Abstract

We observed a detuned slow light phenomenon based on electromagnetically induced transparency in 87Rb D2 line composed of multiple excited-hyperfine states within a Doppler-broadened linewidth. The results show that the maximum group delay of a probe occurs at off-detuned two-photon resonance frequency. The observed detuned group delay is analyzed with numerical calculations for a probe pulse interacting with the neighboring excited-states-modified Doppler broadening atoms for a fixed coupling field. The experimental results are in good agreement with the numerical calculations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. -J. Boller, A. Imanoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991).
    [CrossRef] [PubMed]
  2. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
    [CrossRef]
  3. Y. Q. Li and M. Xiao, "Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms," Phys. Rev. A 51, R2703-2706 (1995).
  4. S. E. Harris, J. E. Field, and A. Kasapi, "Dispersive properties of electromagnetically induced transparency," Phys. Rev. A 46, R29-32 (1992).
  5. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
    [CrossRef] [PubMed]
  6. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow light and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
    [CrossRef] [PubMed]
  7. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
    [CrossRef] [PubMed]
  8. M. D. Lukin and P. R. Hemmer, "Quantum entanglement via optical control of atom-atom interactions," Phys. Rev. Lett. 84, 2818-2821 (2000).
    [CrossRef] [PubMed]
  9. M. Paternostro, M. S. Kim, and B. S. Ham, "Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime," Phys. Rev. A 67, 023811 (2003).
  10. B. S. Ham, "Observations of delayed all-optical routing in a slow-light regime," Phys. Rev. A 78, 011808(R) (2008).
  11. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
    [CrossRef]
  12. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhance nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
    [CrossRef]
  13. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
    [CrossRef] [PubMed]
  14. E. Paspalakis and P. L. Knight, "Electromagnetically induced transparency and controlled group velocity in a multilevel system," Phys. Rev. A 66, 015802 (2002).
  15. G. Huang, C. Hang, and L. Deng, "Propagation of shape-preserving optical pulses in inhomogeneously broadened multi-level systems," Eur. Phys. J. D 40, 437-444 (2006).
  16. S. E. Harris, "Nonlinear optics at low light levels," Phys. Rev. Lett. 82, 4611-4614 (1999).
    [CrossRef]
  17. L. Deng, M. G. Payne, and E. W. Hagley, "Propagation of light pulse in an ultra-cold atomic vapor: mechanism for the loss of the probe field," Opt. Commun. 198, 129-133 (2001).
    [CrossRef]
  18. S. Chakrabarti, A. Pradhan, B. Ray, and P. N. Ghosh, "Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium," J. Phys. B: At. Mol. Opt. Phys. 38, 4321-4327 (2005).
    [CrossRef]
  19. D. Bhattacharyya, B. Ray, and P. N. Ghosh, "Theoretical study of electromagnetically induced transparency in a five-level atom and application to Doppler-broadened and Doppler-free Rb atoms," J. Phys. B: At. Mol. Opt. Phys. 40, 4061-4075 (2007).
    [CrossRef]

2007 (1)

D. Bhattacharyya, B. Ray, and P. N. Ghosh, "Theoretical study of electromagnetically induced transparency in a five-level atom and application to Doppler-broadened and Doppler-free Rb atoms," J. Phys. B: At. Mol. Opt. Phys. 40, 4061-4075 (2007).
[CrossRef]

2006 (1)

G. Huang, C. Hang, and L. Deng, "Propagation of shape-preserving optical pulses in inhomogeneously broadened multi-level systems," Eur. Phys. J. D 40, 437-444 (2006).

2005 (1)

S. Chakrabarti, A. Pradhan, B. Ray, and P. N. Ghosh, "Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium," J. Phys. B: At. Mol. Opt. Phys. 38, 4321-4327 (2005).
[CrossRef]

2004 (1)

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

2003 (2)

M. Paternostro, M. S. Kim, and B. S. Ham, "Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime," Phys. Rev. A 67, 023811 (2003).

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

2002 (2)

E. Paspalakis and P. L. Knight, "Electromagnetically induced transparency and controlled group velocity in a multilevel system," Phys. Rev. A 66, 015802 (2002).

