Abstract

Liquid crystal polarization gratings exhibit high diffraction efficiency (~ 100%) in thin material layers comparable to the radiation wavelength. We demonstrate that they can be combined for polarization-insensitive imaging and optical switching applications. A pair of closely spaced, parallel oriented, cycloidal polarization gratings is capable of canceling the diffractive property of an individual grating. As a result, the phase of the beam is not distorted, and holographic images can be formed through them. An anti-parallel arrangement results in a broader effective diffraction band and doubles the diffraction angle. Broadband diffraction spanning from 480 nm to beyond 900 nm wavelengths has been obtained for a pair of gratings with 500 nm and 633 nm peak diffraction wavelengths. Liquid crystal polymer cycloidal gratings were used in the study showing 98% diffraction efficiency over a large area, and allowed for the use of laser beams expanded to 25 mm. The characteristics of combined cycloidal gratings were tested with laser beams at both UV and red wavelengths.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Patel and M. W. Maeda, "Tunable polarization diversity liquid-crystal wavelength filter," IEEE Photon. Technol. Lett. 3, 739-740 (1991).
    [CrossRef]
  2. D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, "Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration," Appl. Phys. Lett. 88, 203505-203507 (2006).
    [CrossRef]
  3. S. V. Belayer, M. Schadt, M. I. Barnik, J. Funfschilling, N. V. Malimoneko, and K. Schmitt, "Large aperture polarized light source and novel liquid crystal display operating modes," Jpn. J. Appl. Phys. 29, L634-L637 (1990).
    [CrossRef]
  4. C. Nicolas, B. Loiseaux, and J. P. Huignard, "Polarized light source for LCD projection," Displays 16, 43-48 (1995).
    [CrossRef]
  5. W. C. Yip, H. C. Huang, and H. S. Kwok, "Efficient polarization converter for projection displays," Appl. Opt. 36, 6453-6457 (1997).
    [CrossRef]
  6. B. Ya. Zeldovich and N. V. Tabirian, "Devices for displaying visual information," Invention Disclosure, School of Optics / CREOL, July 2000.
  7. H. Sarkissian, J. B. Park, N. V. Tabirian, and B. Ya. Zeldovich, "Periodically aligned liquid crystal: potential application for projection displays and stability of LC configuration," Optics in the Southeast 2003, Orlando, FL; Conference Program, PSE 02.
  8. H. Sarkissian, B. Park, B. Zeldovich, and N. Tabirian, "Potential Application of Periodically Aligned Liquid Crystal Cell for Projection Displays," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper JThE12. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2005-JThE12.
    [PubMed]
  9. G. Cincotti, "Polarization gratings: Design and applications," IEEE J. Quantum Electron. 39, 1645-1652 (2003).
    [CrossRef]
  10. W. M. Jones, B. Conover, and M. J. Escuti, "Evaluation of Projection Schemes for the Liquid Crystal Polarization Grating Operating on Unpolarized Light," SID 06 DIGEST • 1015-1018, 2006.
    [CrossRef]
  11. M. J. Escuti and W. M. Jones, "A polarization-independent liquid crystal spatial-light-modulator," Proc. SPIE 6332, 22 (2006).
