Abstract

The nonlinear polarization dynamics of ultrashort optical pulses propagating in a low birefringent silicon waveguide is theocratically and numerically studied, with a static electric field applied across the waveguide. It is shown that the pulse shape and polarization evolution can be efficiently controlled by adjusting the magnitude of the applied dc field. It is also demonstrated that the polarization instability regime can be achieved in such waveguides – despite the presence of strong linear losses – by appropriately engineering the spatial distribution of the control field along the waveguide. The simulations indicate that short silicon waveguides can serve as a viable platform for developing re-configurable all-optical and/or optically assisted electro-optic devices in the spectral range spanning from near- to mid-infrared.

© 2009 Optical Society of America

Full Article  |  PDF Article
Related Articles
Nonlinear optical phenomena in silicon waveguides: Modeling and applications

Q. Lin, Oskar J. Painter, and Govind P. Agrawal
Opt. Express 15(25) 16604-16644 (2007)

Solitons and spectral broadening in long silicon-on-insulator photonic wires

W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorrel, and R. M. De La Rue
Opt. Express 16(5) 3310-3319 (2008)

Electronic control of soliton power transfer in silicon nanocrystal waveguides

Mengdi Li, Sergey A. Ponomarenko, Montasir Qasymeh, and Michael Cada
Opt. Express 16(13) 9587-9594 (2008)

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali, “Can silicon change photonics?”, Phys. Status Solidi A,  2, 213–224 (2008).
    [Crossref]
  2. G. T. Reed, “Optical age of silicon“ Nature 427, 595–596 (2004).
    [Crossref] [PubMed]
  3. L. Pavesi, “Will silicon be the photonic material of the third millennium?“ J.Phys.: Condens. Matter 15, R1169–R1196 (2003).
    [Crossref]
  4. Q. Lin, Oskar J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
    [Crossref] [PubMed]
  5. R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafastnonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl.Phys.  40, R249–R271 (2007).
    [Crossref]
  6. C. Manolatou and M. Lipson, “All-optical silicon modulators based on carrier injection by two-photon absorption,” IEEE J. Lightwave Technol,  24, 1433–1439 (2006).
    [Crossref]
  7. T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absortption in silicon wavegiudes,” Opt. Commun.  265, 171–174 (2006).
    [Crossref]
  8. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmaan, and M. Forst, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 femtosecond pulses,” Opt. Express 14, 8336–8346 (2006).
    [Crossref] [PubMed]
  9. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” IEEE J.Lightwave Technol,  23, 2094–2102 (2005).
    [Crossref]
  10. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003).
    [Crossref] [PubMed]
  11. M. A. Forst, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [Crossref]
  12. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,“ Nature 433, 725–728 (2005).
    [Crossref] [PubMed]
  13. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,“ Opt. Lett.  29, 1224–1227 (2004).
    [Crossref] [PubMed]
  14. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and suprercontinuum generation in silicon waveguides,” Opt. Lett.  32, 391–393 (2007).
    [Crossref] [PubMed]
  15. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fuachet, “Optical solitons in a silicon waveguide,” Opt. Express 15, 7682–7688 (2007).
    [Crossref] [PubMed]
  16. V. M. N. Passaro and F. De Leonardis, “Solitons in SOI optical waveguides,” Adv. Studies Theor. Phys.,  2, 769–785 (2008).
  17. M. Li, S. A. Ponomarenko, M. Qasymeh, and M. Cada, “Electronic control of soliton power transfer in silicon nanocrystal,” Opt. Express 16, 9587–9594 (2008).
    [Crossref] [PubMed]
  18. M. Cada, M. Qasymeh, and J. Pistora, “Electrically and optically controlled cross-polarized wave conversion,” Opt. Express 16, 3083–3100 (2008).
    [Crossref] [PubMed]
  19. H. G. Winful, “Self-induced polarization changes in birefringent optical fibers,” Appl.Phys.Lett.  47, 213–215 (1985).
    [Crossref]
  20. G. P. Agrawal, “Nonlinear fiber optics,” 4th ed. (Academic Press, Boston, 2007).
  21. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett.  90, 071113 (2007).
    [Crossref]
  22. R. Salem and T. E. Murphy, “Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode,” Opt. Lett.  29, 1524–1526 (2004).
    [Crossref] [PubMed]
  23. H. G. Winful, “Polarization instabilities in birefringent nonlinear media : apllication to fiber-optics devices,” Opt. Lett.  11, 33–35 (1986).
    [Crossref] [PubMed]
  24. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
    [Crossref] [PubMed]
  25. B. Cowan, “Optical damage threshold of silicon for ultrafastinfrared pulses,” Advanced accelerator concepts: 12th advanced accelerator concepts workshop. AIP conference proceedings,  877, 837–843 (2006).
  26. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.  91, 021111 (2007).
    [Crossref]
  27. S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, “Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter,” IEEE J. Quantum Electron.  25, 104–112 (1989).
    [Crossref]
  28. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon at 1.5μm wavelength,” Appl. Phys. Lett.  80, 416–418 (1985).
    [Crossref]
  29. H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz-Keldysh effect in indirect gap semiconductors,” J. Phys. B: Mol. Opt. Phys.  39, 2737–2746 (2006).
    [Crossref]

