Abstract

The structure of the inhibition patterns is important to the stimulated emission depletion (STED) microscopy. Usually, Laguerre-Gaussian (LG) beam and the central zero-intensity patterns created by inserting phase masks in Gaussian beams are used as the erase beam in STED microscopy. Aberration is generated when focusing beams through an interface between the media of the mismatched refractive indices. By use of the vectorial integral, the effects of such aberration on the shape of depletion patterns and the size of fluorescence emission spot in the STED microscopy are studied. Results are presented as a comparison between the aberration-free case and the aberrated cases.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101-1103 (2002).
    [CrossRef] [PubMed]
  2. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4714 (1997).
    [CrossRef]
  3. T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, "Two-color far-field super-resolution microscope using a doughnut beam," Chem. Phys. Lett. 371, 634-639 (2004).
    [CrossRef]
  4. M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, "Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy," Chem. Phys. Lett. 439, 171-176 (2007).
    [CrossRef]
  5. S. W. Hell, "Far-Field Optical Nanoscopy," Science 316, 1153-1158 (2007).
    [CrossRef] [PubMed]
  6. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," Proc. Natl. Acad. Sci. U.S.A. 102, 17565-17569 (2005).
    [CrossRef] [PubMed]
  7. S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy," Opt. Lett. 19, 780-782 (1994).
    [CrossRef] [PubMed]
  8. S. W. Hell and M. Kroug, "Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit," Appl. Phys. B 60, 495-497 (1999).
    [CrossRef]
  9. V. Westphal and S. W. Hell, "Nanoscale Resolution in the Focal Plane of an Optical Microscope," Phys. Rev. Lett. 94, 143903 (2005).
    [CrossRef] [PubMed]
  10. K. Willig, R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, "Nanoscale resolution in GFP-based microscopy," Nat. Methods,  3, 721-723 (2006).
    [CrossRef] [PubMed]
  11. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. U.S.A. 103, 11440-11445 (2006).
    [CrossRef] [PubMed]
  12. L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Fluctuation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94, 178104 (2005).
    [CrossRef] [PubMed]
  13. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. U.S.A 97, 8206-8210 (2000).
    [CrossRef] [PubMed]
  14. T. A. Klar, E. Engel, and S. W. Hell, "Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64066613 (2001).
    [CrossRef]
  15. E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating λ/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003).
    [CrossRef]
  16. J. Keller, A. Schönle, and S. W. Hell, "Efficient fluorescence inhibition patterns for RESOLFT microscopy," Opt. Express 15, 3361-3371 (2007).
    [CrossRef] [PubMed]
  17. P. Török and P. R. T. Munro, "The use of Gauss-Laguerre vector beams in STED microscopy," Opt. Express 12, 3605-3617 (2004).
    [CrossRef] [PubMed]
  18. E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proc. R. Soc. London A 253, 349-357 (1959).
    [CrossRef]
  19. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systemsII.Structure of the image field in an aplanatic system," Proc. R. Soc. London A 253, 358-379 (1959).
    [CrossRef]
  20. P. Török, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995).
    [CrossRef]
  21. P. Török and P. Varga, "Electromagnetic diffraction of light focused through a stratified medium," Appl. Phys. 36, 2305-2312 (1997).
  22. S. H. Wiersma, P. Török, T. D. Visser, and P. Varga, "Comparison of different theories for focusing through a plane interface," J. Opt. Soc. Am. A 14, 1482-1490 (1997).
    [CrossRef]
  23. L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
    [CrossRef]
  24. L. E. Helseth, "Smallest focal hole," Opt. Commun. 257, 1-8 (2006).
    [CrossRef]
  25. R. K. Singh, P. Senthilkumaran, and K. Singh, "Effect of primary spherical aberration on high-numerical-aperture focusing of a Laguerre-Gaussian beam," J. Opt. Soc. Am. A 251307-1318 (2008).
    [CrossRef]
  26. D. P. Biss and T. G. Brown, "Primary aberrations in focused radially polarized vortex beams," Opt. Express 12, 384-393 (2004).
    [CrossRef] [PubMed]
  27. P. Dedecker, B. Muls, J. Hofkens, J. Enderlein, and J. Hotta, "Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams," Opt. Express 15, 3372-3383 (2007).
    [CrossRef] [PubMed]
  28. D. Ganic, X. Gan, and M. Gu, "Focusing of doughnut laser beams by a high numerical-aperture objective in free space," Opt. Express 11, 2747-2752 (2003).
    [CrossRef] [PubMed]
  29. N. Bokor, Y. Iketaki, T. Watanabe and M. Fujii, "Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead," Opt. Express,  13,10440-10447 (2005).
    [CrossRef] [PubMed]
  30. Y. Iketaki, T. Watanabe, N. Bokor, and M. Fujii, "Investigation of the center intensity of first- and second-order Laguerre-Gaussian beams with linear and circular polarization," Opt. Lett. 32, 2357-2359 (2007).
    [CrossRef] [PubMed]
  31. K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, "STED microscopy resolves nanoparticle assemblies," New. J. Phys. 8, 106 (2006).
    [CrossRef]
  32. J. W. M. Chon, X. Gan, and M. Gu, "Splitting of the focal spot of a high numerical-aperture objective in free space," Appl. Phys. Lett. 81, 1576-1578 (2002).
    [CrossRef]

