Abstract

We demonstrate, for the first time, 10 W, Er-fiber laser pumped, pure CW, thermally diffusion doped, polycrystalline Cr2+:ZnS laser operating at 2380 nm. We also show Littrow-grating, “single-knob”, wavelength tuning of the laser spanning 1940–2780 nm spectral range with the maximum output power of 7.4 W near the central wavelength of 2400 nm and above 2 W over 1970–2760 nm wavelength range. The laser performs with 40% real optical- and 43% slope efficiency, and shows no output power roll-off up to the highest available incident pump power of 27 W.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, "Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media," IEEE J. Quantum Electron. 32, 885-895 (1996).
    [CrossRef]
  2. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, "Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers," IEEE J. Quantum Electron. 33/4, 609-619 (1997).
    [CrossRef]
  3. S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, "Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers," IEE Optoelectronics 150, 340-345 (2003).
    [CrossRef]
  4. S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev, "Erbium fiber laser-pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers," Opt. Lett. 27, 909-911 (2002).
    [CrossRef]
  5. U. Hommerich, X. Wu, V. R. Davis, S. B. Trivedi, K. Grasza, R. J. Chen, and S. Kutcher, "Demonstration of room temperature laser action at 2.5μm from Cr2+:Cd0.85Mn0.15Te," Opt. Lett. 22, 1180-1182 (1997).
    [CrossRef] [PubMed]
  6. J. Mckay, K. L. Schepler, and G. C. Catella, "Efficient grating tuned mid-infrared Cr2+:CdSe laser," Opt. Lett. 24, 1575-1577 (1999).
    [CrossRef]
  7. G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. O. Ndap, X. Ma, and A. Burger, "Continuous-wave broadly tunable Cr2+:ZnSe laser," Opt. Lett. 24, 19-21 (1999).
    [CrossRef]
  8. G. J. Wagner and T. J. Carrig, "Power scaling of Cr2+:ZnSe lasers," in OSA Trends Opt. Photonics, Adv. Solid State Lasers, vol. 50, pp. 506-510 (2001).
  9. T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, "Chromium-doped chalcogenides lasers," in Proc. SPIE, vol. 5460 of Solid State Lasers and Amplifiers, pp. 74-82 (2004).
    [CrossRef]
  10. U. Demirbas and A. Sennaroglu, "Intracavity-pumped Cr2+:ZnSe laser with ultrabroadband tuning range between 1880 and 3100 nm," Opt. Lett. 31, 2293-2295 (2006).
    [CrossRef] [PubMed]
  11. S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, "Recent progress in transition metal doped II-VI mid-IR lasers," IEEE J. Sel. Top. Quantum Electron. 13, 810-822 (2007).
    [CrossRef]
  12. I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, "Tunable, Single-Frequency, and Multi-Watt Continuous-Wave Cr2+:ZnSe Lasers," Opt. Express 16, 4145-4153 (2008).
    [CrossRef] [PubMed]
  13. I. S. Moskalev, V. V. Fedorov, S. B. Mirov, P. A. Berry, and K. L. Schepler, "12-Watt CW Polycrystalline Cr2+:ZnSe Laser Pumped by Tm-Fiber Laser," in Advanced Solid-State Photonics, p. WB30 (OSA, Denver, Colorado, 2009).
  14. D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, "Midinfrared Optical Breakdown in Transparent Dielectrics," Phys. Rev. Lett. 91, 107,601-1 (2003).
    [CrossRef]
  15. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook, chap. 5.5, pp. 278-294 (John Wiley & Sons, 1997).
  16. R. J. Harris, G. T. Johnston, G. A. Kepple, P. C. Krok, and H. Mukai, "Infrared thermooptic coefficient measurement of polycrystalline ZnSe, ZnS, CdTe, CaF2, and BaF2, single crystal KCI, and TI-20 glass," Appl. Opt. 16, 436-438 (1977).
    [CrossRef] [PubMed]
  17. I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, and K. Schaffers, "Broadly tunable compact continuous-wave Cr2+:ZnS laser," Opt. Lett. 27, 1040-1042 (2002).
    [CrossRef]
  18. I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, A. DiLieto, and M. Tonelli, "Continuous-wave tunable Cr2+:ZnS laser," Appl. Phys. B, Laser Opt. 74, 607-611 (2002).
    [CrossRef]
  19. H. W. Kogelnik, A. Dienes, and C. V. Shank, "Astigmatically Compensated Cavities for CW Dye Lasers," IEEE J. Quantum Electron.  QE-8 (1972).
  20. P. F. Moulton, "An investigation of the Co:MgF2 laser system," IEEE J. Quantum Electron. QE-21, 1582-1595 (1985).
    [CrossRef]
  21. P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B 3, 125-133 (1986).
    [CrossRef]
  22. K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, "Thermal Effects in Cr2+:ZnSe Thin Disk Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 713-720 (2005).
    [CrossRef]
  23. M. A. Noginov, B. D. Lucas, and M. Vondrova, "Optical bistability in a Cr:LiSrGaF6 laser," J. Opt. Soc. Am. B 19, 1999-2006 (2002).
    [CrossRef]