2008 (4)

2007 (6)

L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and suprercontinuum generation in silicon waveguides,” Opt. Lett.  32, 391–393 (2007).
[Crossref] [PubMed]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fuachet, “Optical solitons in a silicon waveguide,” Opt. Express 15, 7682–7688 (2007).
[Crossref] [PubMed]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett.  90, 071113 (2007).
[Crossref]

Q. Lin, Oskar J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
[Crossref] [PubMed]

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafastnonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl.Phys.  40, R249–R271 (2007).
[Crossref]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.  91, 021111 (2007).
[Crossref]

2006 (7)

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
[Crossref] [PubMed]

B. Cowan, “Optical damage threshold of silicon for ultrafastinfrared pulses,” Advanced accelerator concepts: 12th advanced accelerator concepts workshop. AIP conference proceedings,  877, 837–843 (2006).

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz-Keldysh effect in indirect gap semiconductors,” J. Phys. B: Mol. Opt. Phys.  39, 2737–2746 (2006).
[Crossref]

C. Manolatou and M. Lipson, “All-optical silicon modulators based on carrier injection by two-photon absorption,” IEEE J. Lightwave Technol,  24, 1433–1439 (2006).
[Crossref]

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absortption in silicon wavegiudes,” Opt. Commun.  265, 171–174 (2006).
[Crossref]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmaan, and M. Forst, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 femtosecond pulses,” Opt. Express 14, 8336–8346 (2006).
[Crossref] [PubMed]

M. A. Forst, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

2005 (2)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,“ Nature 433, 725–728 (2005).
[Crossref] [PubMed]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” IEEE J.Lightwave Technol,  23, 2094–2102 (2005).
[Crossref]

2004 (3)

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,“ Opt. Lett.  29, 1224–1227 (2004).
[Crossref] [PubMed]

G. T. Reed, “Optical age of silicon“ Nature 427, 595–596 (2004).
[Crossref] [PubMed]

R. Salem and T. E. Murphy, “Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode,” Opt. Lett.  29, 1524–1526 (2004).
[Crossref] [PubMed]

2003 (2)

1989 (1)

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, “Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter,” IEEE J. Quantum Electron.  25, 104–112 (1989).
[Crossref]

1986 (1)

H. G. Winful, “Polarization instabilities in birefringent nonlinear media : apllication to fiber-optics devices,” Opt. Lett.  11, 33–35 (1986).
[Crossref] [PubMed]

1985 (2)

H. G. Winful, “Self-induced polarization changes in birefringent optical fibers,” Appl.Phys.Lett.  47, 213–215 (1985).
[Crossref]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon at 1.5μm wavelength,” Appl. Phys. Lett.  80, 416–418 (1985).
[Crossref]

Abedin, K. S.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absortption in silicon wavegiudes,” Opt. Commun.  265, 171–174 (2006).
[Crossref]

Agrawal, G. P.

