Abstract

This work presents an optical up-conversion system with frequency quadrupling for wavelength-division-multiplexing (WDM) communication systems using a dual-parallel Mach-Zehnder modulator without optical filtering. Four-channel 1.25-Gb/s wired fiber-to-the-x (FTTx) and wireless radio-over-fiber (RoF) signals are generated and transmitted simultaneously. Moreover, the decline in receiver sensitivities due to Mach-Zehnder modulator bias drifts is also investigated. Receiver power penalties of the 20-GHz up-converted WDM signals and baseband (BB) FTTx signals are less than 1 dB when bias deviation voltage is less the 20% of the half-wave voltage. After transmission over a 50-km SSMF, the receiver power penalties of both the BB and 20-GHz RF OOK signals are less than 1 dB. Notably, 60-GHz optical up-conversion can be achieved using 15-GHz radio frequency (RF) components and equipment.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon Technol. Lett. 18, 265-267 (2006).
    [CrossRef]
  2. Z. Xu, X. Zhang, and J. Yu, "Frequency upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks," Opt. Express 15, 16738-16747 (2007).
    [CrossRef]
  3. M. Mohamed, X Zhang, B Hraimel, and K Wu, "Frequency sixupler for millimeter-wave over fiber systems," Opt. Express 16, 10141-10151 (2008).
    [CrossRef] [PubMed]
  4. M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon Technol. Lett. 17, 190-192 (2005).
    [CrossRef]
  5. A. Wiberg, P. Perez-Millan, M. V. Andres, and P. O. Hedekvist, "Microwave-Photonic Frequency Multiplication Utilizing Optical Four-Wave Mixing and Fiber Bragg Gratings," J. Lightwave Technol. 24, 239-334 (2006).
    [CrossRef]
  6. Q. Wang, H. Rideout, F. Zeng, and J. Yao, "Millimeter-Wave Frequency Tripling Base on Four-Wave Mixing in a Semiconductor Optical Amplifier," IEEE Photon Technol. Lett. 18, 2460-2462 (2006).
    [CrossRef]
  7. Z. Jia, J. Yu, and G. K. Chang, "All-Optical 16 × 2.5 Gb/s WDM Signal Simultaneous Up-Conversion Based on XPM in an NOLM in ROF Systems," IEEE Photon Technol. Lett. 17, 2724-2726 (2005).
    [CrossRef]
  8. A. Wiberg, P. Perez-Millan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, "Fiber-Optical 40-GHz mm-Wave Link With 2.5-Gb/s Data Transmission," IEEE Photon Technol. Lett. 17, 1938-1940 (2005).
    [CrossRef]
  9. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and Distribution of a Wide-Band Continuously Tunable Millimeter-Wave Signal With an Optical External Modulation Technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
    [CrossRef]
  10. Z. Pan, S. Chandel, and C. Yu, "160 GHz Optical Pulse Generation Using a 40Ghz Phase Modulator and Two Stages of Delayed MZ Interferometers," in Proc. Conf. Laser and Electro-Optics (CLEO 2006), paper CFP2.
  11. H. Chi and J. Yao, "Frequency Quadrupling and Upconversion in a Radio Over Fiber Link," J. Lightwave Technol. 15, 16737-16747 (2008).
  12. L. Chen, X. Lei, S. Wen, and J. Yu, "A novel radio over fiber system with DWDM mm-wave generation and wavelength reuse for upstream data connection," Opt. Express 15, 5893-5897 (2007).
    [CrossRef] [PubMed]
  13. C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, "Optical Millimeter-Wave Signal Generation Using Frequency Quadrupling Technique and No Optical Filtering," IEEE Photon Technol. Lett. 20, 1027-1029 (2008).
    [CrossRef]
  14. P. T. Shih, C. T. Lin, J. Chen, P. C. Peng, and S. Chi, "WDM Optical Colorless Millimeter-wave Up-Conversion Using Frequency Quadrupling," in Proc. Conf. Laser and Electro-Optics (CLEO 2008), paper P.3.03.
  15. C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, "Simultaneous Generation of Baseband and Radio Signals using Only One Single-Electrode Mach-Zehnder Modulator With Enhanced Linearity," IEEE Photon Technol. Lett. 18, 2481-2483 (2006).
    [CrossRef]

2008

M. Mohamed, X Zhang, B Hraimel, and K Wu, "Frequency sixupler for millimeter-wave over fiber systems," Opt. Express 16, 10141-10151 (2008).
[CrossRef] [PubMed]

H. Chi and J. Yao, "Frequency Quadrupling and Upconversion in a Radio Over Fiber Link," J. Lightwave Technol. 15, 16737-16747 (2008).