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow light and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

2001 (2)

L. Deng, M. G. Payne, and E. W. Hagley, "Propagation of light pulse in an ultra-cold atomic vapor: mechanism for the loss of the probe field," Opt. Commun. 198, 129-133 (2001).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

2000 (1)

M. D. Lukin and P. R. Hemmer, "Quantum entanglement via optical control of atom-atom interactions," Phys. Rev. Lett. 84, 2818-2821 (2000).
[CrossRef] [PubMed]

1999 (3)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhance nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

S. E. Harris, "Nonlinear optics at low light levels," Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

1997 (1)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

1995 (1)

Y. Q. Li and M. Xiao, "Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms," Phys. Rev. A 51, R2703-2706 (1995).

1992 (1)

S. E. Harris, J. E. Field, and A. Kasapi, "Dispersive properties of electromagnetically induced transparency," Phys. Rev. A 46, R29-32 (1992).

1991 (1)

K. -J. Boller, A. Imanoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Bhattacharyya, D.

D. Bhattacharyya, B. Ray, and P. N. Ghosh, "Theoretical study of electromagnetically induced transparency in a five-level atom and application to Doppler-broadened and Doppler-free Rb atoms," J. Phys. B: At. Mol. Opt. Phys. 40, 4061-4075 (2007).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Boller, K. -J.

K. -J. Boller, A. Imanoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Chakrabarti, S.

S. Chakrabarti, A. Pradhan, B. Ray, and P. N. Ghosh, "Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium," J. Phys. B: At. Mol. Opt. Phys. 38, 4321-4327 (2005).
[CrossRef]

Cirac, J. I.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Deng, L.

G. Huang, C. Hang, and L. Deng, "Propagation of shape-preserving optical pulses in inhomogeneously broadened multi-level systems," Eur. Phys. J. D 40, 437-444 (2006).

L. Deng, M. G. Payne, and E. W. Hagley, "Propagation of light pulse in an ultra-cold atomic vapor: mechanism for the loss of the probe field," Opt. Commun. 198, 129-133 (2001).
[CrossRef]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Kasapi, "Dispersive properties of electromagnetically induced transparency," Phys. Rev. A 46, R29-32 (1992).

Fiurasek, J.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhance nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Ghosh, P. N.

D. Bhattacharyya, B. Ray, and P. N. Ghosh, "Theoretical study of electromagnetically induced transparency in a five-level atom and application to Doppler-broadened and Doppler-free Rb atoms," J. Phys. B: At. Mol. Opt. Phys. 40, 4061-4075 (2007).
[CrossRef]

S. Chakrabarti, A. Pradhan, B. Ray, and P. N. Ghosh, "Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium," J. Phys. B: At. Mol. Opt. Phys. 38, 4321-4327 (2005).
[CrossRef]

Hagley, E. W.

L. Deng, M. G. Payne, and E. W. Hagley, "Propagation of light pulse in an ultra-cold atomic vapor: mechanism for the loss of the probe field," Opt. Commun. 198, 129-133 (2001).
[CrossRef]

Ham, B. S.

M. Paternostro, M. S. Kim, and B. S. Ham, "Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime," Phys. Rev. A 67, 023811 (2003).

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow light and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Hang, C.

G. Huang, C. Hang, and L. Deng, "Propagation of shape-preserving optical pulses in inhomogeneously broadened multi-level systems," Eur. Phys. J. D 40, 437-444 (2006).

Harris, S. E.

S. E. Harris, "Nonlinear optics at low light levels," Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

S. E. Harris, J. E. Field, and A. Kasapi, "Dispersive properties of electromagnetically induced transparency," Phys. Rev. A 46, R29-32 (1992).

K. -J. Boller, A. Imanoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow light and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

M. D. Lukin and P. R. Hemmer, "Quantum entanglement via optical control of atom-atom interactions," Phys. Rev. Lett. 84, 2818-2821 (2000).
[CrossRef] [PubMed]

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhance nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Huang, G.

G. Huang, C. Hang, and L. Deng, "Propagation of shape-preserving optical pulses in inhomogeneously broadened multi-level systems," Eur. Phys. J. D 40, 437-444 (2006).

Imanoglu, A.

K. -J. Boller, A. Imanoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

Julsgaard, B.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Kasapi, A.