L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and suprercontinuum generation in silicon waveguides,” Opt. Lett.  32, 391–393 (2007).
[Crossref] [PubMed]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.  91, 021111 (2007).
[Crossref]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett.  90, 071113 (2007).
[Crossref]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fuachet, “Optical solitons in a silicon waveguide,” Opt. Express 15, 7682–7688 (2007).
[Crossref] [PubMed]

Q. Lin, Oskar J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
[Crossref] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
[Crossref] [PubMed]

G. P. Agrawal, “Nonlinear fiber optics,” 4th ed. (Academic Press, Boston, 2007).

Armani, D. K.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,“ Opt. Lett.  29, 1224–1227 (2004).
[Crossref] [PubMed]

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon at 1.5μm wavelength,” Appl. Phys. Lett.  80, 416–418 (1985).
[Crossref]

Baets, R.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absortption in silicon wavegiudes,” Opt. Commun.  265, 171–174 (2006).
[Crossref]

Banyai, W. C.

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, “Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter,” IEEE J. Quantum Electron.  25, 104–112 (1989).
[Crossref]

Bogaerts, W.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absortption in silicon wavegiudes,” Opt. Commun.  265, 171–174 (2006).
[Crossref]

Boyd, R. W.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.  91, 021111 (2007).
[Crossref]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett.  90, 071113 (2007).
[Crossref]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fuachet, “Optical solitons in a silicon waveguide,” Opt. Express 15, 7682–7688 (2007).
[Crossref] [PubMed]

Cada, M.

Claps, R.

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” IEEE J.Lightwave Technol,  23, 2094–2102 (2005).
[Crossref]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003).
[Crossref] [PubMed]

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,“ Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Cowan, B.

B. Cowan, “Optical damage threshold of silicon for ultrafastinfrared pulses,” Advanced accelerator concepts: 12th advanced accelerator concepts workshop. AIP conference proceedings,  877, 837–843 (2006).

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon at 1.5μm wavelength,” Appl. Phys. Lett.  80, 416–418 (1985).
[Crossref]

De Leonardis, F.

V. M. N. Passaro and F. De Leonardis, “Solitons in SOI optical waveguides,” Adv. Studies Theor. Phys.,  2, 769–785 (2008).

Dekker, R.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafastnonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl.Phys.  40, R249–R271 (2007).
[Crossref]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmaan, and M. Forst, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 femtosecond pulses,” Opt. Express 14, 8336–8346 (2006).
[Crossref] [PubMed]

Dimitropoulos, D.

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” IEEE J.Lightwave Technol,  23, 2094–2102 (2005).
[Crossref]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003).
[Crossref] [PubMed]

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon at 1.5μm wavelength,” Appl. Phys. Lett.  80, 416–418 (1985).
[Crossref]

Driessen, A.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafastnonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl.Phys.  40, R249–R271 (2007).
[Crossref]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmaan, and M. Forst, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 femtosecond pulses,” Opt. Express 14, 8336–8346 (2006).
[Crossref] [PubMed]

Dumon, P.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absortption in silicon wavegiudes,” Opt. Commun.  265, 171–174 (2006).
[Crossref]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,“ Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Fauchet, P. M.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.  91, 021111 (2007).
[Crossref]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett.  90, 071113 (2007).
[Crossref]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
[Crossref] [PubMed]

Finlayson, N.

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, “Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter,” IEEE J. Quantum Electron.  25, 104–112 (1989).
[Crossref]

Forst, M.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafastnonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl.Phys.  40, R249–R271 (2007).
[Crossref]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmaan, and M. Forst, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 femtosecond pulses,” Opt. Express 14, 8336–8346 (2006).
[Crossref] [PubMed]

Forst, M. A.

M. A. Forst, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Fuachet, P. M.

Gaeta, A. L.

M. A. Forst, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Garcia, H.

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz-Keldysh effect in indirect gap semiconductors,” J. Phys. B: Mol. Opt. Phys.  39, 2737–2746 (2006).
[Crossref]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,“ Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Han, Y.

