Abstract

The application of photonics to astronomy offers major advantages in the area of highly-multiplexed spectroscopy, especially when applied to extremely large telescopes. These include the suppression of the near-infrared night-sky spectrum [J. Bland-Hawthorn et al, Opt. Express 12, 5902 (2004), S. G. Leon-Saval et al, Opt. Lett. 30, 2545 (2005)] and the miniaturisation of spectrographs so that they may integrated into the light-path of individual spatial samples [J. Bland-Hawthorn et al, Proc SPIE 6269, 62690N (2006)]. Efficient collection of light from the telescope requires multimode optical fibres and three-dimensional photonic devices. We propose ultrafast laser inscription (ULI) [R. R. Thomson et al, Opt. Express 15, 11691 (2007)] as the best technology to fabricate 3D photonic devices for astrophotonic applications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Allington-Smith, "Strategies for spectroscopy on Extremely Large Telescopes - I. Image slicing", MNRAS 376,1099-1108 (2007).
    [CrossRef]
  2. S. C. Ellis and J. Bland-Hawthorn, "The case for OH suppression at near-infrared wavelengths," MNRAS 386, 47-64 (2008).
    [CrossRef]
  3. J. Bland-Hawthorn, M. Englund, and G. Edvell, "New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating," Opt. Express 12, 5902-5909 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-24-5902.
    [CrossRef] [PubMed]
  4. S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, "Multimode fiber devices with single-mode performance," Opt. Lett. 30, 2545-2547 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-19-2545.
    [CrossRef] [PubMed]
  5. J. Bland-Hawthorn and A. Horton, "Instruments without optics: an integrated photonic spectrograph," Proc. SPIE 6269, 62690N (2006).
    [CrossRef]
  6. J. Corbett, T. Butterley, and J. R. Allington-Smith, "Fibre modal power distributions in astronomy and their application to OH-suppression fibres," MNRAS 378, 482-492 (2007).
    [CrossRef]
  7. C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).
    [CrossRef]
  8. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-21-1729.
    [CrossRef] [PubMed]
  9. Y. Cheng, K. Sugioka, and K. Midorikawa, "Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application," Opt. Express 13, 7225-7232 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7225.
    [CrossRef] [PubMed]
  10. R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. MacPherson, J. S. Barton, D. T. Reid, and A. K. Kar, "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fibre coupling applications," Opt. Express 15, 11691-11697 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11691.
    [CrossRef] [PubMed]
  11. S.  Nolte, M.  Will, J.  Burghoff, and A.  Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A - Mater. 77, 109-111 (2003).
    [CrossRef]
  12. S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, "Telecom-band directional coupler written with femtosecond fiber laser," IEEE Photon. Technol. Lett. 18, 2174-2176 (2006).
    [CrossRef]
  13. Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, "Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining," Appl. Phys. A - Mater. 85, 11-14 (2006).
    [CrossRef]
  14. Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching," Opt. Express 12, 2120-2129 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2120.
    [CrossRef] [PubMed]
  15. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, "Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating," Opt. Lett. 33, 956-958 (2008), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-9-956.
    [CrossRef] [PubMed]
  16. M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, "A 100 mW monolithic Yb waveguide laser fabricated using the femtosecond laser direct-write technique," (2008), http://arxiv.org/abs/0809.4550v1.
  17. Y. Nasu, M. Kohtoku, and Y. Hibino, "Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit," Opt. Lett. 30, 723-725 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-7-723.
    [CrossRef] [PubMed]
  18. S. M. Eaton, W. Chen, H. Zhang, R. Iyer, M. L. Ng, S. Ho, J. Li, J. S. Aitchison, and P. R. Herman, "Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths," J. Lightwave Technol. (to be published).
  19. M. Ams, G. D. Marshall, and M. J. Withford, "Study of the influence of femtosecond laser polarisation on direct writing of waveguides," Opt. Express 14, 13158-13163 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-13158.
    [CrossRef] [PubMed]
  20. L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, "Optical loss measurements in femtosecond laser written waveguides in glass," Opt. Commun. 259, 626-630 (2006).
    [CrossRef]
  21. Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, "Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing," Appl. Phys. A - Mater. 88, 699-704 (2007).
    [CrossRef]
  22. L. Ding, R. I. Blackwell, J. F. Künzler, and W. H. Knox, "Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers," Appl. Opt. 47, 3100-3108 (2008).
    [CrossRef] [PubMed]
  23. K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, "Formation of Si structure in glass with a femtosecond laser," Appl. Phys. A - Mater. 93, 183-188 (2008).
    [CrossRef]