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, "Optical Millimeter-Wave Signal Generation Using Frequency Quadrupling Technique and No Optical Filtering," IEEE Photon Technol. Lett. 20, 1027-1029 (2008).
[CrossRef]

2007

L. Chen, X. Lei, S. Wen, and J. Yu, "A novel radio over fiber system with DWDM mm-wave generation and wavelength reuse for upstream data connection," Opt. Express 15, 5893-5897 (2007).
[CrossRef] [PubMed]

Z. Xu, X. Zhang, and J. Yu, "Frequency upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks," Opt. Express 15, 16738-16747 (2007).
[CrossRef]

2006

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon Technol. Lett. 18, 265-267 (2006).
[CrossRef]

A. Wiberg, P. Perez-Millan, M. V. Andres, and P. O. Hedekvist, "Microwave-Photonic Frequency Multiplication Utilizing Optical Four-Wave Mixing and Fiber Bragg Gratings," J. Lightwave Technol. 24, 239-334 (2006).
[CrossRef]

Q. Wang, H. Rideout, F. Zeng, and J. Yao, "Millimeter-Wave Frequency Tripling Base on Four-Wave Mixing in a Semiconductor Optical Amplifier," IEEE Photon Technol. Lett. 18, 2460-2462 (2006).
[CrossRef]

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, "Simultaneous Generation of Baseband and Radio Signals using Only One Single-Electrode Mach-Zehnder Modulator With Enhanced Linearity," IEEE Photon Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

2005

Z. Jia, J. Yu, and G. K. Chang, "All-Optical 16 × 2.5 Gb/s WDM Signal Simultaneous Up-Conversion Based on XPM in an NOLM in ROF Systems," IEEE Photon Technol. Lett. 17, 2724-2726 (2005).
[CrossRef]

A. Wiberg, P. Perez-Millan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, "Fiber-Optical 40-GHz mm-Wave Link With 2.5-Gb/s Data Transmission," IEEE Photon Technol. Lett. 17, 1938-1940 (2005).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and Distribution of a Wide-Band Continuously Tunable Millimeter-Wave Signal With an Optical External Modulation Technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Andrekson, P. A.

A. Wiberg, P. Perez-Millan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, "Fiber-Optical 40-GHz mm-Wave Link With 2.5-Gb/s Data Transmission," IEEE Photon Technol. Lett. 17, 1938-1940 (2005).
[CrossRef]

Andres, M. V.

A. Wiberg, P. Perez-Millan, M. V. Andres, and P. O. Hedekvist, "Microwave-Photonic Frequency Multiplication Utilizing Optical Four-Wave Mixing and Fiber Bragg Gratings," J. Lightwave Technol. 24, 239-334 (2006).
[CrossRef]

A. Wiberg, P. Perez-Millan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, "Fiber-Optical 40-GHz mm-Wave Link With 2.5-Gb/s Data Transmission," IEEE Photon Technol. Lett. 17, 1938-1940 (2005).
[CrossRef]

Attygalle, M.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Bélisle, C.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and Distribution of a Wide-Band Continuously Tunable Millimeter-Wave Signal With an Optical External Modulation Technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Chang, G. K.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Z. Jia, J. Yu, and G. K. Chang, "All-Optical 16 × 2.5 Gb/s WDM Signal Simultaneous Up-Conversion Based on XPM in an NOLM in ROF Systems," IEEE Photon Technol. Lett. 17, 2724-2726 (2005).
[CrossRef]

Chen, J.