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon at 1.5μm wavelength,” Appl. Phys. Lett.  80, 416–418 (1985).
[Crossref]

Jalali, B.

B. Jalali, “Can silicon change photonics?”, Phys. Status Solidi A,  2, 213–224 (2008).
[Crossref]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” IEEE J.Lightwave Technol,  23, 2094–2102 (2005).
[Crossref]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003).
[Crossref] [PubMed]

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,“ Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Kalyanaraman, R.

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz-Keldysh effect in indirect gap semiconductors,” J. Phys. B: Mol. Opt. Phys.  39, 2737–2746 (2006).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,“ Opt. Lett.  29, 1224–1227 (2004).
[Crossref] [PubMed]

Li, M.

Liang, T. K.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absortption in silicon wavegiudes,” Opt. Commun.  265, 171–174 (2006).
[Crossref]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon at 1.5μm wavelength,” Appl. Phys. Lett.  80, 416–418 (1985).
[Crossref]

Lin, Q.

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett.  90, 071113 (2007).
[Crossref]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.  91, 021111 (2007).
[Crossref]

L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and suprercontinuum generation in silicon waveguides,” Opt. Lett.  32, 391–393 (2007).
[Crossref] [PubMed]

Q. Lin, Oskar J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
[Crossref] [PubMed]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fuachet, “Optical solitons in a silicon waveguide,” Opt. Express 15, 7682–7688 (2007).
[Crossref] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
[Crossref] [PubMed]

Lipson, M.

M. A. Forst, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

C. Manolatou and M. Lipson, “All-optical silicon modulators based on carrier injection by two-photon absorption,” IEEE J. Lightwave Technol,  24, 1433–1439 (2006).
[Crossref]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,“ Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Manolatou, C.

C. Manolatou and M. Lipson, “All-optical silicon modulators based on carrier injection by two-photon absorption,” IEEE J. Lightwave Technol,  24, 1433–1439 (2006).
[Crossref]

Miyazaki, T.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absortption in silicon wavegiudes,” Opt. Commun.  265, 171–174 (2006).
[Crossref]

Moormann, C.

Murphy, T. E.

R. Salem and T. E. Murphy, “Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode,” Opt. Lett.  29, 1524–1526 (2004).
[Crossref] [PubMed]

Niehusmaan, J.

Nunes, L. R.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absortption in silicon wavegiudes,” Opt. Commun.  265, 171–174 (2006).
[Crossref]

Painter, Oskar J.

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,“ Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Passaro, V. M. N.

V. M. N. Passaro and F. De Leonardis, “Solitons in SOI optical waveguides,” Adv. Studies Theor. Phys.,  2, 769–785 (2008).

Pavesi, L.

L. Pavesi, “Will silicon be the photonic material of the third millennium?“ J.Phys.: Condens. Matter 15, R1169–R1196 (2003).
[Crossref]

Piredda, G.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.  91, 021111 (2007).
[Crossref]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett.  90, 071113 (2007).
[Crossref]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fuachet, “Optical solitons in a silicon waveguide,” Opt. Express 15, 7682–7688 (2007).
[Crossref] [PubMed]

Pistora, J.

Ponomarenko, S. A.

Qasymeh, M.

Raghunathan, V.

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” IEEE J.Lightwave Technol,  23, 2094–2102 (2005).
[Crossref]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003).
[Crossref] [PubMed]

Reed, G. T.

G. T. Reed, “Optical age of silicon“ Nature 427, 595–596 (2004).
[Crossref] [PubMed]

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon at 1.5μm wavelength,” Appl. Phys. Lett.  80, 416–418 (1985).
[Crossref]

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,“ Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Salem, R.

R. Salem and T. E. Murphy, “Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode,” Opt. Lett.  29, 1524–1526 (2004).
[Crossref] [PubMed]

Schmidt, B. S.

M. A. Forst, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Seaton, C. T.

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, “Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter,” IEEE J. Quantum Electron.  25, 104–112 (1989).
[Crossref]

Sharping, J. E.

