Abstract

We present an improved theoretical model to estimate the minimum fiber length required for achieving a desired degree of wavefront filtering in stellar interferometry. The proposed model is based on modal analysis of the fiber and is compared with numerical results obtained through the beam propagation method as well as with reported experimental observations. We also study the effect of introducing a spatial filter at the output end of the fiber and show that the required fiber length can be reduced significantly by introducing a circular aperture of optimum radius after the fiber.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. http://exoplanets.org/planets.html.
  2. http://www.esa.int/esaSC/SEMYZF9YFDD index 0.html.
  3. R.N. Bracewell, "Detecting nonsolar planets by spinning infrared interferometer," Nature 274, 780 - 781 (1978).
    [CrossRef]
  4. K. Wallace, G. Hardy, and E. Serabyn, "Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars," Nature 406, 700-702 (2000).
    [CrossRef] [PubMed]
  5. J. R. P. Angel and N. J. Woolf, "An Imaging Nulling Interferometer to Study Extrasolar Planets," The Astrophys. J. 475, 373-379 (1997), http://www.journals.uchicago.edu/doi/abs/10.1086/303529.
    [CrossRef]
  6. www.esa.int/esaSC/120382 index 0 m.html.
  7. http://planetquest.jpl.nasa.gov/TPF/tpf index.cfm.
  8. E. Serabyn, S. Martin, and G. Hardy, "Progress toward space-based nulling interferometry: comparison of null stabilization approaches," Aerospace Conference, 2001, IEEE Proceedings. 4, 4/2027-4/2036 (2001).
    [CrossRef]
  9. B. Mennesson, M. Ollivier, and C. Ruilier, "Use of single-mode waveguides to correct the optical defects of a nulling interferometer," J. Opt. Soc. Am. A 19, 596-602 (2002), http://josaa.osa.org/abstract.cfm?URI=josaa-19-3-596.
    [CrossRef]
  10. M. Ollivier and J.-M. Mariotti, "Improvement in the rejection rate of a nulling interferometer by spatial filtering," Appl. Opt. 36, 5340-5346 (1997), http://ao.osa.org/abstract.cfm?URI=ao-36-22-5340.
    [CrossRef] [PubMed]
  11. J. Flanagan and D. Richardson, "Microstructured fibres for broadband wavefront filtering in the mid-IR," Opt. Express 14, 11773-11786 (2006).
    [CrossRef] [PubMed]
  12. O. Wallner and W. Leeb, "Minimum length of a single-mode fibre spatial filter," JOSA A 19, 2445-2448 (2002).
    [CrossRef] [PubMed]
  13. J. C. Corbett and J. R. Allington-Smith, "Coupling starlight into single-mode photonic crystal fiber using a field lens," Opt. Express 13, 6527-6540 (2005).
    [CrossRef] [PubMed]
  14. T. Lewi, S. Shalem, A. Tsun, and A. Katzir, "Silver halide single-mode fibers with improved properties in the infrared," Appl. Phys. Lett. 91, 2511,112-1 - 2511,112-3 (2007).
    [CrossRef]
  15. A. Ksendzov, O. Lay, S. Martin, J. S. Sanghera, L. E. Busse, W. H. Kim, P. C. Pureza, V. Q. Nguyen, and I. D. Aggarwal, "Characterization of mid-infrared single mode fibers as modal filters," Appl. Opt. 46, 7957-7962 (2007).
    [CrossRef] [PubMed]
  16. P. Houizot, C. Boussard-Pl’edel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. V. Nijnatten, W. L. M. Gielesen, J. P. do Carmo, and J. Lucas, "Infrared single mode chalcogenide glass fiber for space," Opt. Express 15, 12,529- 12,538 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12529.
    [CrossRef]
  17. W. Klaus, and W. R. Leeb, "Transient fields in the input coupling region of optical single-mode waveguides," Opt. Express 15, 11808-11826(2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-11808.
    [CrossRef] [PubMed]
  18. A. W. Snyder and J.D. Love, Optical waveguide theory ((Chapman/Kluwer, 1983/2000).
  19. G. Huss, P. Leproux, F. Reynaud, and V. Doya, "Spatial filtering efficiency of single-mode optical fibers for stellar interferometry applications: phenomenological and numerical study," Opt. Commun. 244, 209-217 (2005).
    [CrossRef]
  20. A. Ksendzov, T. Lewi, O. P. L. S. R. Martin, R. O. Gappinger, P. R. Lawson, R. D. Peters, S. Shalem, A. Tsun, and A. Katzir, "Modal filtering for midinfrared nulling interferometry using single mode silver halide fibers," Appl. Opt. 47, 5728-5735 (2008).
    [CrossRef]
  21. D. Marcuse, "Radiation losses of the dominant mode in round dielectric waveguides," Bell Syst. Tech. J. 49, 1665-1693 (1970).
  22. Z. L. Wang, H. Ogura, and N. Takahashi, "Radiation and coupling of guided modes in an optical fiber with a slightly rough boundary: stochastic functional approach," J. Opt. Soc. Am. A 12, 1489-1500 (1995).
    [CrossRef]