2008 (1)

2007 (1)

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, "Recent progress in transition metal doped II-VI mid-IR lasers," IEEE J. Sel. Top. Quantum Electron. 13, 810-822 (2007).
[CrossRef]

2006 (1)

2005 (1)

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, "Thermal Effects in Cr2+:ZnSe Thin Disk Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 713-720 (2005).
[CrossRef]

2003 (2)

D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, "Midinfrared Optical Breakdown in Transparent Dielectrics," Phys. Rev. Lett. 91, 107,601-1 (2003).
[CrossRef]

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, "Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers," IEE Optoelectronics 150, 340-345 (2003).
[CrossRef]

2002 (4)

1999 (2)

1997 (2)

U. Hommerich, X. Wu, V. R. Davis, S. B. Trivedi, K. Grasza, R. J. Chen, and S. Kutcher, "Demonstration of room temperature laser action at 2.5μm from Cr2+:Cd0.85Mn0.15Te," Opt. Lett. 22, 1180-1182 (1997).
[CrossRef] [PubMed]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, "Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers," IEEE J. Quantum Electron. 33/4, 609-619 (1997).
[CrossRef]

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, "Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media," IEEE J. Quantum Electron. 32, 885-895 (1996).
[CrossRef]

1986 (1)

1985 (1)

P. F. Moulton, "An investigation of the Co:MgF2 laser system," IEEE J. Quantum Electron. QE-21, 1582-1595 (1985).
[CrossRef]

1977 (1)

1972 (1)

H. W. Kogelnik, A. Dienes, and C. V. Shank, "Astigmatically Compensated Cavities for CW Dye Lasers," IEEE J. Quantum Electron.  QE-8 (1972).

Badikov, V.

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, A. DiLieto, and M. Tonelli, "Continuous-wave tunable Cr2+:ZnS laser," Appl. Phys. B, Laser Opt. 74, 607-611 (2002).
[CrossRef]

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, and K. Schaffers, "Broadly tunable compact continuous-wave Cr2+:ZnS laser," Opt. Lett. 27, 1040-1042 (2002).
[CrossRef]

Badikov, V. V.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, "Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers," IEE Optoelectronics 150, 340-345 (2003).
[CrossRef]

Berry, P. A.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, "Thermal Effects in Cr2+:ZnSe Thin Disk Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 713-720 (2005).
[CrossRef]

Burger, A.

G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. O. Ndap, X. Ma, and A. Burger, "Continuous-wave broadly tunable Cr2+:ZnSe laser," Opt. Lett. 24, 19-21 (1999).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, "Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers," IEEE J. Quantum Electron. 33/4, 609-619 (1997).
[CrossRef]

Carrig, T. J.

Catella, G. C.

Chen, K. T.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, "Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers," IEEE J. Quantum Electron. 33/4, 609-619 (1997).
[CrossRef]

Chen, R. J.

Davis, V. R.

DeLoach, L. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, "Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers," IEEE J. Quantum Electron. 33/4, 609-619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, "Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media," IEEE J. Quantum Electron. 32, 885-895 (1996).
[CrossRef]

Demirbas, U.

Dienes, A.

H. W. Kogelnik, A. Dienes, and C. V. Shank, "Astigmatically Compensated Cavities for CW Dye Lasers," IEEE J. Quantum Electron.  QE-8 (1972).

DiLieto, A.

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, A. DiLieto, and M. Tonelli, "Continuous-wave tunable Cr2+:ZnS laser," Appl. Phys. B, Laser Opt. 74, 607-611 (2002).
[CrossRef]

Fedorov, V.

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, "Recent progress in transition metal doped II-VI mid-IR lasers," IEEE J. Sel. Top. Quantum Electron. 13, 810-822 (2007).
[CrossRef]

Fedorov, V. V.