M. A. Forst, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,“ Opt. Lett.  29, 1224–1227 (2004).
[Crossref] [PubMed]

Stegeman, G. I.

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, “Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter,” IEEE J. Quantum Electron.  25, 104–112 (1989).
[Crossref]

Stolen, R. H.

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, “Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter,” IEEE J. Quantum Electron.  25, 104–112 (1989).
[Crossref]

Trillo, S.

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, “Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter,” IEEE J. Quantum Electron.  25, 104–112 (1989).
[Crossref]

Tsang, H. K.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absortption in silicon wavegiudes,” Opt. Commun.  265, 171–174 (2006).
[Crossref]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon at 1.5μm wavelength,” Appl. Phys. Lett.  80, 416–418 (1985).
[Crossref]

Tsuchiya, M.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absortption in silicon wavegiudes,” Opt. Commun.  265, 171–174 (2006).
[Crossref]

Turner, A. C.

M. A. Forst, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Usechak, N.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafastnonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl.Phys.  40, R249–R271 (2007).
[Crossref]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,“ Opt. Lett.  29, 1224–1227 (2004).
[Crossref] [PubMed]

Van Thourhout, D.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absortption in silicon wavegiudes,” Opt. Commun.  265, 171–174 (2006).
[Crossref]

Wabnitz, S.

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, “Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter,” IEEE J. Quantum Electron.  25, 104–112 (1989).
[Crossref]

Wahlbrink, T.

Winful, H. G.

H. G. Winful, “Polarization instabilities in birefringent nonlinear media : apllication to fiber-optics devices,” Opt. Lett.  11, 33–35 (1986).
[Crossref] [PubMed]

H. G. Winful, “Self-induced polarization changes in birefringent optical fibers,” Appl.Phys.Lett.  47, 213–215 (1985).
[Crossref]

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon at 1.5μm wavelength,” Appl. Phys. Lett.  80, 416–418 (1985).
[Crossref]

Yin, L.

L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and suprercontinuum generation in silicon waveguides,” Opt. Lett.  32, 391–393 (2007).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett.  90, 071113 (2007).
[Crossref]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.  91, 021111 (2007).
[Crossref]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fuachet, “Optical solitons in a silicon waveguide,” Opt. Express 15, 7682–7688 (2007).
[Crossref] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
[Crossref] [PubMed]

Adv. Studies Theor. Phys (1)

V. M. N. Passaro and F. De Leonardis, “Solitons in SOI optical waveguides,” Adv. Studies Theor. Phys.,  2, 769–785 (2008).

Advanced accelerator concepts: 12th advanced accelerator concepts workshop. AIP conference proceedings (1)

B. Cowan, “Optical damage threshold of silicon for ultrafastinfrared pulses,” Advanced accelerator concepts: 12th advanced accelerator concepts workshop. AIP conference proceedings,  877, 837–843 (2006).

Appl. Phys. Lett (3)

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.  91, 021111 (2007).
[Crossref]

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett.  90, 071113 (2007).
[Crossref]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon at 1.5μm wavelength,” Appl. Phys. Lett.  80, 416–418 (1985).
[Crossref]

Appl.Phys.Lett (1)

H. G. Winful, “Self-induced polarization changes in birefringent optical fibers,” Appl.Phys.Lett.  47, 213–215 (1985).
[Crossref]

IEEE J. Lightwave Technol (1)

C. Manolatou and M. Lipson, “All-optical silicon modulators based on carrier injection by two-photon absorption,” IEEE J. Lightwave Technol,  24, 1433–1439 (2006).
[Crossref]

IEEE J. Quantum Electron (1)

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, “Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter,” IEEE J. Quantum Electron.  25, 104–112 (1989).
[Crossref]

IEEE J.Lightwave Technol (1)

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” IEEE J.Lightwave Technol,  23, 2094–2102 (2005).
[Crossref]

J. Phys. B: Mol. Opt. Phys (1)

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz-Keldysh effect in indirect gap semiconductors,” J. Phys. B: Mol. Opt. Phys.  39, 2737–2746 (2006).
[Crossref]