  12. C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
    [CrossRef]
  13. C. Provenzano, P. Pagliusi, and G. Cipparrone, "Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography," Opt. Express 15, 5872-5878 (2007).
    [CrossRef] [PubMed]
  14. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, B. Ya. Zeldovich, "Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals," Opt. Lett. 31, 2248 (2006).
    [CrossRef] [PubMed]
  15. T. Seki, M. Sakuragi, Y. Kawanishi, Y. Suzuki, and T. Tamaki, "Command Surfaces of Langmuir-Blodgett Films. Photoregulations of Liquid Crystal Alignment by Molecularly Tailored Surface Azobenzene Layers," Langmuir 9, 211-218 (1993).
    [CrossRef]
  16. H. Knobloch, H. Orendi, B. Stiller, M. Bachel, W. Knoll, T. Seki, S. Ito, L. Brehmer, "Command surface induced switching of the optical properties of liquid crystalline thin film structures," Synthetic Metals 81, 297-300 (1996).
    [CrossRef]
  17. K. Ichimura, "Photoalignment of liquid-crystal systems," Chem. Rev. 100, 1847-1873, 2000.
    [CrossRef]
  18. H. Knoll, "Photoisomerism of azobenzenes," in Organic Photochemistry and Photobiology, W. Horspool, and F. Lenci eds., (CRC Press, Boca Raton, 2004).
  19. J. Griffiths, "Photochemistry of azobenzene and its derivatives," Chem. Soc. Rev. 1, 481-493 (1972).
    [CrossRef]
  20. G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, "Liquid-crystal diffraction gratings using polarization holography alignment techniques," J. Appl. Phys. 98, 123102-1-123102-10, (2005).
    [CrossRef]
  21. H. Sarkissian, N. Tabiryan, B. Park, B. Zeldovich, "Periodically Aligned Liquid Crystal: Potential application for projection displays," Mol. Cryst. Liq. Cryst. 451, 1-19 (2006).
    [CrossRef]
  22. C. Oh and M. J. Escuti, "Achromatic diffraction from polarization gratings with high efficiency," Opt. Lett. 33, 2287-2289 (2008).
    [CrossRef] [PubMed]
  23. H. Seiberle, C. Benecke and T. Bachels, "Photo-Aligned Anisotropic Optical Thin Films," SID 03 Digest, pp. 1162-1165.
  24. V. G Chigrinov, V. M. Kozenkov, and H. S. Kwok, "Photoaligning: Physics and Applications in Liquid Crystal Devices," (Wiley VCH, 2008).
  25. T. J. Bunning, L. V. Natarajan, R. L. Sutherland, and V. P. Tondiglia, "Holographic polymer-dispersed liquid crystals (H-PDLCs),"Annual Rev. Mater. Sci. 30, 83-115 (2000).
    [CrossRef]
  26. A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, T. Bunning, "Optically Switchable Bragg Reflectors," Adv. Mater. 16, 1453-1456 (2004).
    [CrossRef]
  27. H. Sarkissian, B. Ya Zeldovich, and N. V. Tabiryan, "Polarization-universal bandgap in periodically twisted nematics," Opt. Lett. 31, 1678-1680 (2006).
    [CrossRef] [PubMed]
  28. H. Sarkissian, B. Zeldovich, and N. Tabiryan, "Longitudinally modulated bandgap nematic structure," J. Opt. Soc. Am. B 23, 1712-1717 (2006).
    [CrossRef]
  29. S. Serak, N. Tabiryan, and B. Zeldovich, "High-efficiency 1.5 μm thick optical axis grating and its use for laser beam combining," Opt. Lett. 32, 169-171 (2007).
    [CrossRef]