I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, "Tunable, Single-Frequency, and Multi-Watt Continuous-Wave Cr2+:ZnSe Lasers," Opt. Express 16, 4145-4153 (2008).
[CrossRef] [PubMed]

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, "Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers," IEE Optoelectronics 150, 340-345 (2003).
[CrossRef]

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, A. DiLieto, and M. Tonelli, "Continuous-wave tunable Cr2+:ZnS laser," Appl. Phys. B, Laser Opt. 74, 607-611 (2002).
[CrossRef]

S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev, "Erbium fiber laser-pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers," Opt. Lett. 27, 909-911 (2002).
[CrossRef]

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, and K. Schaffers, "Broadly tunable compact continuous-wave Cr2+:ZnS laser," Opt. Lett. 27, 1040-1042 (2002).
[CrossRef]

Gapontsev, D.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, "Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers," IEE Optoelectronics 150, 340-345 (2003).
[CrossRef]

Gapontsev, V.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, "Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers," IEE Optoelectronics 150, 340-345 (2003).
[CrossRef]

Graham, K.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, "Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers," IEE Optoelectronics 150, 340-345 (2003).
[CrossRef]

S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev, "Erbium fiber laser-pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers," Opt. Lett. 27, 909-911 (2002).
[CrossRef]

Grasza, K.

Harris, R. J.

Hommerich, U.

Johnston, G. T.

Kepple, G. A.

Kogelnik, H. W.

H. W. Kogelnik, A. Dienes, and C. V. Shank, "Astigmatically Compensated Cavities for CW Dye Lasers," IEEE J. Quantum Electron.  QE-8 (1972).

Krok, P. C.

Krupke, W. F.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, "Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers," IEEE J. Quantum Electron. 33/4, 609-619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, "Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media," IEEE J. Quantum Electron. 32, 885-895 (1996).
[CrossRef]

Kutcher, S.

Lee, H.

D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, "Midinfrared Optical Breakdown in Transparent Dielectrics," Phys. Rev. Lett. 91, 107,601-1 (2003).
[CrossRef]

Lucas, B. D.

Ma, X.

Martyshkin, D.

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, "Recent progress in transition metal doped II-VI mid-IR lasers," IEEE J. Sel. Top. Quantum Electron. 13, 810-822 (2007).
[CrossRef]

Mckay, J.

McKay, J. B.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, "Thermal Effects in Cr2+:ZnSe Thin Disk Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 713-720 (2005).
[CrossRef]

Mirov, S.

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, "Recent progress in transition metal doped II-VI mid-IR lasers," IEEE J. Sel. Top. Quantum Electron. 13, 810-822 (2007).
[CrossRef]

Mirov, S. B.

I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, "Tunable, Single-Frequency, and Multi-Watt Continuous-Wave Cr2+:ZnSe Lasers," Opt. Express 16, 4145-4153 (2008).
[CrossRef] [PubMed]

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, "Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers," IEE Optoelectronics 150, 340-345 (2003).
[CrossRef]

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, A. DiLieto, and M. Tonelli, "Continuous-wave tunable Cr2+:ZnS laser," Appl. Phys. B, Laser Opt. 74, 607-611 (2002).
[CrossRef]

S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev, "Erbium fiber laser-pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers," Opt. Lett. 27, 909-911 (2002).
[CrossRef]

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, and K. Schaffers, "Broadly tunable compact continuous-wave Cr2+:ZnS laser," Opt. Lett. 27, 1040-1042 (2002).
[CrossRef]

Moskalev, I.

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, "Recent progress in transition metal doped II-VI mid-IR lasers," IEEE J. Sel. Top. Quantum Electron. 13, 810-822 (2007).
[CrossRef]

Moskalev, I. S.

I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, "Tunable, Single-Frequency, and Multi-Watt Continuous-Wave Cr2+:ZnSe Lasers," Opt. Express 16, 4145-4153 (2008).
[CrossRef] [PubMed]

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, "Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers," IEE Optoelectronics 150, 340-345 (2003).
[CrossRef]

S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev, "Erbium fiber laser-pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers," Opt. Lett. 27, 909-911 (2002).
[CrossRef]

Moulton, P. F.

P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B 3, 125-133 (1986).
[CrossRef]

P. F. Moulton, "An investigation of the Co:MgF2 laser system," IEEE J. Quantum Electron. QE-21, 1582-1595 (1985).
[CrossRef]

Mukai, H.

Ndap, J. O.

Noginov, M. A.

Page, R. H.

