (1)

G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. Roy. Soc., London  11, 545–556 (1862).

Other (18)

V. A. Ambartzumian, Theoretical Astrophysics(Pergamon Press, New York, 1958).

S. Chandrasekhar, Radiative Transfer(Dover, New York, 1960).

R. W. Preisendorfer, Radiative Transfer on Discrete Spaces(Pergamon Press, Oxford, 1965).

H. C. van de Hulst, Multiple Light Scattering: Tables, Formulas, and Applications1 and 2 (Academic Press, New York, 1980).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters(Academic, San Diego, Calif., 1994).

K.N. Liou, An Introduction to Atmospheric Radiation 2nd edition, (Academic, San Diego2002).

A. Marshak and A. B. Davis (Eds.), 3D Radiative Transfer in Cloudy Atmospheres(Springer, 2005).
[Crossref]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles (Cambridge University Press, New York, 2006).

V. Kourganoff, Basic Methods in Transfer Problems(Clarendon Press, London, 1952).

J. Lenoble, editor. Radiative transfer in scattering and absorbing atmospheres: standard computational procedures (A. Deepak Publishing, 1985).

I3RC group, “I3RC Monte Carlo community model of 3D radiative transfer,” http://i3rc.gsfc.nasa.gov/I3RC-intro.html.

Concise Dictionary of Scientific Biography, (Scribner, New York, 1981), p. 643. Willebrord Snel von Royen used only one l in his last name.

J. Lenoble, Atmospheric radiative transfer(A. Deepak Publishing1993).

G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin, and B. S. Elepov, the Monte Carlo Methods in Atmospheric Optics(Springer-Verlag, Berlin, 1980).

G. W. Kattawar, editor, Selected Papers on Multiple Scattering in Plane Parallel Atmospheres and Oceans: Methods SPIE milestone seres, (MS42, Bellingham, WA, 1991).

T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters (Scripps Institution of Oceanography, 1977).

E. P. Wigner, Group theoy and its application to the quantum mechanics of atomic spectra(Academic Press, New York, 1959).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The Stokes parameters at the top of the atmosphere. The solid lines are calculated by the Monte Carlo (MC) method. The circle and cross symbols are computed by the SOS method with the single Gaussian (SG) quadrature and double Gaussian quadrature (DG) schemes, respectively. The Gaussian quadrature order of Pa = 36 is used in the atmosphere. The ocean Gaussian quadrature order of Po = 72 is used for the DG scheme. The Fourier series order used is M = 8. The solar incident angle is θ 0 = 120°. The azimuthal angle of the observation is 90° from the solar principle plane. The atmosphere is a conservative Rayleigh medium with an optical depth of 0.1. The ocean scattering function is a Henyey- Greenstein function with an asymmetry factor of 0.9185. The optical depth of the ocean is 10.0. The ocean bottom is a Lambertian surface. The single scattering albedos of both the ocean medium and bottom are 0.5. The total order of scattering is N = 10.

Fig. 2.
Fig. 2.

The Stokes parameters at the bottom of the atmosphere (just above the ocean surface) for the same system as in Fig. 1.

Fig. 3.
Fig. 3.

The water leaving Stokes parameters at the bottom of the atmosphere (just above the ocean surface) for the same system as in Fig. 1.

Fig. 4.
Fig. 4.

The effects of the orders of the Gaussian quadrature and Fourier series orders

Tables (2)

Tables Icon

Table 1. Average CPU time for the SG and DG schemes.

Tables Icon

Table 2. Scattering orders needed for convergence.

Equations (104)

Equations on this page are rendered with MathJax. Learn more.

