Abstract

The transmission properties of light through metal films with compound periodic subwavelength hole arrays is numerically investigated by using the finite-difference time-domain (FDTD) method. The sharp dips in the transmission bands, together with the suppression of surface plasmon resonance (SPR) (0, 1) peak, are found when two square holes in every unit cell are arranged asymmetrically along the polarization direction of the incident light. However, the shape of transmission spectra is not sensitive to the symmetry if the holes are arranged perpendicular to the propagation direction of surface plasmon polaritons (SPPs). The physics origin of these phenomena is explained qualitatively by the phase resonance of SPPs.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
    [CrossRef]
  2. F. J. García de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007).
    [CrossRef]
  3. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39-46 (2007).
    [CrossRef]
  4. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
    [CrossRef]
  5. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through a periodic array of slits in a thick metallic film," Opt. Express 13, 4485-4491 (2005).
    [CrossRef] [PubMed]
  6. L. Martín-Moreno and F. J. García-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619-3628 (2004).
    [CrossRef]
  7. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef] [PubMed]
  8. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
    [CrossRef] [PubMed]
  9. Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96, 233901 (2006).
    [CrossRef] [PubMed]
  10. C. Rockstuhl and F. Lederer, "Enhanced transmission of periodic, quasperiodic and random nanoaperture arrays," Appl. Phys. Lett. 91, 151109 (2007).
    [CrossRef]
  11. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcıa-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
    [CrossRef]
  12. D. C. Skigin and R. A. Depine, "Transmission resonances of metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95, 217402 (2005).
    [CrossRef] [PubMed]
  13. D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74, 046606 (2006).
    [CrossRef]
  14. Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. B 76, 085413 (2007).
    [CrossRef]
  15. Q. J. Wang, J. Q. Li, C. P Huang, C. Zhang, and Y. Y. Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005).
    [CrossRef]
  16. Q. J. Wang, C. P. Huang, J. Q. Li, and Y. Y. Zhu, "Suppression of transmission minma and maxima with structural metal surface," Appl. Phys. Lett. 89, 221121 (2006).
    [CrossRef]
  17. Y. H Ye, Z. B Wang, and Y. Cao, "Enhanced transmission through metal films perforated with circular and cross-dipole apertures," Appl. Phys. Lett. 91, 251105 (2007).
    [CrossRef]
  18. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston. 2000).
  19. E. D. Palik, Handbook of Optical Constants and Solids (Academic, New York, 1985).
  20. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
    [CrossRef]
  21. L. Salomon, F. Grillot, A. V. Zayats, and F. de. Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
    [CrossRef] [PubMed]
  22. H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature,  452, 728-731 (2008).
    [CrossRef] [PubMed]

2008 (1)

H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature,  452, 728-731 (2008).
[CrossRef] [PubMed]

2007 (6)

F. J. García de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39-46 (2007).
[CrossRef]

C. Rockstuhl and F. Lederer, "Enhanced transmission of periodic, quasperiodic and random nanoaperture arrays," Appl. Phys. Lett. 91, 151109 (2007).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcıa-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. B 76, 085413 (2007).
[CrossRef]

Y. H Ye, Z. B Wang, and Y. Cao, "Enhanced transmission through metal films perforated with circular and cross-dipole apertures," Appl. Phys. Lett. 91, 251105 (2007).
[CrossRef]

2006 (3)

Q. J. Wang, C. P. Huang, J. Q. Li, and Y. Y. Zhu, "Suppression of transmission minma and maxima with structural metal surface," Appl. Phys. Lett. 89, 221121 (2006).
[CrossRef]

Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74, 046606 (2006).
[CrossRef]

2005 (3)

Q. J. Wang, J. Q. Li, C. P Huang, C. Zhang, and Y. Y. Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005).
[CrossRef]

D. C. Skigin and R. A. Depine, "Transmission resonances of metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95, 217402 (2005).
[CrossRef] [PubMed]

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through a periodic array of slits in a thick metallic film," Opt. Express 13, 4485-4491 (2005).
[CrossRef] [PubMed]

2004 (2)

L. Martín-Moreno and F. J. García-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619-3628 (2004).
[CrossRef]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

2001 (2)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

L. Salomon, F. Grillot, A. V. Zayats, and F. de. Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

1999 (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Cao, Y.