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, "Optical Millimeter-Wave Signal Generation Using Frequency Quadrupling Technique and No Optical Filtering," IEEE Photon Technol. Lett. 20, 1027-1029 (2008).
[CrossRef]

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, "Simultaneous Generation of Baseband and Radio Signals using Only One Single-Electrode Mach-Zehnder Modulator With Enhanced Linearity," IEEE Photon Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Chen, L.

Chi, H.

H. Chi and J. Yao, "Frequency Quadrupling and Upconversion in a Radio Over Fiber Link," J. Lightwave Technol. 15, 16737-16747 (2008).

Chi, S.

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, "Optical Millimeter-Wave Signal Generation Using Frequency Quadrupling Technique and No Optical Filtering," IEEE Photon Technol. Lett. 20, 1027-1029 (2008).
[CrossRef]

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, "Simultaneous Generation of Baseband and Radio Signals using Only One Single-Electrode Mach-Zehnder Modulator With Enhanced Linearity," IEEE Photon Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Chiou, B. S.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, "Simultaneous Generation of Baseband and Radio Signals using Only One Single-Electrode Mach-Zehnder Modulator With Enhanced Linearity," IEEE Photon Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Edvell, G.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Hedekvist, P. O.

A. Wiberg, P. Perez-Millan, M. V. Andres, and P. O. Hedekvist, "Microwave-Photonic Frequency Multiplication Utilizing Optical Four-Wave Mixing and Fiber Bragg Gratings," J. Lightwave Technol. 24, 239-334 (2006).
[CrossRef]

A. Wiberg, P. Perez-Millan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, "Fiber-Optical 40-GHz mm-Wave Link With 2.5-Gb/s Data Transmission," IEEE Photon Technol. Lett. 17, 1938-1940 (2005).
[CrossRef]

Hraimel, B

Jia, Z.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Z. Jia, J. Yu, and G. K. Chang, "All-Optical 16 × 2.5 Gb/s WDM Signal Simultaneous Up-Conversion Based on XPM in an NOLM in ROF Systems," IEEE Photon Technol. Lett. 17, 2724-2726 (2005).
[CrossRef]

Lei, X.

Lim, C.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Lin, C. T.

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, "Optical Millimeter-Wave Signal Generation Using Frequency Quadrupling Technique and No Optical Filtering," IEEE Photon Technol. Lett. 20, 1027-1029 (2008).
[CrossRef]

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, "Simultaneous Generation of Baseband and Radio Signals using Only One Single-Electrode Mach-Zehnder Modulator With Enhanced Linearity," IEEE Photon Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Mohamed, M.

Nirmalathas, A.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Paquet, S.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and Distribution of a Wide-Band Continuously Tunable Millimeter-Wave Signal With an Optical External Modulation Technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Pendock, G. J.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Peng, C. F.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, "Simultaneous Generation of Baseband and Radio Signals using Only One Single-Electrode Mach-Zehnder Modulator With Enhanced Linearity," IEEE Photon Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Peng, P. C.

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, "Optical Millimeter-Wave Signal Generation Using Frequency Quadrupling Technique and No Optical Filtering," IEEE Photon Technol. Lett. 20, 1027-1029 (2008).
[CrossRef]

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, "Simultaneous Generation of Baseband and Radio Signals using Only One Single-Electrode Mach-Zehnder Modulator With Enhanced Linearity," IEEE Photon Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Peng, W. R.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, "Simultaneous Generation of Baseband and Radio Signals using Only One Single-Electrode Mach-Zehnder Modulator With Enhanced Linearity," IEEE Photon Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Perez-Millan, P.

A. Wiberg, P. Perez-Millan, M. V. Andres, and P. O. Hedekvist, "Microwave-Photonic Frequency Multiplication Utilizing Optical Four-Wave Mixing and Fiber Bragg Gratings," J. Lightwave Technol. 24, 239-334 (2006).
[CrossRef]

A. Wiberg, P. Perez-Millan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, "Fiber-Optical 40-GHz mm-Wave Link With 2.5-Gb/s Data Transmission," IEEE Photon Technol. Lett. 17, 1938-1940 (2005).
[CrossRef]

Qi, G.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and Distribution of a Wide-Band Continuously Tunable Millimeter-Wave Signal With an Optical External Modulation Technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Rideout, H.