2008

2007

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. MacPherson, J. S. Barton, D. T. Reid, and A. K. Kar, "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fibre coupling applications," Opt. Express 15, 11691-11697 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11691.
[CrossRef] [PubMed]

J. R. Allington-Smith, "Strategies for spectroscopy on Extremely Large Telescopes - I. Image slicing", MNRAS 376,1099-1108 (2007).
[CrossRef]

J. Corbett, T. Butterley, and J. R. Allington-Smith, "Fibre modal power distributions in astronomy and their application to OH-suppression fibres," MNRAS 378, 482-492 (2007).
[CrossRef]

2006

J. Bland-Hawthorn and A. Horton, "Instruments without optics: an integrated photonic spectrograph," Proc. SPIE 6269, 62690N (2006).
[CrossRef]

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, "Telecom-band directional coupler written with femtosecond fiber laser," IEEE Photon. Technol. Lett. 18, 2174-2176 (2006).
[CrossRef]

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, "Optical loss measurements in femtosecond laser written waveguides in glass," Opt. Commun. 259, 626-630 (2006).
[CrossRef]

M. Ams, G. D. Marshall, and M. J. Withford, "Study of the influence of femtosecond laser polarisation on direct writing of waveguides," Opt. Express 14, 13158-13163 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-13158.
[CrossRef] [PubMed]

2005

2004

2001

C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).
[CrossRef]

1996

Aitchison, J. S.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, "Telecom-band directional coupler written with femtosecond fiber laser," IEEE Photon. Technol. Lett. 18, 2174-2176 (2006).
[CrossRef]

S. M. Eaton, W. Chen, H. Zhang, R. Iyer, M. L. Ng, S. Ho, J. Li, J. S. Aitchison, and P. R. Herman, "Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths," J. Lightwave Technol. (to be published).

Allington-Smith, J. R.

J. R. Allington-Smith, "Strategies for spectroscopy on Extremely Large Telescopes - I. Image slicing", MNRAS 376,1099-1108 (2007).
[CrossRef]

J. Corbett, T. Butterley, and J. R. Allington-Smith, "Fibre modal power distributions in astronomy and their application to OH-suppression fibres," MNRAS 378, 482-492 (2007).
[CrossRef]

Ams, M.

Ashcom, J. B.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, "Optical loss measurements in femtosecond laser written waveguides in glass," Opt. Commun. 259, 626-630 (2006).
[CrossRef]

Bado, P.

Barton, J. S.

Bellouard, Y.

Birks, T. A.

Blackwell, R. I.

Bland-Hawthorn, J.

Bookey, H. T.

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).
[CrossRef]

Burghoff, J.

S.  Nolte, M.  Will, J.  Burghoff, and A.  Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A - Mater. 77, 109-111 (2003).
[CrossRef]

Butterley, T.

J. Corbett, T. Butterley, and J. R. Allington-Smith, "Fibre modal power distributions in astronomy and their application to OH-suppression fibres," MNRAS 378, 482-492 (2007).
[CrossRef]

Campbell, S.

Chen, W.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, "Telecom-band directional coupler written with femtosecond fiber laser," IEEE Photon. Technol. Lett. 18, 2174-2176 (2006).
[CrossRef]

S. M. Eaton, W. Chen, H. Zhang, R. Iyer, M. L. Ng, S. Ho, J. Li, J. S. Aitchison, and P. R. Herman, "Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths," J. Lightwave Technol. (to be published).

Cheng, Y.

Y. Cheng, K. Sugioka, and K. Midorikawa, "Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application," Opt. Express 13, 7225-7232 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7225.
[CrossRef] [PubMed]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, "Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining," Appl. Phys. A - Mater. 85, 11-14 (2006).
[CrossRef]

Corbett, J.

J. Corbett, T. Butterley, and J. R. Allington-Smith, "Fibre modal power distributions in astronomy and their application to OH-suppression fibres," MNRAS 378, 482-492 (2007).
[CrossRef]

Davis, K. M.

Dekker, P.

Ding, L.

Dugan, M.

Eaton, S. M.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, "Telecom-band directional coupler written with femtosecond fiber laser," IEEE Photon. Technol. Lett. 18, 2174-2176 (2006).
[CrossRef]

S. M. Eaton, W. Chen, H. Zhang, R. Iyer, M. L. Ng, S. Ho, J. Li, J. S. Aitchison, and P. R. Herman, "Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths," J. Lightwave Technol. (to be published).

Edvell, G.

Ellis, S. C.