2008 (1)

2007 (3)

2006 (1)

2005 (2)

J. C. Corbett and J. R. Allington-Smith, "Coupling starlight into single-mode photonic crystal fiber using a field lens," Opt. Express 13, 6527-6540 (2005).
[CrossRef] [PubMed]

G. Huss, P. Leproux, F. Reynaud, and V. Doya, "Spatial filtering efficiency of single-mode optical fibers for stellar interferometry applications: phenomenological and numerical study," Opt. Commun. 244, 209-217 (2005).
[CrossRef]

2002 (2)

2000 (1)

K. Wallace, G. Hardy, and E. Serabyn, "Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars," Nature 406, 700-702 (2000).
[CrossRef] [PubMed]

1997 (2)

1995 (1)

1978 (1)

R.N. Bracewell, "Detecting nonsolar planets by spinning infrared interferometer," Nature 274, 780 - 781 (1978).
[CrossRef]

1970 (1)

D. Marcuse, "Radiation losses of the dominant mode in round dielectric waveguides," Bell Syst. Tech. J. 49, 1665-1693 (1970).

Aggarwal, I. D.

Allington-Smith, J. R.

Angel, J. R. P.

J. R. P. Angel and N. J. Woolf, "An Imaging Nulling Interferometer to Study Extrasolar Planets," The Astrophys. J. 475, 373-379 (1997), http://www.journals.uchicago.edu/doi/abs/10.1086/303529.
[CrossRef]

Boussard-Pl’edel, C.

P. Houizot, C. Boussard-Pl’edel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. V. Nijnatten, W. L. M. Gielesen, J. P. do Carmo, and J. Lucas, "Infrared single mode chalcogenide glass fiber for space," Opt. Express 15, 12,529- 12,538 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12529.
[CrossRef]

Bracewell, R.N.

R.N. Bracewell, "Detecting nonsolar planets by spinning infrared interferometer," Nature 274, 780 - 781 (1978).
[CrossRef]

Bureau, B.

P. Houizot, C. Boussard-Pl’edel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. V. Nijnatten, W. L. M. Gielesen, J. P. do Carmo, and J. Lucas, "Infrared single mode chalcogenide glass fiber for space," Opt. Express 15, 12,529- 12,538 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12529.
[CrossRef]

Busse, L. E.

Cheng, L. K.

P. Houizot, C. Boussard-Pl’edel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. V. Nijnatten, W. L. M. Gielesen, J. P. do Carmo, and J. Lucas, "Infrared single mode chalcogenide glass fiber for space," Opt. Express 15, 12,529- 12,538 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12529.
[CrossRef]

Corbett, J. C.

do Carmo, J. P.

P. Houizot, C. Boussard-Pl’edel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. V. Nijnatten, W. L. M. Gielesen, J. P. do Carmo, and J. Lucas, "Infrared single mode chalcogenide glass fiber for space," Opt. Express 15, 12,529- 12,538 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12529.
[CrossRef]

Doya, V.

G. Huss, P. Leproux, F. Reynaud, and V. Doya, "Spatial filtering efficiency of single-mode optical fibers for stellar interferometry applications: phenomenological and numerical study," Opt. Commun. 244, 209-217 (2005).
[CrossRef]

Faber, A. J.

P. Houizot, C. Boussard-Pl’edel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. V. Nijnatten, W. L. M. Gielesen, J. P. do Carmo, and J. Lucas, "Infrared single mode chalcogenide glass fiber for space," Opt. Express 15, 12,529- 12,538 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12529.
[CrossRef]

Flanagan, J.