2008 (1)

2007 (2)

2006 (7)

H. Sarkissian, B. Ya Zeldovich, and N. V. Tabiryan, "Polarization-universal bandgap in periodically twisted nematics," Opt. Lett. 31, 1678-1680 (2006).
[CrossRef] [PubMed]

H. Sarkissian, B. Zeldovich, and N. Tabiryan, "Longitudinally modulated bandgap nematic structure," J. Opt. Soc. Am. B 23, 1712-1717 (2006).
[CrossRef]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, B. Ya. Zeldovich, "Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals," Opt. Lett. 31, 2248 (2006).
[CrossRef] [PubMed]

H. Sarkissian, N. Tabiryan, B. Park, B. Zeldovich, "Periodically Aligned Liquid Crystal: Potential application for projection displays," Mol. Cryst. Liq. Cryst. 451, 1-19 (2006).
[CrossRef]

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, "Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration," Appl. Phys. Lett. 88, 203505-203507 (2006).
[CrossRef]

M. J. Escuti and W. M. Jones, "A polarization-independent liquid crystal spatial-light-modulator," Proc. SPIE 6332, 22 (2006).

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

2004 (1)

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, T. Bunning, "Optically Switchable Bragg Reflectors," Adv. Mater. 16, 1453-1456 (2004).
[CrossRef]

2003 (1)

G. Cincotti, "Polarization gratings: Design and applications," IEEE J. Quantum Electron. 39, 1645-1652 (2003).
[CrossRef]

2000 (2)

T. J. Bunning, L. V. Natarajan, R. L. Sutherland, and V. P. Tondiglia, "Holographic polymer-dispersed liquid crystals (H-PDLCs),"Annual Rev. Mater. Sci. 30, 83-115 (2000).
[CrossRef]

K. Ichimura, "Photoalignment of liquid-crystal systems," Chem. Rev. 100, 1847-1873, 2000.
[CrossRef]

1997 (1)

1996 (1)

H. Knobloch, H. Orendi, B. Stiller, M. Bachel, W. Knoll, T. Seki, S. Ito, L. Brehmer, "Command surface induced switching of the optical properties of liquid crystalline thin film structures," Synthetic Metals 81, 297-300 (1996).
[CrossRef]

1995 (1)

C. Nicolas, B. Loiseaux, and J. P. Huignard, "Polarized light source for LCD projection," Displays 16, 43-48 (1995).
[CrossRef]

1993 (1)

T. Seki, M. Sakuragi, Y. Kawanishi, Y. Suzuki, and T. Tamaki, "Command Surfaces of Langmuir-Blodgett Films. Photoregulations of Liquid Crystal Alignment by Molecularly Tailored Surface Azobenzene Layers," Langmuir 9, 211-218 (1993).
[CrossRef]

1991 (1)

J. S. Patel and M. W. Maeda, "Tunable polarization diversity liquid-crystal wavelength filter," IEEE Photon. Technol. Lett. 3, 739-740 (1991).
[CrossRef]

J. S. Patel and M. W. Maeda, "Tunable polarization diversity liquid-crystal wavelength filter," IEEE Photon. Technol. Lett. 3, 739-740 (1991).
[CrossRef]

1990 (1)

S. V. Belayer, M. Schadt, M. I. Barnik, J. Funfschilling, N. V. Malimoneko, and K. Schmitt, "Large aperture polarized light source and novel liquid crystal display operating modes," Jpn. J. Appl. Phys. 29, L634-L637 (1990).
[CrossRef]

1972 (1)

J. Griffiths, "Photochemistry of azobenzene and its derivatives," Chem. Soc. Rev. 1, 481-493 (1972).
[CrossRef]

Bachel, M.

H. Knobloch, H. Orendi, B. Stiller, M. Bachel, W. Knoll, T. Seki, S. Ito, L. Brehmer, "Command surface induced switching of the optical properties of liquid crystalline thin film structures," Synthetic Metals 81, 297-300 (1996).
[CrossRef]

Barnik, M. I.

S. V. Belayer, M. Schadt, M. I. Barnik, J. Funfschilling, N. V. Malimoneko, and K. Schmitt, "Large aperture polarized light source and novel liquid crystal display operating modes," Jpn. J. Appl. Phys. 29, L634-L637 (1990).
[CrossRef]

Belayer, S. V.

S. V. Belayer, M. Schadt, M. I. Barnik, J. Funfschilling, N. V. Malimoneko, and K. Schmitt, "Large aperture polarized light source and novel liquid crystal display operating modes," Jpn. J. Appl. Phys. 29, L634-L637 (1990).
[CrossRef]

Brehmer, L.