S. C. Ellis and J. Bland-Hawthorn, "The case for OH suppression at near-infrared wavelengths," MNRAS 386, 47-64 (2008).
[CrossRef]

Englund, M.

Fender, A.

Gattass, R. R.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, "Optical loss measurements in femtosecond laser written waveguides in glass," Opt. Commun. 259, 626-630 (2006).
[CrossRef]

Hanada, Y.

Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, "Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing," Appl. Phys. A - Mater. 88, 699-704 (2007).
[CrossRef]

Herman, P. R.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, "Telecom-band directional coupler written with femtosecond fiber laser," IEEE Photon. Technol. Lett. 18, 2174-2176 (2006).
[CrossRef]

S. M. Eaton, W. Chen, H. Zhang, R. Iyer, M. L. Ng, S. Ho, J. Li, J. S. Aitchison, and P. R. Herman, "Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths," J. Lightwave Technol. (to be published).

Hibino, Y.

Hirao, K.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-21-1729.
[CrossRef] [PubMed]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, "Formation of Si structure in glass with a femtosecond laser," Appl. Phys. A - Mater. 93, 183-188 (2008).
[CrossRef]

Ho, S.

S. M. Eaton, W. Chen, H. Zhang, R. Iyer, M. L. Ng, S. Ho, J. Li, J. S. Aitchison, and P. R. Herman, "Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths," J. Lightwave Technol. (to be published).

Horton, A.

J. Bland-Hawthorn and A. Horton, "Instruments without optics: an integrated photonic spectrograph," Proc. SPIE 6269, 62690N (2006).
[CrossRef]

Iyer, R.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, "Telecom-band directional coupler written with femtosecond fiber laser," IEEE Photon. Technol. Lett. 18, 2174-2176 (2006).
[CrossRef]

S. M. Eaton, W. Chen, H. Zhang, R. Iyer, M. L. Ng, S. Ho, J. Li, J. S. Aitchison, and P. R. Herman, "Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths," J. Lightwave Technol. (to be published).

Kanehira, S.

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, "Formation of Si structure in glass with a femtosecond laser," Appl. Phys. A - Mater. 93, 183-188 (2008).
[CrossRef]

Kar, A. K.

Knox, W. H.

Kohtoku, M.

Künzler, J. F.

Leon-Saval, S. G.

Li, J.

S. M. Eaton, W. Chen, H. Zhang, R. Iyer, M. L. Ng, S. Ho, J. Li, J. S. Aitchison, and P. R. Herman, "Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths," J. Lightwave Technol. (to be published).

MacPherson, W. N.

Marshall, G. D.

Maxwell, I.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, "Optical loss measurements in femtosecond laser written waveguides in glass," Opt. Commun. 259, 626-630 (2006).
[CrossRef]

Mazur, E.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, "Optical loss measurements in femtosecond laser written waveguides in glass," Opt. Commun. 259, 626-630 (2006).
[CrossRef]

C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).
[CrossRef]

Midorikawa, K.

Y. Cheng, K. Sugioka, and K. Midorikawa, "Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application," Opt. Express 13, 7225-7232 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7225.
[CrossRef] [PubMed]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, "Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining," Appl. Phys. A - Mater. 85, 11-14 (2006).
[CrossRef]

Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, "Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing," Appl. Phys. A - Mater. 88, 699-704 (2007).
[CrossRef]

Miura, K.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-21-1729.
[CrossRef] [PubMed]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, "Formation of Si structure in glass with a femtosecond laser," Appl. Phys. A - Mater. 93, 183-188 (2008).
[CrossRef]

Nasu, Y.

Ng, M. L.

S. M. Eaton, W. Chen, H. Zhang, R. Iyer, M. L. Ng, S. Ho, J. Li, J. S. Aitchison, and P. R. Herman, "Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths," J. Lightwave Technol. (to be published).

Nolte, S.

S.  Nolte, M.  Will, J.  Burghoff, and A.  Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A - Mater. 77, 109-111 (2003).
[CrossRef]

Piper, J. A.

Psaila, N. D.

Reid, D. T.

Said, A.

Sakakura, M.

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, "Formation of Si structure in glass with a femtosecond laser," Appl. Phys. A - Mater. 93, 183-188 (2008).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).
[CrossRef]

Shimotsuma, Y.

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, "Formation of Si structure in glass with a femtosecond laser," Appl. Phys. A - Mater. 93, 183-188 (2008).
[CrossRef]

Sugimoto, N.

Sugioka, K.