Gappinger, R. O.

Gielesen, W. L. M.

P. Houizot, C. Boussard-Pl’edel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. V. Nijnatten, W. L. M. Gielesen, J. P. do Carmo, and J. Lucas, "Infrared single mode chalcogenide glass fiber for space," Opt. Express 15, 12,529- 12,538 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12529.
[CrossRef]

Hardy, G.

K. Wallace, G. Hardy, and E. Serabyn, "Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars," Nature 406, 700-702 (2000).
[CrossRef] [PubMed]

Houizot, P.

P. Houizot, C. Boussard-Pl’edel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. V. Nijnatten, W. L. M. Gielesen, J. P. do Carmo, and J. Lucas, "Infrared single mode chalcogenide glass fiber for space," Opt. Express 15, 12,529- 12,538 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12529.
[CrossRef]

Huss, G.

G. Huss, P. Leproux, F. Reynaud, and V. Doya, "Spatial filtering efficiency of single-mode optical fibers for stellar interferometry applications: phenomenological and numerical study," Opt. Commun. 244, 209-217 (2005).
[CrossRef]

Katzir, A.

Kim, W. H.

Klaus, W.

Ksendzov, A.

Lawson, P. R.

Lay, O.

Leeb, W.

O. Wallner and W. Leeb, "Minimum length of a single-mode fibre spatial filter," JOSA A 19, 2445-2448 (2002).
[CrossRef] [PubMed]

Leeb, W. R.

Leproux, P.

G. Huss, P. Leproux, F. Reynaud, and V. Doya, "Spatial filtering efficiency of single-mode optical fibers for stellar interferometry applications: phenomenological and numerical study," Opt. Commun. 244, 209-217 (2005).
[CrossRef]

Lewi, T.

Lucas, J.

P. Houizot, C. Boussard-Pl’edel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. V. Nijnatten, W. L. M. Gielesen, J. P. do Carmo, and J. Lucas, "Infrared single mode chalcogenide glass fiber for space," Opt. Express 15, 12,529- 12,538 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12529.
[CrossRef]

Marcuse, D.

D. Marcuse, "Radiation losses of the dominant mode in round dielectric waveguides," Bell Syst. Tech. J. 49, 1665-1693 (1970).

Mariotti, J.-M.

Martin, O. P. L. S. R.

Martin, S.

Mennesson, B.

Nguyen, V. Q.

Nijnatten, P. A. V.

P. Houizot, C. Boussard-Pl’edel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. V. Nijnatten, W. L. M. Gielesen, J. P. do Carmo, and J. Lucas, "Infrared single mode chalcogenide glass fiber for space," Opt. Express 15, 12,529- 12,538 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12529.
[CrossRef]

Ogura, H.

Ollivier, M.

Peters, R. D.

Pureza, P. C.

Reynaud, F.

G. Huss, P. Leproux, F. Reynaud, and V. Doya, "Spatial filtering efficiency of single-mode optical fibers for stellar interferometry applications: phenomenological and numerical study," Opt. Commun. 244, 209-217 (2005).
[CrossRef]

Richardson, D.

Ruilier, C.

Sanghera, J. S.

Serabyn, E.

K. Wallace, G. Hardy, and E. Serabyn, "Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars," Nature 406, 700-702 (2000).
[CrossRef] [PubMed]

Shalem, S.

Takahashi, N.

Tsun, A.

Wallace, K.

K. Wallace, G. Hardy, and E. Serabyn, "Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars," Nature 406, 700-702 (2000).
[CrossRef] [PubMed]

Wallner, O.

O. Wallner and W. Leeb, "Minimum length of a single-mode fibre spatial filter," JOSA A 19, 2445-2448 (2002).
[CrossRef] [PubMed]

Wang, Z. L.

Woolf, N. J.

J. R. P. Angel and N. J. Woolf, "An Imaging Nulling Interferometer to Study Extrasolar Planets," The Astrophys. J. 475, 373-379 (1997), http://www.journals.uchicago.edu/doi/abs/10.1086/303529.
[CrossRef]

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

D. Marcuse, "Radiation losses of the dominant mode in round dielectric waveguides," Bell Syst. Tech. J. 49, 1665-1693 (1970).