G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. O. Ndap, X. Ma, and A. Burger, "Continuous-wave broadly tunable Cr2+:ZnSe laser," Opt. Lett. 24, 19-21 (1999).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, "Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers," IEEE J. Quantum Electron. 33/4, 609-619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, "Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media," IEEE J. Quantum Electron. 32, 885-895 (1996).
[CrossRef]

Panyutin, V.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, "Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers," IEE Optoelectronics 150, 340-345 (2003).
[CrossRef]

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, A. DiLieto, and M. Tonelli, "Continuous-wave tunable Cr2+:ZnS laser," Appl. Phys. B, Laser Opt. 74, 607-611 (2002).
[CrossRef]

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, and K. Schaffers, "Broadly tunable compact continuous-wave Cr2+:ZnS laser," Opt. Lett. 27, 1040-1042 (2002).
[CrossRef]

Patel, F. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, "Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers," IEEE J. Quantum Electron. 33/4, 609-619 (1997).
[CrossRef]

Payne, S. A.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, "Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers," IEEE J. Quantum Electron. 33/4, 609-619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, "Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media," IEEE J. Quantum Electron. 32, 885-895 (1996).
[CrossRef]

Peterson, R. D.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, "Thermal Effects in Cr2+:ZnSe Thin Disk Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 713-720 (2005).
[CrossRef]

Schaffers, K.

Schaffers, K. I.

G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. O. Ndap, X. Ma, and A. Burger, "Continuous-wave broadly tunable Cr2+:ZnSe laser," Opt. Lett. 24, 19-21 (1999).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, "Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers," IEEE J. Quantum Electron. 33/4, 609-619 (1997).
[CrossRef]

Schepler, K. L.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, "Thermal Effects in Cr2+:ZnSe Thin Disk Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 713-720 (2005).
[CrossRef]

J. Mckay, K. L. Schepler, and G. C. Catella, "Efficient grating tuned mid-infrared Cr2+:CdSe laser," Opt. Lett. 24, 1575-1577 (1999).
[CrossRef]

Schwettman, H. A.

D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, "Midinfrared Optical Breakdown in Transparent Dielectrics," Phys. Rev. Lett. 91, 107,601-1 (2003).
[CrossRef]

Sennaroglu, A.

Shank, C. V.

H. W. Kogelnik, A. Dienes, and C. V. Shank, "Astigmatically Compensated Cavities for CW Dye Lasers," IEEE J. Quantum Electron.  QE-8 (1972).

Simanovskii, D. M.

D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, "Midinfrared Optical Breakdown in Transparent Dielectrics," Phys. Rev. Lett. 91, 107,601-1 (2003).
[CrossRef]

Sorokin, E.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, "Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers," IEE Optoelectronics 150, 340-345 (2003).
[CrossRef]

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, A. DiLieto, and M. Tonelli, "Continuous-wave tunable Cr2+:ZnS laser," Appl. Phys. B, Laser Opt. 74, 607-611 (2002).
[CrossRef]

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, and K. Schaffers, "Broadly tunable compact continuous-wave Cr2+:ZnS laser," Opt. Lett. 27, 1040-1042 (2002).
[CrossRef]

Sorokina, I. T.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, "Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers," IEE Optoelectronics 150, 340-345 (2003).
[CrossRef]

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, A. DiLieto, and M. Tonelli, "Continuous-wave tunable Cr2+:ZnS laser," Appl. Phys. B, Laser Opt. 74, 607-611 (2002).
[CrossRef]

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, and K. Schaffers, "Broadly tunable compact continuous-wave Cr2+:ZnS laser," Opt. Lett. 27, 1040-1042 (2002).
[CrossRef]

Tassano, J. B.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, "Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers," IEEE J. Quantum Electron. 33/4, 609-619 (1997).
[CrossRef]

Tonelli, M.

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, A. DiLieto, and M. Tonelli, "Continuous-wave tunable Cr2+:ZnS laser," Appl. Phys. B, Laser Opt. 74, 607-611 (2002).
[CrossRef]

Trivedi, S. B.

Vondrova, M.

Wagner, G. J.

Welch, A. J.

D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, "Midinfrared Optical Breakdown in Transparent Dielectrics," Phys. Rev. Lett. 91, 107,601-1 (2003).
[CrossRef]

Wilke, G. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, "Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers," IEEE J. Quantum Electron. 33/4, 609-619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, "Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media," IEEE J. Quantum Electron. 32, 885-895 (1996).
[CrossRef]

Wu, X.

Appl. Opt. (1)

Appl. Phys. B, Laser Opt. (1)

I. T. Sorokina, E. Sorokin, S. B. Mirov, V. V. Fedorov, V. Badikov, V. Panyutin, A. DiLieto, and M. Tonelli, "Continuous-wave tunable Cr2+:ZnS laser," Appl. Phys. B, Laser Opt. 74, 607-611 (2002).
[CrossRef]

IEE Optoelectronics (1)

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, "Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers," IEE Optoelectronics 150, 340-345 (2003).
[CrossRef]

IEEE J. Quantum Electron (1)

H. W. Kogelnik, A. Dienes, and C. V. Shank, "Astigmatically Compensated Cavities for CW Dye Lasers," IEEE J. Quantum Electron.  QE-8 (1972).