S. E. Harris, J. E. Field, and A. Kasapi, "Dispersive properties of electromagnetically induced transparency," Phys. Rev. A 46, R29-32 (1992).

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhance nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Kim, M. S.

M. Paternostro, M. S. Kim, and B. S. Ham, "Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime," Phys. Rev. A 67, 023811 (2003).

Knight, P. L.

E. Paspalakis and P. L. Knight, "Electromagnetically induced transparency and controlled group velocity in a multilevel system," Phys. Rev. A 66, 015802 (2002).

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Li, Y. Q.

Y. Q. Li and M. Xiao, "Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms," Phys. Rev. A 51, R2703-2706 (1995).

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Lukin, M. D.

M. D. Lukin and P. R. Hemmer, "Quantum entanglement via optical control of atom-atom interactions," Phys. Rev. Lett. 84, 2818-2821 (2000).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhance nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow light and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Paspalakis, E.

E. Paspalakis and P. L. Knight, "Electromagnetically induced transparency and controlled group velocity in a multilevel system," Phys. Rev. A 66, 015802 (2002).

Paternostro, M.

M. Paternostro, M. S. Kim, and B. S. Ham, "Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime," Phys. Rev. A 67, 023811 (2003).

Payne, M. G.

L. Deng, M. G. Payne, and E. W. Hagley, "Propagation of light pulse in an ultra-cold atomic vapor: mechanism for the loss of the probe field," Opt. Commun. 198, 129-133 (2001).
[CrossRef]

Polzik, E. S.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Pradhan, A.

S. Chakrabarti, A. Pradhan, B. Ray, and P. N. Ghosh, "Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium," J. Phys. B: At. Mol. Opt. Phys. 38, 4321-4327 (2005).
[CrossRef]

Ray, B.

D. Bhattacharyya, B. Ray, and P. N. Ghosh, "Theoretical study of electromagnetically induced transparency in a five-level atom and application to Doppler-broadened and Doppler-free Rb atoms," J. Phys. B: At. Mol. Opt. Phys. 40, 4061-4075 (2007).
[CrossRef]

S. Chakrabarti, A. Pradhan, B. Ray, and P. N. Ghosh, "Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium," J. Phys. B: At. Mol. Opt. Phys. 38, 4321-4327 (2005).
[CrossRef]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhance nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhance nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhance nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow light and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Sherson, J.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow light and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow light and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhance nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Xiao, M.

Y. Q. Li and M. Xiao, "Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms," Phys. Rev. A 51, R2703-2706 (1995).

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhance nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Eur. Phys. J. D (1)

G. Huang, C. Hang, and L. Deng, "Propagation of shape-preserving optical pulses in inhomogeneously broadened multi-level systems," Eur. Phys. J. D 40, 437-444 (2006).

J. Phys. B: At. Mol. Opt. Phys. (2)

S. Chakrabarti, A. Pradhan, B. Ray, and P. N. Ghosh, "Velocity selective optical pumping effects and electromagnetically induced transparency for D2 transitions in rubidium," J. Phys. B: At. Mol. Opt. Phys. 38, 4321-4327 (2005).
[CrossRef]

D. Bhattacharyya, B. Ray, and P. N. Ghosh, "Theoretical study of electromagnetically induced transparency in a five-level atom and application to Doppler-broadened and Doppler-free Rb atoms," J. Phys. B: At. Mol. Opt. Phys. 40, 4061-4075 (2007).
[CrossRef]

Nature (3)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

L. Deng, M. G. Payne, and E. W. Hagley, "Propagation of light pulse in an ultra-cold atomic vapor: mechanism for the loss of the probe field," Opt. Commun. 198, 129-133 (2001).
[CrossRef]

Phys. Rev. A (4)

E. Paspalakis and P. L. Knight, "Electromagnetically induced transparency and controlled group velocity in a multilevel system," Phys. Rev. A 66, 015802 (2002).

M. Paternostro, M. S. Kim, and B. S. Ham, "Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime," Phys. Rev. A 67, 023811 (2003).

Y. Q. Li and M. Xiao, "Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms," Phys. Rev. A 51, R2703-2706 (1995).

S. E. Harris, J. E. Field, and A. Kasapi, "Dispersive properties of electromagnetically induced transparency," Phys. Rev. A 46, R29-32 (1992).