H. Knobloch, H. Orendi, B. Stiller, M. Bachel, W. Knoll, T. Seki, S. Ito, L. Brehmer, "Command surface induced switching of the optical properties of liquid crystalline thin film structures," Synthetic Metals 81, 297-300 (1996).
[CrossRef]

Bunning, T.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, T. Bunning, "Optically Switchable Bragg Reflectors," Adv. Mater. 16, 1453-1456 (2004).
[CrossRef]

Bunning, T. J.

T. J. Bunning, L. V. Natarajan, R. L. Sutherland, and V. P. Tondiglia, "Holographic polymer-dispersed liquid crystals (H-PDLCs),"Annual Rev. Mater. Sci. 30, 83-115 (2000).
[CrossRef]

Cincotti, G.

G. Cincotti, "Polarization gratings: Design and applications," IEEE J. Quantum Electron. 39, 1645-1652 (2003).
[CrossRef]

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography," Opt. Express 15, 5872-5878 (2007).
[CrossRef] [PubMed]

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Escuti, M. J.

C. Oh and M. J. Escuti, "Achromatic diffraction from polarization gratings with high efficiency," Opt. Lett. 33, 2287-2289 (2008).
[CrossRef] [PubMed]

M. J. Escuti and W. M. Jones, "A polarization-independent liquid crystal spatial-light-modulator," Proc. SPIE 6332, 22 (2006).

Funfschilling, J.

S. V. Belayer, M. Schadt, M. I. Barnik, J. Funfschilling, N. V. Malimoneko, and K. Schmitt, "Large aperture polarized light source and novel liquid crystal display operating modes," Jpn. J. Appl. Phys. 29, L634-L637 (1990).
[CrossRef]

Glebov, L. B.

Griffiths, J.

J. Griffiths, "Photochemistry of azobenzene and its derivatives," Chem. Soc. Rev. 1, 481-493 (1972).
[CrossRef]

Huang, H. C.

Huignard, J. P.

C. Nicolas, B. Loiseaux, and J. P. Huignard, "Polarized light source for LCD projection," Displays 16, 43-48 (1995).
[CrossRef]

Ichimura, K.

K. Ichimura, "Photoalignment of liquid-crystal systems," Chem. Rev. 100, 1847-1873, 2000.
[CrossRef]

Ikeda, T.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, T. Bunning, "Optically Switchable Bragg Reflectors," Adv. Mater. 16, 1453-1456 (2004).
[CrossRef]

Ito, S.

H. Knobloch, H. Orendi, B. Stiller, M. Bachel, W. Knoll, T. Seki, S. Ito, L. Brehmer, "Command surface induced switching of the optical properties of liquid crystalline thin film structures," Synthetic Metals 81, 297-300 (1996).
[CrossRef]

Jones, W. M.

M. J. Escuti and W. M. Jones, "A polarization-independent liquid crystal spatial-light-modulator," Proc. SPIE 6332, 22 (2006).

Kawanishi, Y.

T. Seki, M. Sakuragi, Y. Kawanishi, Y. Suzuki, and T. Tamaki, "Command Surfaces of Langmuir-Blodgett Films. Photoregulations of Liquid Crystal Alignment by Molecularly Tailored Surface Azobenzene Layers," Langmuir 9, 211-218 (1993).
[CrossRef]

Kim, D.-W.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, "Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration," Appl. Phys. Lett. 88, 203505-203507 (2006).
[CrossRef]

Kim, H.-R.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, "Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration," Appl. Phys. Lett. 88, 203505-203507 (2006).
[CrossRef]

Kim, S.-J.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, "Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration," Appl. Phys. Lett. 88, 203505-203507 (2006).
[CrossRef]

Klosterman, J.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, T. Bunning, "Optically Switchable Bragg Reflectors," Adv. Mater. 16, 1453-1456 (2004).
[CrossRef]

Knobloch, H.