μ d L ( τ , μ , ϕ ) = L ( τ , μ , ϕ ) S ( τ , μ , ϕ ) ,
S ( τ , μ , ϕ ) = ω ( τ ) 4 π 0 2 π 1 1 P ( τ , μ , ϕ , μ , ϕ ) L ( τ , μ , ϕ ) ,
P ( τ , μ , ϕ , μ , ϕ ) = R ( π i 2 ) F ( τ , Θ ) R ( i 1 ) .
L ( τ , μ < 0 , ϕ ) = L ( τ l , μ , ϕ ) e ( τ l τ ) / μ τ l τ e ( τ t ) / μ S ( τ , μ , ϕ ) / μ ,
L ( τ , μ > 0 , ϕ ) = L ( τ u , μ , ϕ ) e ( τ u τ ) / μ + τ τ u e ( τ t ) / μ S ( τ , μ , ϕ ) / μ ,
L ( τ , μ , ϕ ) = n = 1 N L n ( τ , μ , ϕ ) .
L n ( τ , μ < 0 , ϕ ) = L n ( τ l , μ , ϕ ) e ( τ l τ ) / μ τ l τ e ( τ t ) / μ S n ( τ , μ , ϕ ) / μ ,
L n ( τ , μ > 0 , ϕ ) = L n ( τ u , μ , ϕ ) e ( τ u τ ) / μ + τ τ u e ( τ t ) / μ S n ( τ , μ , ϕ ) / μ ,
S 1 ( τ < τ a * , μ , ϕ ) = ω ( τ ) 4 π { e τ / μ 0 P ( τ , μ , ϕ , μ 0 , ϕ 0 )
+ e ( 2 τ a * τ ) / μ 0 P ( τ , μ , ϕ , μ 0 , ϕ 0 ) r ( π θ 0 ) } E 0 ,
S 1 ( τ > τ o , μ , ϕ ) = ω ( τ ) 4 π μ 0 μ 0 e ( τ τ o ) / μ 0 P ( τ , μ , ϕ , μ 0 , ϕ 0 ) t ( π θ 0 ) E 0 e τ a * / μ 0 ,
S n > 1 ( τ , μ , ϕ ) = ω ( τ ) 4 π 0 2 π 1 1 P ( τ , μ , ϕ , μ , ϕ ) L n 1 ( τ , μ , ϕ ) d μ d ϕ .
L n ( τ = 0 , μ < 0 , ϕ ) = 0 ,
L 1 ( τ a * , μ > 0 , ϕ ) = 0 ,
L n > 1 ( τ o * , μ > 0 , ϕ ) = r ( θ ) L n 1 ( τ o * , μ , ϕ ) + t ( θ ) n w 2 L n 1 ( τ a , μ , ϕ ) ,
L 1 ( τ o , μ < 0 , ϕ ) = 0 ,
L n > 1 ( τ o , μ < 0 , ϕ ) = r ( π θ ) L n 1 ( τ o , μ , ϕ ) + n w 2 t ( π θ ) L n 1 ( τ a * , μ , ϕ ) ,
L 1 ( τ o * , μ > 0 , ϕ ) = μ 0 π r * ( μ , ϕ , μ 0 , ϕ 0 ) e ( τ o * τ o ) / μ 0 t ( π θ 0 ) μ 0 μ 0 E 0 e τ a * / μ 0 ,
L n > 1 ( τ o * , μ > 0 , ϕ ) = 0 2 π 1 0 μ π r * ( μ , ϕ , μ , ϕ ) L n 1 ( τ o * , μ , ϕ ) d μ d ϕ
L n ( τ , μ , ϕ ) = m = 0 M ( 2 δ 0 m ) { cos [ m ( ϕ ϕ 0 ) ] L n , cos m ( τ , μ ) + sin [ m ( ϕ ϕ 0 ) ] L n , sin m ( τ , μ ) } ,
L n , cos m ( τ , μ ) = ( I n m , Q n m , 0 , 0 ) T ,
L n , sin m ( τ , μ ) = ( 0,0 , U n m , V n m ) T .
P ( τ , μ , ϕ , μ , ϕ ) = P 1 ( τ , μ , ϕ , μ , ϕ ) + P 2 ( τ , μ , ϕ , μ , ϕ ) ,
P 1 ( τ , μ , ϕ , μ , ϕ ) = ( P 11 P 12 0 0 P 21 P 22 0 0 0 0 P 33 P 34 0 0 P 43 P 44 )
= m = 0 M ( 2 δ 0 m ) cos [ m ( ϕ ϕ ) ] P cos m ( τ , μ , μ ) ,