Q. Wang, H. Rideout, F. Zeng, and J. Yao, "Millimeter-Wave Frequency Tripling Base on Four-Wave Mixing in a Semiconductor Optical Amplifier," IEEE Photon Technol. Lett. 18, 2460-2462 (2006).
[CrossRef]

Seregelyi, J.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and Distribution of a Wide-Band Continuously Tunable Millimeter-Wave Signal With an Optical External Modulation Technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Shih, P. T.

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, "Optical Millimeter-Wave Signal Generation Using Frequency Quadrupling Technique and No Optical Filtering," IEEE Photon Technol. Lett. 20, 1027-1029 (2008).
[CrossRef]

Wang, Q.

Q. Wang, H. Rideout, F. Zeng, and J. Yao, "Millimeter-Wave Frequency Tripling Base on Four-Wave Mixing in a Semiconductor Optical Amplifier," IEEE Photon Technol. Lett. 18, 2460-2462 (2006).
[CrossRef]

Wang, T.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Wen, S.

Wiberg, A.

A. Wiberg, P. Perez-Millan, M. V. Andres, and P. O. Hedekvist, "Microwave-Photonic Frequency Multiplication Utilizing Optical Four-Wave Mixing and Fiber Bragg Gratings," J. Lightwave Technol. 24, 239-334 (2006).
[CrossRef]

A. Wiberg, P. Perez-Millan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, "Fiber-Optical 40-GHz mm-Wave Link With 2.5-Gb/s Data Transmission," IEEE Photon Technol. Lett. 17, 1938-1940 (2005).
[CrossRef]

Wu, K

Xu, Z.

Z. Xu, X. Zhang, and J. Yu, "Frequency upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks," Opt. Express 15, 16738-16747 (2007).
[CrossRef]

Xue, W. Q.

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, "Optical Millimeter-Wave Signal Generation Using Frequency Quadrupling Technique and No Optical Filtering," IEEE Photon Technol. Lett. 20, 1027-1029 (2008).
[CrossRef]

Yao, J.

H. Chi and J. Yao, "Frequency Quadrupling and Upconversion in a Radio Over Fiber Link," J. Lightwave Technol. 15, 16737-16747 (2008).

Q. Wang, H. Rideout, F. Zeng, and J. Yao, "Millimeter-Wave Frequency Tripling Base on Four-Wave Mixing in a Semiconductor Optical Amplifier," IEEE Photon Technol. Lett. 18, 2460-2462 (2006).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and Distribution of a Wide-Band Continuously Tunable Millimeter-Wave Signal With an Optical External Modulation Technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Yi, L.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Yu, J.

Z. Xu, X. Zhang, and J. Yu, "Frequency upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks," Opt. Express 15, 16738-16747 (2007).
[CrossRef]

L. Chen, X. Lei, S. Wen, and J. Yu, "A novel radio over fiber system with DWDM mm-wave generation and wavelength reuse for upstream data connection," Opt. Express 15, 5893-5897 (2007).
[CrossRef] [PubMed]

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Z. Jia, J. Yu, and G. K. Chang, "All-Optical 16 × 2.5 Gb/s WDM Signal Simultaneous Up-Conversion Based on XPM in an NOLM in ROF Systems," IEEE Photon Technol. Lett. 17, 2724-2726 (2005).
[CrossRef]

Zeng, F.

Q. Wang, H. Rideout, F. Zeng, and J. Yao, "Millimeter-Wave Frequency Tripling Base on Four-Wave Mixing in a Semiconductor Optical Amplifier," IEEE Photon Technol. Lett. 18, 2460-2462 (2006).
[CrossRef]

Zhang, X

Zhang, X.

Z. Xu, X. Zhang, and J. Yu, "Frequency upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks," Opt. Express 15, 16738-16747 (2007).
[CrossRef]

J. Lightwave Technol.

H. Chi and J. Yao, "Frequency Quadrupling and Upconversion in a Radio Over Fiber Link," J. Lightwave Technol. 15, 16737-16747 (2008).

IEEE Photon Technol. Lett.