H. Knobloch, H. Orendi, B. Stiller, M. Bachel, W. Knoll, T. Seki, S. Ito, L. Brehmer, "Command surface induced switching of the optical properties of liquid crystalline thin film structures," Synthetic Metals 81, 297-300 (1996).
[CrossRef]

Knoll, W.

H. Knobloch, H. Orendi, B. Stiller, M. Bachel, W. Knoll, T. Seki, S. Ito, L. Brehmer, "Command surface induced switching of the optical properties of liquid crystalline thin film structures," Synthetic Metals 81, 297-300 (1996).
[CrossRef]

Kwok, H. S.

Lee, S.-D.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, "Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration," Appl. Phys. Lett. 88, 203505-203507 (2006).
[CrossRef]

Loiseaux, B.

C. Nicolas, B. Loiseaux, and J. P. Huignard, "Polarized light source for LCD projection," Displays 16, 43-48 (1995).
[CrossRef]

Maeda, M. W.

J. S. Patel and M. W. Maeda, "Tunable polarization diversity liquid-crystal wavelength filter," IEEE Photon. Technol. Lett. 3, 739-740 (1991).
[CrossRef]

Malimoneko, N. V.

S. V. Belayer, M. Schadt, M. I. Barnik, J. Funfschilling, N. V. Malimoneko, and K. Schmitt, "Large aperture polarized light source and novel liquid crystal display operating modes," Jpn. J. Appl. Phys. 29, L634-L637 (1990).
[CrossRef]

Natarajan, L.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, T. Bunning, "Optically Switchable Bragg Reflectors," Adv. Mater. 16, 1453-1456 (2004).
[CrossRef]

Natarajan, L. V.

T. J. Bunning, L. V. Natarajan, R. L. Sutherland, and V. P. Tondiglia, "Holographic polymer-dispersed liquid crystals (H-PDLCs),"Annual Rev. Mater. Sci. 30, 83-115 (2000).
[CrossRef]

Nicolas, C.

C. Nicolas, B. Loiseaux, and J. P. Huignard, "Polarized light source for LCD projection," Displays 16, 43-48 (1995).
[CrossRef]

Oh, C.

Orendi, H.

H. Knobloch, H. Orendi, B. Stiller, M. Bachel, W. Knoll, T. Seki, S. Ito, L. Brehmer, "Command surface induced switching of the optical properties of liquid crystalline thin film structures," Synthetic Metals 81, 297-300 (1996).
[CrossRef]

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography," Opt. Express 15, 5872-5878 (2007).
[CrossRef] [PubMed]

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Park, B.

H. Sarkissian, N. Tabiryan, B. Park, B. Zeldovich, "Periodically Aligned Liquid Crystal: Potential application for projection displays," Mol. Cryst. Liq. Cryst. 451, 1-19 (2006).
[CrossRef]

Patel, J. S.

J. S. Patel and M. W. Maeda, "Tunable polarization diversity liquid-crystal wavelength filter," IEEE Photon. Technol. Lett. 3, 739-740 (1991).
[CrossRef]

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography," Opt. Express 15, 5872-5878 (2007).
[CrossRef] [PubMed]

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Rotar, V.

Sakuragi, M.

T. Seki, M. Sakuragi, Y. Kawanishi, Y. Suzuki, and T. Tamaki, "Command Surfaces of Langmuir-Blodgett Films. Photoregulations of Liquid Crystal Alignment by Molecularly Tailored Surface Azobenzene Layers," Langmuir 9, 211-218 (1993).
[CrossRef]

Sarkissian, H.

Schadt, M.

S. V. Belayer, M. Schadt, M. I. Barnik, J. Funfschilling, N. V. Malimoneko, and K. Schmitt, "Large aperture polarized light source and novel liquid crystal display operating modes," Jpn. J. Appl. Phys. 29, L634-L637 (1990).
[CrossRef]

Schmitt, K.

