Abstract

The large temperature sensitivity of the Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium was experimentally demonstrated. The temperature sensitivities of the wavelength shift of the interferometer and the birefringence the fiber with indium were measured to be -6.3 nm/K and -3.3×10-6 /K, respectively. The large temperature sensitivity of the fiber was explained by introduction of the fiber birefringence change originated from the large thermal expansion property of the metal indium at the elevated temperature.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Fang and R. O. Claus, "Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer," Opt. Lett. 20, 2146-2148 (1995).
    [CrossRef] [PubMed]
  2. C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
    [CrossRef]
  3. D.-H. Kim and J. U. Kang, "Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity," Opt. Express 12, 4490-4495 (2004).
    [CrossRef] [PubMed]
  4. E. De la Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, "All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop," Opt. Lett. 22, 481-483 (1997).
    [CrossRef]
  5. D. S. Moon, B. H. Kim, A. Lin, G. Sun, Y. Han, W.-T. Han, and Y. Chung, "The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber," Opt. Express 15, 7962-7967 (2007).
    [CrossRef] [PubMed]
  6. O. Frazao, J. M. Baptista, and J. L. Santos, "Recent advances in high-birefringence fiber loop mirror sensors," Sensors 7, 2970-2983 (2007).
    [CrossRef]
  7. O. Frazao, D. Egypto, L. A. Bittencourt, M. T. M. R. Giraldi, and M. B. Marques, "Temperature sensor using Hi-Bi erbium doped fiber loop mirror," Microwave Opt. Technol. Lett. 50, 3152-3154 (2008).
    [CrossRef]
  8. V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
    [CrossRef] [PubMed]
  9. X. Ma and P. L. Chu, "Design of temperature-compensated elliptical core birefringent," Opt. Commun. 130, 357-364 (1996).
    [CrossRef]
  10. D. R. Lide, Handbook of Chemistry and Physics (CRC press, 2000), Sec. 8.
  11. M. Fokine, L. E. Nilsson, Ã. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, "Integrated fiber Mach-Zehnder interferometer for electro-optic switching," Opt. Lett. 27, 1643-1645 (2002).
    [CrossRef]
  12. B. H. Kim, S. Moon, U. C. Paek, and W.-T. Han, "All fiber polarimetric modulation using an electro-optic fiber with internal Pb-Sn electrodes," Opt. Express 14, 11234-11241 (2006).
    [CrossRef] [PubMed]

2008

O. Frazao, D. Egypto, L. A. Bittencourt, M. T. M. R. Giraldi, and M. B. Marques, "Temperature sensor using Hi-Bi erbium doped fiber loop mirror," Microwave Opt. Technol. Lett. 50, 3152-3154 (2008).
[CrossRef]

2007

2006

2004

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

D.-H. Kim and J. U. Kang, "Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity," Opt. Express 12, 4490-4495 (2004).
[CrossRef] [PubMed]

2002

1997

1996

V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
[CrossRef] [PubMed]

X. Ma and P. L. Chu, "Design of temperature-compensated elliptical core birefringent," Opt. Commun. 130, 357-364 (1996).
[CrossRef]

1995

Baptista, J. M.

O. Frazao, J. M. Baptista, and J. L. Santos, "Recent advances in high-birefringence fiber loop mirror sensors," Sensors 7, 2970-2983 (2007).
[CrossRef]

Berlemont, D.

Bhatia, V.

Bittencourt, L. A.

O. Frazao, D. Egypto, L. A. Bittencourt, M. T. M. R. Giraldi, and M. B. Marques, "Temperature sensor using Hi-Bi erbium doped fiber loop mirror," Microwave Opt. Technol. Lett. 50, 3152-3154 (2008).
[CrossRef]

Chu, P. L.

X. Ma and P. L. Chu, "Design of temperature-compensated elliptical core birefringent," Opt. Commun. 130, 357-364 (1996).
[CrossRef]

Chung, Y.

Claesson, Ã.

Claus, R. O.

De la Rosa, E.

Demokan, M. S.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Egypto, D.

O. Frazao, D. Egypto, L. A. Bittencourt, M. T. M. R. Giraldi, and M. B. Marques, "Temperature sensor using Hi-Bi erbium doped fiber loop mirror," Microwave Opt. Technol. Lett. 50, 3152-3154 (2008).
[CrossRef]

Fang, X.

Fokine, M.

Frazao, O.

O. Frazao, D. Egypto, L. A. Bittencourt, M. T. M. R. Giraldi, and M. B. Marques, "Temperature sensor using Hi-Bi erbium doped fiber loop mirror," Microwave Opt. Technol. Lett. 50, 3152-3154 (2008).
[CrossRef]

O. Frazao, J. M. Baptista, and J. L. Santos, "Recent advances in high-birefringence fiber loop mirror sensors," Sensors 7, 2970-2983 (2007).
[CrossRef]

Giraldi, M. T. M. R.