Phys. Rev. Lett. (6)

K. -J. Boller, A. Imanoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

M. D. Lukin and P. R. Hemmer, "Quantum entanglement via optical control of atom-atom interactions," Phys. Rev. Lett. 84, 2818-2821 (2000).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow light and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhance nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

S. E. Harris, "Nonlinear optics at low light levels," Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

Phys. Today (1)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

Other (1)

B. S. Ham, "Observations of delayed all-optical routing in a slow-light regime," Phys. Rev. A 78, 011808(R) (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of a six-level atomic system. The corresponding hyperfine levels are for 87Rb D2 line.

Fig. 2.
Fig. 2.

The variation of delay time with detuning of the probe field when the coupling laser is resonant with (a) the transition |2〉- |4〉; (b) the center line between the level |4〉 and |5〉 from level |2〉; (c) the transition |2〉-|5〉; (d) the center line between the level |4〉 and |6〉 from level |2〉; (e) the center line between the level |5〉 and |6〉 from level |2〉 ; (f) the transition |2〉- |6〉. The blue circles are the experimental data and the red curves are the smoothed data.

Fig. 3.
Fig. 3.

The absorption (a) and dispersion spectra (b) for a six-level Doppler-broadened system. Parameters: T = 50° C , Γ21 = 0.3MHz , Γ31 = 6MHz , Γ41 = 5MHz , Γ5l = 3MHz , Γ42 = 1MHz , Γ52 = 3MHz, Γ62 = 6MHz , Ω C42 = √l/20*80MHz , Ω C52 = l/2*80MHz , Ω C62 = √7/110*80MHz , ∆34 = 72MHz , ∆45 = 151MHz , ∆56 = 267MHz,∆ c = 0. (c) The absorption spectra for a five-level Doppler-broadened system. Ω C32 = Ω C42 = Ω C52 = 40MHz , ∆34 = ∆45 = 12MHz -(d) The absorption spectra for a five-level Doppler-broadened system., ∆34 = 72,∆45 = 157MHz -(e) The absorption spectra for a five-level Doppler-broadened system., ∆34 = ∆45 = 72MHz , Ω C32 = Ω C42 = Ω C52/2 = 40MHz-(f)The absorption spectra for a six-level Doppler-broadened system. (i) ∆ c = 0MHz, (ii) ∆ c =157/2MHz, (iii) ∆ c =157MHz, (iv) ∆ c = 157 + 267/2MHz, (v) ∆ c = (1507 + 267)/2MHz , (vi) ∆ c = 157 + 267MHz , Ω C42 = √1/20*80MHz Ω C52 =l/2*80MHz, Ω C62 = √7/10*80MHz

Fig. 4.
Fig. 4.

Group delay time of the probe as a function of the detuning of probe field. The coupling field is resonant with (a) the transition |4〉↔|2〉; (b) the center line between the level |4〉 and |5〉 from level |2〉; (c) the transition |5〉↔|2〉; (d) the center line between the level |4〉 and |6〉 from level |2〉;(e) the center line between the level |5〉 and |6〉 from level |2〉; (f) the transition |6〉↔|2〉. Parameters: T = 50°C , L = 1.5cm , Ω C42 = √1/20*80MHz , ΩC52 = 1/2*80MHz , Ω C62 = √7/10*80MHz , Γ21 = 0.3MHz, Γ31 = 6MHz , Γ41 = 5MHz , Γ51=3MHz Γ42 = 1MHz , Γ52 = 3MHz, Γ62 = 6MHz , ∆34 = 72MHz , ∆45 = 157MHz , ∆56 = 267MHz

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H 1 = ħ 2 ( Ω p 31 e i ω p t 3 1 + Ω p 41 e i ω p t 4 1 + Ω p 51 e i ω p t 5 1
+ Ω c 42 e i ω c t 4 2 + Ω c 52 e i ω c t 5 2 + Ω c 26 e i ω c t 6 2 + H . C . ) ,
ρ ˙ = i ħ [ H I , ρ ] 1 2 { Γ , ρ } .
χ Dop ( Δ P ) = χ ( Δ P , v ) N v p π e v 2 / v p 2 dv ,
v g = c n + ω dn ,
τ g = L ( 1 v g 1 c ) ,

Metrics