S. V. Belayer, M. Schadt, M. I. Barnik, J. Funfschilling, N. V. Malimoneko, and K. Schmitt, "Large aperture polarized light source and novel liquid crystal display operating modes," Jpn. J. Appl. Phys. 29, L634-L637 (1990).
[CrossRef]

Seki, T.

H. Knobloch, H. Orendi, B. Stiller, M. Bachel, W. Knoll, T. Seki, S. Ito, L. Brehmer, "Command surface induced switching of the optical properties of liquid crystalline thin film structures," Synthetic Metals 81, 297-300 (1996).
[CrossRef]

T. Seki, M. Sakuragi, Y. Kawanishi, Y. Suzuki, and T. Tamaki, "Command Surfaces of Langmuir-Blodgett Films. Photoregulations of Liquid Crystal Alignment by Molecularly Tailored Surface Azobenzene Layers," Langmuir 9, 211-218 (1993).
[CrossRef]

Serak, S.

Serak, S. V.

Stiller, B.

H. Knobloch, H. Orendi, B. Stiller, M. Bachel, W. Knoll, T. Seki, S. Ito, L. Brehmer, "Command surface induced switching of the optical properties of liquid crystalline thin film structures," Synthetic Metals 81, 297-300 (1996).
[CrossRef]

Sutherland, R.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, T. Bunning, "Optically Switchable Bragg Reflectors," Adv. Mater. 16, 1453-1456 (2004).
[CrossRef]

Sutherland, R. L.

T. J. Bunning, L. V. Natarajan, R. L. Sutherland, and V. P. Tondiglia, "Holographic polymer-dispersed liquid crystals (H-PDLCs),"Annual Rev. Mater. Sci. 30, 83-115 (2000).
[CrossRef]

Suzuki, Y.

T. Seki, M. Sakuragi, Y. Kawanishi, Y. Suzuki, and T. Tamaki, "Command Surfaces of Langmuir-Blodgett Films. Photoregulations of Liquid Crystal Alignment by Molecularly Tailored Surface Azobenzene Layers," Langmuir 9, 211-218 (1993).
[CrossRef]

Tabiryan, N.

Tabiryan, N. V.

Tamaki, T.

T. Seki, M. Sakuragi, Y. Kawanishi, Y. Suzuki, and T. Tamaki, "Command Surfaces of Langmuir-Blodgett Films. Photoregulations of Liquid Crystal Alignment by Molecularly Tailored Surface Azobenzene Layers," Langmuir 9, 211-218 (1993).
[CrossRef]

Tondiglia, V.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, T. Bunning, "Optically Switchable Bragg Reflectors," Adv. Mater. 16, 1453-1456 (2004).
[CrossRef]

Tondiglia, V. P.

T. J. Bunning, L. V. Natarajan, R. L. Sutherland, and V. P. Tondiglia, "Holographic polymer-dispersed liquid crystals (H-PDLCs),"Annual Rev. Mater. Sci. 30, 83-115 (2000).
[CrossRef]

Tsutsumi, O.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, T. Bunning, "Optically Switchable Bragg Reflectors," Adv. Mater. 16, 1453-1456 (2004).
[CrossRef]

Urbas, A.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, T. Bunning, "Optically Switchable Bragg Reflectors," Adv. Mater. 16, 1453-1456 (2004).
[CrossRef]

Ya Zeldovich, B.

Yip, W. C.

Yu, C.-J.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, "Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration," Appl. Phys. Lett. 88, 203505-203507 (2006).
[CrossRef]

Zeldovich, B.

Zeldovich, B. Ya.