IEEE J. Quantum Electron. (3)

P. F. Moulton, "An investigation of the Co:MgF2 laser system," IEEE J. Quantum Electron. QE-21, 1582-1595 (1985).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, "Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media," IEEE J. Quantum Electron. 32, 885-895 (1996).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, "Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers," IEEE J. Quantum Electron. 33/4, 609-619 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, "Recent progress in transition metal doped II-VI mid-IR lasers," IEEE J. Sel. Top. Quantum Electron. 13, 810-822 (2007).
[CrossRef]

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, "Thermal Effects in Cr2+:ZnSe Thin Disk Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 713-720 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, "Midinfrared Optical Breakdown in Transparent Dielectrics," Phys. Rev. Lett. 91, 107,601-1 (2003).
[CrossRef]

Other (4)

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook, chap. 5.5, pp. 278-294 (John Wiley & Sons, 1997).

G. J. Wagner and T. J. Carrig, "Power scaling of Cr2+:ZnSe lasers," in OSA Trends Opt. Photonics, Adv. Solid State Lasers, vol. 50, pp. 506-510 (2001).

T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, "Chromium-doped chalcogenides lasers," in Proc. SPIE, vol. 5460 of Solid State Lasers and Amplifiers, pp. 74-82 (2004).
[CrossRef]

I. S. Moskalev, V. V. Fedorov, S. B. Mirov, P. A. Berry, and K. L. Schepler, "12-Watt CW Polycrystalline Cr2+:ZnSe Laser Pumped by Tm-Fiber Laser," in Advanced Solid-State Photonics, p. WB30 (OSA, Denver, Colorado, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Optical scheme of the Cr2+:ZnS laser based on Z-Cavity configuration. Here, P 0 is the unpolarized pump power incident on the Cr2+:ZnS crystal, and Pref is the portion of the pump reflected on its Brewster input facet; the actual value of incident pump power is computed as Pin = P 0 - Pref . The transmitted pump beam Pt is observed on an IR visualizer for thermal lens analysis (see Section 3.3).

Fig. 2.
Fig. 2.

The dependencies of the output power Pout vs pump power Pin for 2 different output couplers with the linear fits. The irregularly-spaced values of the pump are due to random polarization jumps of the pump power. The graph insert shows the slope efficiencies (filled circles, left y-axis) and maximum obtained output powers (open squares, right y-axis) vs transmissions of the output couplers. These results were obtained with the temperature of the Cr2+:ZnS crystal holder of 8.5°C.

Fig. 3.
Fig. 3.

Findlay-Clay (left) and Caird (right) plots. Here, TOC is the transmission of output couplers, ηslope is the slope efficiency, and Pth is the measured threshold pump power. The intercept (Findlay-Clay) and inverse intercept (Caird) of the linear fits with the x-axes give approximate values of the round-trip passive loss of 12% and 10.3%, correspondingly. The small discrepancy is due mainly to the measurement errors.

Fig. 4.
Fig. 4.

Output power vs output wavelength (filled circles, left y-axis) of the Cr2+:ZnS laser shown together with the transmission curves of the laser mirrors (lines, right y-axis). The dashed line corresponds to the transmission curve of the OC, the solid lines show the transmissions of the tilted high-reflecting spherical mirrors.

Fig. 5.
Fig. 5.

IR visualizer screen images of the Er laser pump beam transmitted by the Cr2+:ZnS gain element at several values of pump power under the lasing conditions. The last image (right-bottom) shows the transmitted pump beam profile at 20 W pump when the lasing is blocked. The scale of all images is the same.

Fig. 6.
Fig. 6.

TEM10 transverse mode structure of the Cr2+:ZnS laser output beam photographed at a distance of 2.6 m from output coupler. The actual image size is 10 mm.

Fig. 7.
Fig. 7.

Output power Pout vs temperature T of the copper holder of the Cr2+:ZnS gain element (filled circles, left y-axis) superimposed with the fluorescence lifetime τ of Cr2+:ZnS vs its temperature (dashed line, right y-axis).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ = π 4 E p h P t h abs τ n ( w L 2 + w P 2 ) [ ln ( 1 T ) 1 + ln ( 1 L ) 1 ] ,

Metrics