Y. Cheng, K. Sugioka, and K. Midorikawa, "Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application," Opt. Express 13, 7225-7232 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7225.
[CrossRef] [PubMed]

Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, "Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing," Appl. Phys. A - Mater. 88, 699-704 (2007).
[CrossRef]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, "Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining," Appl. Phys. A - Mater. 85, 11-14 (2006).
[CrossRef]

Thomson, R. R.

Tong, L.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, "Optical loss measurements in femtosecond laser written waveguides in glass," Opt. Commun. 259, 626-630 (2006).
[CrossRef]

Tsai, H. L.

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, "Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining," Appl. Phys. A - Mater. 85, 11-14 (2006).
[CrossRef]

Tuennermann, A.

S.  Nolte, M.  Will, J.  Burghoff, and A.  Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A - Mater. 77, 109-111 (2003).
[CrossRef]

Wang, Z.

Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, "Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing," Appl. Phys. A - Mater. 88, 699-704 (2007).
[CrossRef]

Will, M.

S.  Nolte, M.  Will, J.  Burghoff, and A.  Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A - Mater. 77, 109-111 (2003).
[CrossRef]

Withford, M. J.

Zhang, H.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, "Telecom-band directional coupler written with femtosecond fiber laser," IEEE Photon. Technol. Lett. 18, 2174-2176 (2006).
[CrossRef]

S. M. Eaton, W. Chen, H. Zhang, R. Iyer, M. L. Ng, S. Ho, J. Li, J. S. Aitchison, and P. R. Herman, "Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths," J. Lightwave Technol. (to be published).

Zhang, L.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, "Telecom-band directional coupler written with femtosecond fiber laser," IEEE Photon. Technol. Lett. 18, 2174-2176 (2006).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, "Telecom-band directional coupler written with femtosecond fiber laser," IEEE Photon. Technol. Lett. 18, 2174-2176 (2006).
[CrossRef]

J. Lightwave Technol.

S. M. Eaton, W. Chen, H. Zhang, R. Iyer, M. L. Ng, S. Ho, J. Li, J. S. Aitchison, and P. R. Herman, "Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths," J. Lightwave Technol. (to be published).

Meas. Sci. Technol.

C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).
[CrossRef]

MNRAS

J. R. Allington-Smith, "Strategies for spectroscopy on Extremely Large Telescopes - I. Image slicing", MNRAS 376,1099-1108 (2007).
[CrossRef]

S. C. Ellis and J. Bland-Hawthorn, "The case for OH suppression at near-infrared wavelengths," MNRAS 386, 47-64 (2008).
[CrossRef]

J. Corbett, T. Butterley, and J. R. Allington-Smith, "Fibre modal power distributions in astronomy and their application to OH-suppression fibres," MNRAS 378, 482-492 (2007).
[CrossRef]

Opt. Commun.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, "Optical loss measurements in femtosecond laser written waveguides in glass," Opt. Commun. 259, 626-630 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

J. Bland-Hawthorn and A. Horton, "Instruments without optics: an integrated photonic spectrograph," Proc. SPIE 6269, 62690N (2006).
[CrossRef]

Other

S.  Nolte, M.  Will, J.  Burghoff, and A.  Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A - Mater. 77, 109-111 (2003).
[CrossRef]

Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, "Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing," Appl. Phys. A - Mater. 88, 699-704 (2007).
[CrossRef]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, "Formation of Si structure in glass with a femtosecond laser," Appl. Phys. A - Mater. 93, 183-188 (2008).
[CrossRef]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, "Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining," Appl. Phys. A - Mater. 85, 11-14 (2006).
[CrossRef]

M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, "A 100 mW monolithic Yb waveguide laser fabricated using the femtosecond laser direct-write technique," (2008), http://arxiv.org/abs/0809.4550v1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Left – Cartoon of photonic spectrograph with a phased waveguide array as the disperser. Right – traditional spectrograph of the same overall dimensions, but worse spectral resolution.

Fig. 2.
Fig. 2.

Conceptual diagrams of (a) a highly dispersive 3D waveguide array and (b) an integrated OH-fluorescence filter. In both (a) and (b), the inscribed waveguides are green.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δλ = [ ] δβ = s Γ f S [ ] = χ D T D S 1 Γ [ ]
R λ δλ = Γ D S D T λ χ [ ] 1
n ( sin α + sin β ) = mρλ
R G = D S χ D T ( sin α + sin β cos α ) = 2 D S tan γ χ D T
[ dy / dx ] + sin β = mρλ
R P = D S χ D T ( [ dy dx ] + sin β ) 1 cos β = D S χ D T [ dy dx ]

Metrics