P 2 ( τ , μ , ϕ , μ , ϕ ) = ( 0 0 P 13 P 14 0 0 P 23 P 24 P 31 P 32 0 0 P 41 P 42 0 0 )
= m = 0 M ( 2 δ 0 m ) sin [ m ( ϕ ϕ ) ] P sin m ( τ , μ , μ )
L n m ( τ , μ < 0 ) = L n m ( τ l , μ ) e ( τ l τ ) / μ τ l τ e ( τ τ ) / μ S n m ( τ , μ ) / μ ,
L n m ( τ , μ > 0 ) = L n m ( τ u , μ ) e ( τ u τ ) / μ + τ τ u e ( τ τ ) / μ S n m ( τ , μ ) d τ / μ ,
S 1 m ( τ < τ a * , μ ) = ω ( τ ) 4 π { e τ / μ 0 P m ( τ , μ , μ 0 )
+ e ( 2 τ a * τ ) / μ 0 P m ( τ , μ , μ 0 ) r ( π θ 0 ) } E 0 ,
S 1 m ( τ > τ o , μ ) = ω ( τ ) 4 π μ 0 μ 0 e ( τ τ o ) / μ 0 P m ( τ , μ , μ 0 ) t ( π θ 0 ) E 0 e τ a * / μ 0 ,
S n > 1 m ( τ , μ ) = ω ( τ ) 2 1 1 P m ( τ , μ , μ " ) L n 1 m ( τ , μ " ) d μ " ,
L n m ( τ = 0 , μ < 0 ) = 0 ,
L 1 m ( τ a * , μ > 0 ) = 0 ,
L n > 1 m ( τ a * , μ > 0 ) = r ( θ ) L n 1 m ( τ a * , μ ) + t ( θ ) n w 2 L n 1 m ( τ o , μ ) ,
L 1 m ( τ o , μ < 0 ) = 0 ,
L n > 1 m ( τ o , μ < 0 ) = r ( π θ ) L n 1 m ( τ o , μ ) + n w 2 t ( π θ ) L n 1 m ( τ a * , μ ) ,
L 1 m ( τ a * , μ > 0 ) = μ 0 π r * m ( μ , μ 0 ) e ( τ o * τ o ) / μ 0 t ( π θ 0 ) μ 0 μ 0 E 0 e τ a * / μ 0 ,
L n > 1 m ( τ a * , μ > 0 ) = 2 1 0 ( μ ) r * m ( μ , μ ) L n 1 m ( τ a * , μ ) d μ .
L n m ( τ , μ < 0 ) = n w 2 t ( π θ ) L n 1 m ( τ a * , μ ) e ( τ l τ ) / μ + L n , diff m ( τ , μ ) ,
L n , diff m ( τ , μ ) = r ( π θ ) L n 1 m ( τ o , μ ) e ( τ l τ ) / μ τ l τ e ( τ ' τ ) / μ S n m ( τ , μ ) d τ / μ ,
n w 2 d μ " = n w 2 sin ( θ " ) d θ "
= n w sin ( θ ) cos ( θ ) d θ n w cos ( θ " )
= μ μ " d μ .
S n > 1 , drct m ( τ , μ p ) = ω ( τ ) 2 1 μ c P m ( τ , μ p , μ " ) n w 2 t ( π θ ) L n 1 m ( τ a * , μ ) e ( τ l τ ) / μ " d μ "
= ω ( τ ) 2 1 0 P m ( τ , μ p , μ " ) t ( π θ ) L n 1 m ( τ a * , μ ) e ( τ l τ ) / μ " μ μ " d μ '
= ω ( τ ) 2 q = 1 P / 2 w q P m ( τ , μ p , μ q " ) t ( π θ q ) L n 1 m ( τ a * , μ q ) e ( τ l τ ) / μ q " μ q μ q " ,
S n > 1 , diff m ( τ , μ p ) = ω ( τ ) 2 1 1 P m ( τ , μ p , μ " ) L n 1 , diff m ( τ , μ " ) d μ "