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, "Optical Millimeter-Wave Signal Generation Using Frequency Quadrupling Technique and No Optical Filtering," IEEE Photon Technol. Lett. 20, 1027-1029 (2008).
[CrossRef]

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, "Simultaneous Generation of Baseband and Radio Signals using Only One Single-Electrode Mach-Zehnder Modulator With Enhanced Linearity," IEEE Photon Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon Technol. Lett. 18, 265-267 (2006).
[CrossRef]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Q. Wang, H. Rideout, F. Zeng, and J. Yao, "Millimeter-Wave Frequency Tripling Base on Four-Wave Mixing in a Semiconductor Optical Amplifier," IEEE Photon Technol. Lett. 18, 2460-2462 (2006).
[CrossRef]

Z. Jia, J. Yu, and G. K. Chang, "All-Optical 16 × 2.5 Gb/s WDM Signal Simultaneous Up-Conversion Based on XPM in an NOLM in ROF Systems," IEEE Photon Technol. Lett. 17, 2724-2726 (2005).
[CrossRef]

A. Wiberg, P. Perez-Millan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, "Fiber-Optical 40-GHz mm-Wave Link With 2.5-Gb/s Data Transmission," IEEE Photon Technol. Lett. 17, 1938-1940 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, "Generation and Distribution of a Wide-Band Continuously Tunable Millimeter-Wave Signal With an Optical External Modulation Technique," IEEE Trans. Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

J. Lightwave Technol.

A. Wiberg, P. Perez-Millan, M. V. Andres, and P. O. Hedekvist, "Microwave-Photonic Frequency Multiplication Utilizing Optical Four-Wave Mixing and Fiber Bragg Gratings," J. Lightwave Technol. 24, 239-334 (2006).
[CrossRef]

Opt. Express

Other

P. T. Shih, C. T. Lin, J. Chen, P. C. Peng, and S. Chi, "WDM Optical Colorless Millimeter-wave Up-Conversion Using Frequency Quadrupling," in Proc. Conf. Laser and Electro-Optics (CLEO 2008), paper P.3.03.

Z. Pan, S. Chandel, and C. Yu, "160 GHz Optical Pulse Generation Using a 40Ghz Phase Modulator and Two Stages of Delayed MZ Interferometers," in Proc. Conf. Laser and Electro-Optics (CLEO 2006), paper CFP2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Conceptual diagram of a WDM up-conversion system.

Fig. 2.
Fig. 2.

Optical millimeter-wave generation with frequency quadrupling.

Fig. 3.
Fig. 3.

Experimental setup of the WDM up-con version system. (PC: polarization controller; TOF: tunable optical filter; RN: remote node; BPF: band pass filter; LPF: low pass filter; BERT: bit error rate tester.)

Fig. 4.
Fig. 4.

Single Channel Up-conversion (a) Baseband signal; (b) Up-converted 20-GHz signal.

Fig. 5.
Fig. 5.

Sensitivities and HDSR versus MZ-a bias drifts, and optical spectrum with different bias drifts.

Fig. 6.
Fig. 6.

Sensitivities and HDSR versus MZ-c bias drifts, and optical spectrum with different bias drift.

Fig. 7.
Fig. 7.

Sensitivities and HDSR versus all sub-MZ bias drifts, and optical spectrum with different bias drift.

Fig. 8.
Fig. 8.

Optical spectrum of the (a) BB WDM signals; (b) 20-GHz WDM signals.

Fig. 9.
Fig. 9.

BER curves of the 20-GHz WDM signals at (a) 20-GHz; (b) Baseband.

Fig. 10.
Fig. 10.

Spectrum of Up-converted WDM signals at (a) 40-GHz; (b) 60-GHz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E in ( t ) = E o cos ( ω o t )
E out ( t ) = E o n = 1 J 4 n 2 ( m ) × { cos [ ( ω o + ( 4 n 2 ) ω RF ) t ] + cos [ ( ω o ( 4 n 2 ) ω RF ) t ] }
E out ( t ) = E o { J 2 ( m ) cos [ ( ω o + 2 ω RF ) t ] + J 2 ( m ) cos [ ( ω o 2 ω RF ) t ] }

Metrics