Y. H Ye, Z. B Wang, and Y. Cao, "Enhanced transmission through metal films perforated with circular and cross-dipole apertures," Appl. Phys. Lett. 91, 251105 (2007).
[CrossRef]

de. Fornel, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. de. Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Depine, R. A.

D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74, 046606 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, "Transmission resonances of metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95, 217402 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39-46 (2007).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Enoch, S.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

García de Abajo, F. J.

F. J. García de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007).
[CrossRef]

Garcia-Vidal, F. J.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcıa-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

García-Vidal, F. J.

L. Martín-Moreno and F. J. García-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619-3628 (2004).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39-46 (2007).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Grillot, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. de. Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Huang, C. P

Q. J. Wang, J. Q. Li, C. P Huang, C. Zhang, and Y. Y. Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005).
[CrossRef]

Huang, C. P.

Q. J. Wang, C. P. Huang, J. Q. Li, and Y. Y. Zhu, "Suppression of transmission minma and maxima with structural metal surface," Appl. Phys. Lett. 89, 221121 (2006).
[CrossRef]

Koerkamp, K. J. K.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Kuipers, L.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Lalanne, P.

H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature,  452, 728-731 (2008).
[CrossRef] [PubMed]

Lederer, F.

C. Rockstuhl and F. Lederer, "Enhanced transmission of periodic, quasperiodic and random nanoaperture arrays," Appl. Phys. Lett. 91, 151109 (2007).
[CrossRef]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Li, J. Q.

Q. J. Wang, C. P. Huang, J. Q. Li, and Y. Y. Zhu, "Suppression of transmission minma and maxima with structural metal surface," Appl. Phys. Lett. 89, 221121 (2006).
[CrossRef]

Q. J. Wang, J. Q. Li, C. P Huang, C. Zhang, and Y. Y. Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005).
[CrossRef]

Liu, H.

H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature,  452, 728-731 (2008).
[CrossRef] [PubMed]

Ma, Y. G.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. B 76, 085413 (2007).
[CrossRef]

Mansuripur, M.

Martin-Moreno, L.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcıa-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

Martín-Moreno, L.

L. Martín-Moreno and F. J. García-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619-3628 (2004).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Mary, A.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcıa-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

Moloney, J. V.

Ong, C. K.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. B 76, 085413 (2007).
[CrossRef]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Qiu, M.

Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

Rao, X. S.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. B 76, 085413 (2007).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl and F. Lederer, "Enhanced transmission of periodic, quasperiodic and random nanoaperture arrays," Appl. Phys. Lett. 91, 151109 (2007).
[CrossRef]

Rodrigo, S. G.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcıa-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

Ruan, Z.

Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

Salomon, L.

L. Salomon, F. Grillot, A. V. Zayats, and F. de. Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Segerink, F. B.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Skigin, D. C.

D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74, 046606 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, "Transmission resonances of metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95, 217402 (2005).
[CrossRef] [PubMed]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

van Hulst, N. F.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Wang, Q. J.

Q. J. Wang, C. P. Huang, J. Q. Li, and Y. Y. Zhu, "Suppression of transmission minma and maxima with structural metal surface," Appl. Phys. Lett. 89, 221121 (2006).
[CrossRef]

Q. J. Wang, J. Q. Li, C. P Huang, C. Zhang, and Y. Y. Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005).
[CrossRef]

Wang, Z. B

Y. H Ye, Z. B Wang, and Y. Cao, "Enhanced transmission through metal films perforated with circular and cross-dipole apertures," Appl. Phys. Lett. 91, 251105 (2007).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Xie, Y.