= ω ( τ ) 2 q = 1 p w q P m ( τ , μ p , μ q ) L n 1 , diff m ( τ , μ q ) .
S n > 1 m ( τ , μ p ) = S n > 1 , drct m ( τ , μ p ) + S n > 1 , diff m ( τ , μ p )
L n , wlr m ( τ , μ > 0 ) = t ( θ ) n w 2 L n 1 m ( τ o , μ ) e ( τ u τ ) / μ ,
L n m ( τ k , μ p < 0 ) = τ l τ k e ( τ τ k ) / μ p S n m ( τ , μ p ) / μ p ,
= τ l τ k 1 e ( τ τ k ) / μ p S n m ( τ , μ p ) / μ p + τ k 1 τ k e ( τ τ k ) / μ p S n m ( τ , μ p ) / μ p ,
= e δτ / μ p L n m ( τ k 1 , μ p < 0 ) - τ k - 1 τ k e ( τ τ k ) / μ p S n m ( τ , μ p ) / μ p .
L n m ( τ k , μ p > 0 ) = τ k τ u e ( τ τ k ) / μ p S n m ( τ , μ p ) / μ p ,
= τ k + 1 τ u e ( τ τ k ) / μ p S n m ( τ , μ p ) / μ p + τ k τ k + 1 e ( τ τ k ) / μ p S n m ( τ , μ p ) / μ p ,
= e −δτ / μ p L n m ( τ k + 1 , μ p > 0 ) + τ k τ k + 1 e ( τ τ k ) / μ p S n m ( τ , μ p ) / μ p .
L n m ( τ k > τ o , μ p > 0 ) L n m ( τ k > τ o , μ p > 0 ) + L n m ( τ o * , μ p > 0 ) e ( τ k τ o * ) / μ p ,
L n m ( τ k > τ o , μ p < 0 ) L n m ( τ k > τ o , μ p < 0 ) + r ( π θ p ) L n m ( τ o , μ p ) e ( τ k τ o ) / μ p ,
L n m ( τ k < τ o * , μ p > 0 ) L n m ( τ k < τ o * , μ p > 0 ) + r ( θ p ) L n m ( τ o * , μ p ) e ( τ k τ o ) / μ p ,
L n , det m ( τ k > τ o , μ p < 0 ) L n , det m ( τ k , μ p ) + L n m ( τ k , μ p )
+ e ( τ o τ k ) / μ p n w 2 t ( π θ p ) L n 1 m ( τ a * , μ p ) ,
L n , det m ( τ k > τ o , μ p > 0 ) L n , det m ( τ k , μ p ) + L n m ( τ k , μ p ) ,
L n , det m ( τ k < τ a * , μ p < 0 ) L n , det m ( τ k , μ p ) + L n m ( τ k , μ p ) ,
L n , det m ( τ k < τ a * , μ p > 0 ) L n , det m ( τ k , μ p ) + L n m ( τ k , μ p )
+ e ( τ k τ a * ) / μ p n w 2 t ( π θ p ) L n 1 m ( τ o , μ p ) .
q n > N m ( τ k , μ p ) = L n m ( τ k , μ p ) L n 1 m ( τ k , μ p ) = Cons tan t .
L m ( τ , μ ) = n = 1 N L n m ( τ , μ ) + L n m ( τ , μ ) q N m ( τ k , μ p ) 1 q N m ( τ k , μ p ) .
F ( Θ ) = 3 4 ( cos 2 ( Θ ) + 1 cos 2 ( Θ ) 1 0 0 cos 2 ( Θ ) 1 cos 2 ( Θ ) + 1 0 0 0 0 2 cos ( Θ ) 0 0 0 0 2 cos ( Θ ) ) .
F 11 ( μ , g ) = 1 g 2 ( 1 2 g μ + g 2 ) 3 / 2 ,
g = 1 P ( θ ) cos ( θ ) d Ω