Adv. Mater. (1)

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, T. Bunning, "Optically Switchable Bragg Reflectors," Adv. Mater. 16, 1453-1456 (2004).
[CrossRef]

Annual Rev. Mater. Sci. (1)

T. J. Bunning, L. V. Natarajan, R. L. Sutherland, and V. P. Tondiglia, "Holographic polymer-dispersed liquid crystals (H-PDLCs),"Annual Rev. Mater. Sci. 30, 83-115 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, "Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration," Appl. Phys. Lett. 88, 203505-203507 (2006).
[CrossRef]

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Chem. Rev. (1)

K. Ichimura, "Photoalignment of liquid-crystal systems," Chem. Rev. 100, 1847-1873, 2000.
[CrossRef]

Chem. Soc. Rev. (1)

J. Griffiths, "Photochemistry of azobenzene and its derivatives," Chem. Soc. Rev. 1, 481-493 (1972).
[CrossRef]

Displays (1)

C. Nicolas, B. Loiseaux, and J. P. Huignard, "Polarized light source for LCD projection," Displays 16, 43-48 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Cincotti, "Polarization gratings: Design and applications," IEEE J. Quantum Electron. 39, 1645-1652 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. S. Patel and M. W. Maeda, "Tunable polarization diversity liquid-crystal wavelength filter," IEEE Photon. Technol. Lett. 3, 739-740 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

S. V. Belayer, M. Schadt, M. I. Barnik, J. Funfschilling, N. V. Malimoneko, and K. Schmitt, "Large aperture polarized light source and novel liquid crystal display operating modes," Jpn. J. Appl. Phys. 29, L634-L637 (1990).
[CrossRef]

Langmuir (1)

T. Seki, M. Sakuragi, Y. Kawanishi, Y. Suzuki, and T. Tamaki, "Command Surfaces of Langmuir-Blodgett Films. Photoregulations of Liquid Crystal Alignment by Molecularly Tailored Surface Azobenzene Layers," Langmuir 9, 211-218 (1993).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

H. Sarkissian, N. Tabiryan, B. Park, B. Zeldovich, "Periodically Aligned Liquid Crystal: Potential application for projection displays," Mol. Cryst. Liq. Cryst. 451, 1-19 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Proc. SPIE (1)

M. J. Escuti and W. M. Jones, "A polarization-independent liquid crystal spatial-light-modulator," Proc. SPIE 6332, 22 (2006).

Synthetic Metals (1)

H. Knobloch, H. Orendi, B. Stiller, M. Bachel, W. Knoll, T. Seki, S. Ito, L. Brehmer, "Command surface induced switching of the optical properties of liquid crystalline thin film structures," Synthetic Metals 81, 297-300 (1996).
[CrossRef]

Other (8)

H. Knoll, "Photoisomerism of azobenzenes," in Organic Photochemistry and Photobiology, W. Horspool, and F. Lenci eds., (CRC Press, Boca Raton, 2004).

W. M. Jones, B. Conover, and M. J. Escuti, "Evaluation of Projection Schemes for the Liquid Crystal Polarization Grating Operating on Unpolarized Light," SID 06 DIGEST • 1015-1018, 2006.
[CrossRef]

B. Ya. Zeldovich and N. V. Tabirian, "Devices for displaying visual information," Invention Disclosure, School of Optics / CREOL, July 2000.

H. Sarkissian, J. B. Park, N. V. Tabirian, and B. Ya. Zeldovich, "Periodically aligned liquid crystal: potential application for projection displays and stability of LC configuration," Optics in the Southeast 2003, Orlando, FL; Conference Program, PSE 02.

H. Sarkissian, B. Park, B. Zeldovich, and N. Tabirian, "Potential Application of Periodically Aligned Liquid Crystal Cell for Projection Displays," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper JThE12. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2005-JThE12.
[PubMed]

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, "Liquid-crystal diffraction gratings using polarization holography alignment techniques," J. Appl. Phys. 98, 123102-1-123102-10, (2005).
[CrossRef]

H. Seiberle, C. Benecke and T. Bachels, "Photo-Aligned Anisotropic Optical Thin Films," SID 03 Digest, pp. 1162-1165.

V. G Chigrinov, V. M. Kozenkov, and H. S. Kwok, "Photoaligning: Physics and Applications in Liquid Crystal Devices," (Wiley VCH, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

(a) A polarization grating diffracting an incident unpolarized beam into ±1st order beam. (b) Transformation of the grating into a homeotropic aligned LC cell due to electro-optical or nonlinear optical processes switches off the diffraction and restores normal propagation of the incident beam.