Ye, Y. H

Y. H Ye, Z. B Wang, and Y. Cao, "Enhanced transmission through metal films perforated with circular and cross-dipole apertures," Appl. Phys. Lett. 91, 251105 (2007).
[CrossRef]

Zakharian, A. R.

Zayats, A. V.

L. Salomon, F. Grillot, A. V. Zayats, and F. de. Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Zhang, C.

Q. J. Wang, J. Q. Li, C. P Huang, C. Zhang, and Y. Y. Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005).
[CrossRef]

Zhang, G. F.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. B 76, 085413 (2007).
[CrossRef]

Zhu, Y. Y.

Q. J. Wang, C. P. Huang, J. Q. Li, and Y. Y. Zhu, "Suppression of transmission minma and maxima with structural metal surface," Appl. Phys. Lett. 89, 221121 (2006).
[CrossRef]

Q. J. Wang, J. Q. Li, C. P Huang, C. Zhang, and Y. Y. Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

C. Rockstuhl and F. Lederer, "Enhanced transmission of periodic, quasperiodic and random nanoaperture arrays," Appl. Phys. Lett. 91, 151109 (2007).
[CrossRef]

Q. J. Wang, J. Q. Li, C. P Huang, C. Zhang, and Y. Y. Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005).
[CrossRef]

Q. J. Wang, C. P. Huang, J. Q. Li, and Y. Y. Zhu, "Suppression of transmission minma and maxima with structural metal surface," Appl. Phys. Lett. 89, 221121 (2006).
[CrossRef]

Y. H Ye, Z. B Wang, and Y. Cao, "Enhanced transmission through metal films perforated with circular and cross-dipole apertures," Appl. Phys. Lett. 91, 251105 (2007).
[CrossRef]

Nature (1)

H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature,  452, 728-731 (2008).
[CrossRef] [PubMed]

Nature (London) (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39-46 (2007).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (3)

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcıa-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007).
[CrossRef]

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. B 76, 085413 (2007).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Phys. Rev. E (1)

D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74, 046606 (2006).
[CrossRef]

Phys. Rev. Lett. (6)

D. C. Skigin and R. A. Depine, "Transmission resonances of metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95, 217402 (2005).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

L. Salomon, F. Grillot, A. V. Zayats, and F. de. Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. García de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007).
[CrossRef]

Other (2)

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston. 2000).

E. D. Palik, Handbook of Optical Constants and Solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic illustrations of the compound subwavelength arrays of square hole. (a) A unit cell of compound subwavelength hole arrays, consisting of two square holes width identical width. (b) corresponds to dx = 0. (c) the general case. (d) the case dy = 0. The width of square hole are a = 200 nm, filled with air, and the periodicity is p = 600 nm. The thickness of Ag film is 100 nm.

Fig. 2.
Fig. 2.

Transmission spectra for different arrangement of compound subwavelength hole arrays. (a)-(b) Transmission spectra correspond to the arrangement style shown as in Figs. 1(b) and (c). The transmission for simple cell arrays with the same width and periodicity as the compound structures is also plotted (dashed line), shown in the inset as “simple”.

Fig. 3.
Fig. 3.

Transmission spectra for various dx , corresponds to the compound subwavelength square hole arrays illustrated in Fig. 1(d).

Fig. 4.
Fig. 4.

The calculated time-averaged density distribution of the electric field at dielectric-metal interfaces, the xy cross section. (a) corresponds to the case of dAB = 100 nm, λ= 610 nm at the air-metal interface. (b) corresponds to dAB = 60 nm, λ = 620 nm at the air-metal interface. (c)-(d) the electric field distribution at quartz-metal interface for Q (0, 1) peak at wavelength λ = 970 nm, corresponding to the arrangement of Figs. 1(d) and (b), respectively. The dotted lines mark the position of the holes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ max = p i 2 + j 2 ε d ε m ε d + ε m ,

Metrics