J. Opt. Soc. Am. A (2)

JOSA A (1)

O. Wallner and W. Leeb, "Minimum length of a single-mode fibre spatial filter," JOSA A 19, 2445-2448 (2002).
[CrossRef] [PubMed]

Nature (2)

R.N. Bracewell, "Detecting nonsolar planets by spinning infrared interferometer," Nature 274, 780 - 781 (1978).
[CrossRef]

K. Wallace, G. Hardy, and E. Serabyn, "Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars," Nature 406, 700-702 (2000).
[CrossRef] [PubMed]

Opt. Commun. (1)

G. Huss, P. Leproux, F. Reynaud, and V. Doya, "Spatial filtering efficiency of single-mode optical fibers for stellar interferometry applications: phenomenological and numerical study," Opt. Commun. 244, 209-217 (2005).
[CrossRef]

Opt. Express (4)

The Astrophys. J. (1)

J. R. P. Angel and N. J. Woolf, "An Imaging Nulling Interferometer to Study Extrasolar Planets," The Astrophys. J. 475, 373-379 (1997), http://www.journals.uchicago.edu/doi/abs/10.1086/303529.
[CrossRef]

Other (7)

www.esa.int/esaSC/120382 index 0 m.html.

http://planetquest.jpl.nasa.gov/TPF/tpf index.cfm.

E. Serabyn, S. Martin, and G. Hardy, "Progress toward space-based nulling interferometry: comparison of null stabilization approaches," Aerospace Conference, 2001, IEEE Proceedings. 4, 4/2027-4/2036 (2001).
[CrossRef]

http://exoplanets.org/planets.html.

http://www.esa.int/esaSC/SEMYZF9YFDD index 0.html.

A. W. Snyder and J.D. Love, Optical waveguide theory ((Chapman/Kluwer, 1983/2000).

T. Lewi, S. Shalem, A. Tsun, and A. Katzir, "Silver halide single-mode fibers with improved properties in the infrared," Appl. Phys. Lett. 91, 2511,112-1 - 2511,112-3 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic representation of the modal power along the fiber length (a) FM (b-d) Modes whose overlap with the input field is > 1% (e,f) HOMs exhibiting very low confinement losses. The y-axis shows the power of the various modes such that the power is proportional to the coupling efficiency of the respective modes. The total power is assumed to be 1, which is the sum of the coupling efficiencies of all the modes. Inset: Cross-section of the fibre structure

Fig. 2.
Fig. 2.

Loss and coupling efficiency of the 12 cladding modes with coupling efficiency > 0.1%. The circles and crosses represent the coupling efficiency and confinement loss, respectively. Note that the number of dots and crosses seem less than 12 in the figure because some of the modes are degenerate with similar values of coupling efficiency and confinement loss, and thus the dots and crosses overlap for some of the modes. Modal effective index = propagation constant of the mode / free space wave vector of light

Fig. 3.
Fig. 3.

Transverse intensity profile of (a) input field (Airy disk) (b) FM (c) cladding mode with highest coupling efficiency (≈ 1.28%) (d) LP11 mode (whose overlap with the Airy disk is zero). The solid red lines in Fig. 3 (b-d) represent the fiber geometry. The innermost ring shows the core, the annular region adjacent to the core is the cladding and the outermost annular region shows the extent of the absorption coating.

Fig. 4.
Fig. 4.

Evolution of the total power (normalized to the input power) and power in the FM (normalized to the local power) along the fiber length. The right-hand side figure shows the evolution of the modal profile along the fiber length. X and Z denote the radial distance and direction of propagation, respectively. The region shaded in light green is the core of the fiber. The regions colored in yellow and dark green are the cladding, and the outermost region shaded in red is the absorption coating.

Fig. 5.
Fig. 5.

Comparison of the minimum fiber length calculated by the proposed model and the BPM method

Fig. 6.
Fig. 6.

The effect of varying the radius of a circular aperture placed at the output end of the single-mode fiber. There exits a trade-off between improving the filtering capability and obtaining maximal throughput power. Note that the power throughput does not change significantly for the two fiber lengths.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R ( L ) = P FM ( z = L ) P HOM ( z = L )
R = η 0 e α 0 L ( 1 η 0 ) e α 1 L
η = A E in * E op dxdy 2 A E in 2 dxdy A E op 2 dxdy
i N η i = a * i = 1 N η i = 1 η 0
R ( L ) = η 0 e α 0 L i = 1 N η i e α i L

Metrics