J. Phys. D: Appl.Phys (1)

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafastnonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl.Phys.  40, R249–R271 (2007).
[Crossref]

J.Phys.: Condens. Matter (1)

L. Pavesi, “Will silicon be the photonic material of the third millennium?“ J.Phys.: Condens. Matter 15, R1169–R1196 (2003).
[Crossref]

Nature (3)

G. T. Reed, “Optical age of silicon“ Nature 427, 595–596 (2004).
[Crossref] [PubMed]

M. A. Forst, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,“ Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Opt. Commun (1)

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absortption in silicon wavegiudes,” Opt. Commun.  265, 171–174 (2006).
[Crossref]

Opt. Express (7)

Opt. Lett (4)

R. Salem and T. E. Murphy, “Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode,” Opt. Lett.  29, 1524–1526 (2004).
[Crossref] [PubMed]

H. G. Winful, “Polarization instabilities in birefringent nonlinear media : apllication to fiber-optics devices,” Opt. Lett.  11, 33–35 (1986).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,“ Opt. Lett.  29, 1224–1227 (2004).
[Crossref] [PubMed]

L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and suprercontinuum generation in silicon waveguides,” Opt. Lett.  32, 391–393 (2007).
[Crossref] [PubMed]

Phys. Status Solidi A (1)

B. Jalali, “Can silicon change photonics?”, Phys. Status Solidi A,  2, 213–224 (2008).
[Crossref]

Other (1)

G. P. Agrawal, “Nonlinear fiber optics,” 4th ed. (Academic Press, Boston, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Transmission coefficient as a function of the input peak power of a 70 fs long Gaussian pulse. The other parameters are: e p0 = 0, θ 0 = 45°, λ = 2300nm, L = 6mm, α = 57.5m -1, ρ = 1.27, E ext 1 2 = 25 V / μm and E ext 2 = 0 V / μm . The linear refractive index mismatch is ∆n = 2 × 10-5.

Fig. 2.
Fig. 2.

Normalized transmitted pulse as a function of the input peak power. The input is a Gaussian pulse of the width T 0 = 70 fs. The other parameters are: e p0 = 0, θ 0 = 750, λ = 2300nm, α = 57.5m -1, L = 6mm. The applied control field is E ext 2 = 0 V / μm .

Fig. 3.
Fig. 3.

Normalized transmitted pulse as a function of the input peak power. The input is a Gaussian pulse of the width T 0 = 70 fs. The other parameters are: e p0 = 0, θ 0 = 750, λ = 2300nm, α = 57.5m -1, L = 6mm. The applied control field is E ext 2 = 25 V / μ m . .

Fig. 4.
Fig. 4.

Transmission coefficient as a function of the input peak power. The input is a Gaussian pulse of the width T 0 = 70 fs. The other parameters are: e p0 = 0, λ = 2300nm, α = 57.5m -1 and L = 2cm. The azimuth is chosen within the polarization instability regime. A properly designed spatial profile of the control field – given by Eq. (22) – is assumed, with the field magnitude at the entrance taken to be 25 V/ μm.

Fig. 5.
Fig. 5.

Transmission coefficient as a function of the input peak power. The input is a Gaussian pulse of the width T 0 = 70 fs. The other parameters are: e p0 = 0, λ = 2300nm, α = 57.5m -1 and L = 2cm. The azimuth is chosen within the polarization instability regime. Constant electric field is assumed,i.e. E ext 2 = 25 V / μm . .

Fig. 6.
Fig. 6.

Transmission coefficient as a function of the input peak power. The input is a Gaussian pulse of the width T 0 = 70 fs. The other parameters are: e p0 = 0, θ 0 = 90°, λ = 1550nm and L = 6mm. Here E ext 1 2 = 25 V / μ m and E ext 1 2 = 0 V / μ m .