Fig. 2.
Fig. 2.

Schematic presentation of cycloidal polarization gratings of opposite signs of the “momentum” vector m. The gratings are in the (x,y) plane. The orientation of LC molecules changes periodically along the x-axis by rotating the molecules in the grating plane as shown by circled vectors. Solid black and open arrows represent right and left circular polarized beams, correspondingly. The subscripts indicate the sign of propagation/diffraction angle.

Fig. 3.
Fig. 3.

Diffraction cancellation in a system of two cycloidal gratings of the same sign: black and white arrows correspond to right and left circular polarization components in the incident unpolarized light; ∆x is the shift between the beams of opposite polarization states at the output of the grating system; ∆z is the distance between the gratings.

Fig. 4.
Fig. 4.

Schematic of the diffraction switching concept using a pair of “cycloidal” gratings: (a) the gratings are combined in such a way that the second grating restores the propagation direction of the beam diffracted on the first grating; (b) the diffractive property of one of the gratings is switched off, and the remaining grating diffracts the incident beam away from the sensor.

Fig. 5.
Fig. 5.

Demonstration of diffractive properties of a single and a pair of cycloidal gratings of 325 nm peak diffraction wavelength. The gratings are marked with plus/minus signs on their surfaces. An anti-parallel pair of gratings doubles the diffraction angle. The diffraction is cancelled for light propagation through a parallel grating pair.

Fig. 6.
Fig. 6.

(a) Separation between the beams of a linearly polarized He-Cd laser (λ = 325 nm) diffracted by a pair of parallel cycloidal gratings as a function of distance between the gratings. (b) Photos correspond to different distances. Photos were captured at 45 cm from the input grating. The beam spot size is 25 mm.

Fig. 7.
Fig. 7.

(a) Separation between the beams of a linearly polarized He-Cd laser (λ = 325 nm) diffracted by a pair of parallel cycloidal gratings as a function of the angle between the gratings. (b) Photos correspond to different angles.

Fig. 8.
Fig. 8.

Diffraction patterns of a linearly poralized He-Ne laser beam for (a) single grating; (b) pair of parallel gratings; (c) pair of anti-parallel gratings.

Fig. 9.
Fig. 9.

Diffraction patterns of a He-Ne laser beam for a pair of polymer gratings at different angles of rotation of the first grating with respect to the second one.

Fig. 10.
Fig. 10.

Diffraction photos (a) for a single grating and (b) for a grating pair in a diffraction canceling configuration using a laser beam. The high power density saturated the CCD to reveal all diffracted beams.

Fig. 11.
Fig. 11.

Transmission spectra of single gratings with 633 nm peak diffraction wavelength and the grating pair at different configurations: 1 and 2 single gratings of opposite signs; 3 pair of parallel gratings; 4 pair of anti-parallel gratings.

Fig. 12.
Fig. 12.

Transmission spectra of a single grating with 450 nm peak wavelength (1) and its combination with a grating of 633 nm peak wavelength at different configurations: 2, parallel; 3, anti-parallel.

Fig. 13.
Fig. 13.

Transmission spectra of a single grating with 500 nm peak wavelength (1) and its combination with a grating of 633 nm peak wavelength at different configurations: 2, parallel; 3, anti-parallel.

Fig. 14.
Fig. 14.

Photos of an image taken through a pair of cycloidal gratings (a) at different alignment conditions and (b) at different distance between parallel gratings.

Fig. 15.
Fig. 15.

Diffraction of a red beam of a laser pointer propagated through a holographic phase plate. Photos are taken for different angles between parallel gratings.

Metrics