O. Frazao, D. Egypto, L. A. Bittencourt, M. T. M. R. Giraldi, and M. B. Marques, "Temperature sensor using Hi-Bi erbium doped fiber loop mirror," Microwave Opt. Technol. Lett. 50, 3152-3154 (2008).
[CrossRef]

Han, W.-T.

Han, Y.

Jin, W.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Kang, J. U.

Kim, B. H.

Kim, D.-H.

Kjellberg, L.

Krummenacher, L.

Lin, A.

Lu, C.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Ma, X.

X. Ma and P. L. Chu, "Design of temperature-compensated elliptical core birefringent," Opt. Commun. 130, 357-364 (1996).
[CrossRef]

Margulis, W.

Marques, M. B.

O. Frazao, D. Egypto, L. A. Bittencourt, M. T. M. R. Giraldi, and M. B. Marques, "Temperature sensor using Hi-Bi erbium doped fiber loop mirror," Microwave Opt. Technol. Lett. 50, 3152-3154 (2008).
[CrossRef]

Monzon, D.

Moon, D. S.

Moon, S.

Nilsson, L. E.

Paek, U. C.

Santos, J. L.

O. Frazao, J. M. Baptista, and J. L. Santos, "Recent advances in high-birefringence fiber loop mirror sensors," Sensors 7, 2970-2983 (2007).
[CrossRef]

Starodumov, A. N.

Sun, G.

Vengsarkar, A. M.

Yang, X.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Zenteno, L. A.

Zhao, C.-L.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Microwave Opt. Technol. Lett.

O. Frazao, D. Egypto, L. A. Bittencourt, M. T. M. R. Giraldi, and M. B. Marques, "Temperature sensor using Hi-Bi erbium doped fiber loop mirror," Microwave Opt. Technol. Lett. 50, 3152-3154 (2008).
[CrossRef]

Opt. Commun.

X. Ma and P. L. Chu, "Design of temperature-compensated elliptical core birefringent," Opt. Commun. 130, 357-364 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Sensors

O. Frazao, J. M. Baptista, and J. L. Santos, "Recent advances in high-birefringence fiber loop mirror sensors," Sensors 7, 2970-2983 (2007).
[CrossRef]

Other

D. R. Lide, Handbook of Chemistry and Physics (CRC press, 2000), Sec. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Micro-photo images of the birefringent holey fiber (a) without and (b) with the metal indium, (c) SEM image of the fiber with the metal indium, (d) magnified SEM image of the metal indium inside the hole of the fiber, and (e) schematic setup to measure the temperature sensitivity of the SLI based on the fiber.

Fig. 2.
Fig. 2.

Transmission spectra of the SLI based on the holey optical fiber with and without the metal indium at the temperatures ~ 27 and 109 °C.

Fig. 3.
Fig. 3.

(a) Transmission spectra of the SLI based on the holey fiber without the metal indium at the different temperatures (The dashed line indicates the guide to show the wavelength shift.) and (b) wavelength shift of the fringe with the temperature in the SLI (The solid line represents the linear fit for the wavelength shift in the temperature range, 35.1-112.2 °C).

Fig. 4.
Fig. 4.

(a) Transmission spectra of the SLI based on the holey fiber filled with the metal indium at the different temperatures (The dashed line indicates the guide to show the wavelength shift.) and (b) wavelength shift of the fringe with the temperature in the SLI (The solid line represents the linear fit for the wavelength shift.).

Fig. 5.
Fig. 5.

Birefringence of the holey fiber (a) without and (b) with the metal indium at the different temperature from 27 to 112 °C. The solid lines indicate the linear fit lines.

Tables (1)

Tables Icon

Table 1. Fringe spacing and birefringence of the birefringent holey fiber with and without the metal indium at the temperatures of 27 and 109 °C, approximately.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

B = λ 2 / ( L λ ) .
λ 2 / λ = B L = B m L m + B n L n + B 0 L 0 , L = L m + L n + L 0 = 100 cm ,
B m ( T ) = L ( T ) L m ( T ) B ( T ) L n ( T ) L m ( T ) B n ( t ) L 0 L m ( T ) B 0 5 ( λ 2 L λ ( T ) ) m 3 B n ( T ) B 0 .
B n ( T ) = L ( T ) L p ( T ) B ( t ) L 0 ( T ) L p ( T ) B 0 5 4 ( λ 2 L λ ( T ) ) n 1 4 B 0 , L p = L m + L n = 80 cm .
1 L m d ϕ m d T = 1 L m [ ( 2 π Δ λ d λ d T ) m d ϕ n d T ] .
1 L p d ϕ n d T = 1 L p ( 2 π Δ λ d λ d T ) n .

Metrics