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

E = 1 2 [ a X ( ε X e iωt + E ext ) + a Y ε Y e iωt ] + c . c .
χ ijkl ( 3 ) = χ xxxx ( 3 ) [ ρ 3 ( δ ij δ kl + δ ik δ jl + δ il δ jk ) + ( 1 ρ ) δ ijkl ] ,
P NL = ε 0 χ ( 3 ) EEE .
P NL = 1 2 ( a x 𝓟 x + a y 𝓟 y ) e iωt + c . c . ,
𝓟 X = 3 ε 0 4 χ xxxx ( 3 ) [ ( ε x 2 + 2 ρ 3 ε y 2 ) ε x + ρ 3 ( ε x * ε y + 12 E ext 2 ε x ) ] ,
𝓟 y = 3 ε 0 4 χ xxxx ( 3 ) [ ( ε y 2 + 2 ρ 3 ε x 2 ) ε y + ρ 3 ( ε y * ε x + 12 E ext 2 ε y ) ] ,
2 E 1 ε 0 c 2 2 D t 2 = μ 0 2 P f t 2 + μ 0 2 P NL t 2 ,
P f = ε 0 χ f E ,
χ f = 2 n 0 [ n f ( N ) + ic α f ( N ) / ( 2 ω ) ] ,
ε j ( r , t ) = F j ( x , y ) u j ( z , t ) e i β 0 j z ,
u x z + i β 2 2 2 u x τ 2 = ( α 2 ) u x + 4 u x + ( u x 2 + 2 ρ 3 u y 2 ) u x + iγρ 3 u x * u y 2 e 2 i Δ βz ,
u y z + i β 2 2 2 u y τ 2 = ( α 2 ) u y + 4 3 u y + ( u y 2 + 2 ρ 3 u x 2 ) u y + iγρ 3 u y * u x 2 e 2 i Δ βz .
σ n 0 n [ ω c n f + i 2 α f ] ,
n f = 5.3 × 10 29 ( ω r / ω ) 2 N , α f = 1.45 × 10 21 ( ω r / ω ) 2 N .
u 1 = u x e i Δβ 2 z + i u y e i Δβ 2 z 2 e 2 ; u 2 = u x e i Δβ 2 z i u y e i Δβ 2 z 2 e 2 ,
u s z + i β 2 2 2 u s τ 2 = ( α 2 ) u s + i κ e f f u 3 s + i ( 3 + ρ ) γ 6 ( u s 2 + 2 u 3 s 2 ) u s + i ( 1 + ρ ) γ 2 u 3 s 2 u s * ,
κ e f f ( z ) = Δ β 2 + 1 2 ε 0 ω n 0 n 2 E ext 2 ( z ) .
N t = β TPA ( ω ) 3 A e f f 2 [ 3 + ρ 4 ( p 1 + p 2 ) 2 + 3 + ρ + 3 ( 1 ρ ) cos 2 Δϕ 2 p 1 p 2 ] ,
u s z = α 2 u s + i κ e f f ( z ) u 3 s + 2 3 ( u s 2 + 2 u 3 s 2 ) u s .
κ e f f ( z ) = κ 0 e αz ,
E ext ( z ) = 2 ε 0 ω n 0 n 2 ( κ 0 e αz Δβ 2 ) .
E ext ( z ) = Δ β ε 0 ω n 0 n 2 [ e α ( L z ) 1 ] ,
u ( z ) = e α 2 z u ̄ ( Z ) Z = 1 e αz α ,
u ̄ s Z = i κ 0 u ̄ 3 s + 2 3 ( u ̄ s 2 + 2 u ̄ 3 s 2 ) u ̄ s .
θ = 1 2 [ ϕ 1 ϕ 2 ] ;
e p = p 1 p 2 p 1 + p 2 .
T = p 1 2 ( L ) + p 2 2 ( L ) p 1 2 ( 0 ) + p 2 2 ( 0 ) { 1 2 p 1 ( L ) p 2 ( L ) 1 + p 1 ( L ) p 2 ( L ) cos [ ϕ 1 ( 0 ) ϕ 2 ( 0 ) ϕ 1 ( L ) ϕ 2 ( L ) ] } ,

Metrics