F i j H G F 11 H G = F i j RAY F 11 RAY ,
P mn l ( ξ ) = i m n d mn l ( θ ) ,
P m , ± 2 l ( ξ ) = i m 2 d m , ± 2 l ( θ ) = i m d m , ± 2 l ( θ ) .
R l m ( ξ ) = ( 1 ) m 2 ( l + m ) ! ( l m ) ! ( d m , 2 l + d m , 2 l )
= ( l + m ) ! ( l m ) ! d m , 2 l , + ,
T l m ( ξ ) = ( 1 ) m 2 ( l + m ) ! ( l m ) ! ( d m , 2 l d m , 2 l )
= ( l + m ) ! ( l m ) ! d m , 2 l , ,
d m , 2 l , + = ( 1 ) m d m , 2 l + d m , 2 l 2 ,
d m , 2 l , = ( 1 ) m d m , 2 l d m , 2 l 2 .
d 00 l ( θ ) = P i ( ξ ) .
d m 0 l ( θ ) = ( l m ) ! l + m ) ! P l m ( ξ ) .
P l 2 ( ξ ) = ( l + 2 ) ! l 2 ) ! d 20 l ( θ )
F ( Θ ) = ( a 1 ( ξ ) b 1 ( ξ ) 0 0 b 1 ( ξ ) a 2 ( ξ ) 0 0 0 0 a 3 ( ξ ) b 2 ( ξ ) 0 0 b 2 ( ξ ) a 4 ( ξ ) ) .
β l = 2 l + 1 2 1 1 a 1 ( ξ ) d 00 l ( θ ) ,
δ l = 2 l + 1 2 1 1 a 4 ( ξ ) d 00 l ( θ ) .
γ l = 2 l + 1 2 1 1 b 1 ( ξ ) d 20 l ( θ ) ,
ε l = 2 l + 1 2 1 1 b 2 ( ξ ) d 20 l ( θ ) .
ζ 1 = 2 l + 1 2 1 1 [ a 2 ( ξ ) d 2,2 l , ( θ ) + a 3 ( ξ ) d 2,2 l , + ( θ ) ] ,
α 1 = 2 l + 1 2 1 1 [ a 2 ( ξ ) d 2,2 l , + ( θ ) + a 3 ( ξ ) d 2,2 l , ( θ ) ] .
β l = { α 1 l } M , α l = { α 2 l } M ,
ζ l = { α 3 l } M , δ l = { α 4 l } M ,
γ l = { β 1 l } M , ε l = { β 2 l } M ,
P m = l = m L ( β l d m 0 l d m 0 l γ l d m 0 l d m 2 l ,+ γ l d m 0 l d m 2 l , 0 γ l d m 2 l , + d m 0 l α l d m 2 l , + d m 2 l ,+ + ζ l d m 2 l , d m 2 l , α l d m 2 l , + d m 2 l , ζ l d m 2 l , d m 2 l , + ε l d m 2 l , d m 0 l γ l d m 2 l , d m 0 l α l d m 2 l , d m 2 l ,+ ζ l d m 2 l , + d m 2 l , α l d m 2 l , d m 2 l , + ζ l d m 2 l , + d m 2 l , + ε l d m 2 l , + d m 0 l 0 ε l d m 0 l d m 2 l , ε l d m 0 l d m 2 l , + δ l d m 0 l d m 0 l ) ,
a 1 * ( θ ) = 2 ( 1 cos θ ) + ( 1 f ) l = 0 L β l * d 00 l ( θ )
β l * = β l f 1 f , 0 <= l <= L .
ε = k w k ( a 1 * ( θ k ) a 1 ( θ k ) 1 ) 2 ,
a 1 * ( θ k ) = l = 0 L β l * d 00 l ( θ k ) .
F ij * ( θ k ) = a 1 * ( θ k ) . F ij ( θ k ) a 1 ( θ k ) ,
ε ij = k [ l = 0 L c ij l * d mn l ( θ k ) F ij * ( θ k ) ] 2 ,
ε ij c ij l = 0.0 .
τ = ( 1 ωf ) τ ,
ω = ω ( 1 f ) 1 ωf .

Metrics