2008 (1)

2007 (5)

2006 (4)

K. Willig, R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, "Nanoscale resolution in GFP-based microscopy," Nat. Methods,  3, 721-723 (2006).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. U.S.A. 103, 11440-11445 (2006).
[CrossRef] [PubMed]

L. E. Helseth, "Smallest focal hole," Opt. Commun. 257, 1-8 (2006).
[CrossRef]

K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, "STED microscopy resolves nanoparticle assemblies," New. J. Phys. 8, 106 (2006).
[CrossRef]

2005 (4)

N. Bokor, Y. Iketaki, T. Watanabe and M. Fujii, "Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead," Opt. Express,  13,10440-10447 (2005).
[CrossRef] [PubMed]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Fluctuation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94, 178104 (2005).
[CrossRef] [PubMed]

V. Westphal and S. W. Hell, "Nanoscale Resolution in the Focal Plane of an Optical Microscope," Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," Proc. Natl. Acad. Sci. U.S.A. 102, 17565-17569 (2005).
[CrossRef] [PubMed]

2004 (3)

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, "Two-color far-field super-resolution microscope using a doughnut beam," Chem. Phys. Lett. 371, 634-639 (2004).
[CrossRef]

D. P. Biss and T. G. Brown, "Primary aberrations in focused radially polarized vortex beams," Opt. Express 12, 384-393 (2004).
[CrossRef] [PubMed]

P. Török and P. R. T. Munro, "The use of Gauss-Laguerre vector beams in STED microscopy," Opt. Express 12, 3605-3617 (2004).
[CrossRef] [PubMed]

2003 (2)

D. Ganic, X. Gan, and M. Gu, "Focusing of doughnut laser beams by a high numerical-aperture objective in free space," Opt. Express 11, 2747-2752 (2003).
[CrossRef] [PubMed]

E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating λ/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003).
[CrossRef]

2002 (2)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101-1103 (2002).
[CrossRef] [PubMed]

J. W. M. Chon, X. Gan, and M. Gu, "Splitting of the focal spot of a high numerical-aperture objective in free space," Appl. Phys. Lett. 81, 1576-1578 (2002).
[CrossRef]

2001 (2)

T. A. Klar, E. Engel, and S. W. Hell, "Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64066613 (2001).
[CrossRef]

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

2000 (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. U.S.A 97, 8206-8210 (2000).
[CrossRef] [PubMed]

1999 (1)

S. W. Hell and M. Kroug, "Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit," Appl. Phys. B 60, 495-497 (1999).
[CrossRef]

1997 (3)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4714 (1997).
[CrossRef]

P. Török and P. Varga, "Electromagnetic diffraction of light focused through a stratified medium," Appl. Phys. 36, 2305-2312 (1997).

S. H. Wiersma, P. Török, T. D. Visser, and P. Varga, "Comparison of different theories for focusing through a plane interface," J. Opt. Soc. Am. A 14, 1482-1490 (1997).
[CrossRef]

1995 (1)

1994 (1)

1959 (2)

E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proc. R. Soc. London A 253, 349-357 (1959).
[CrossRef]

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systemsII.Structure of the image field in an aplanatic system," Proc. R. Soc. London A 253, 358-379 (1959).
[CrossRef]

Andrei, M. A.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. U.S.A. 103, 11440-11445 (2006).
[CrossRef] [PubMed]

Arlt, J.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101-1103 (2002).
[CrossRef] [PubMed]

Biss, D. P.

Blom, H.

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Fluctuation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94, 178104 (2005).
[CrossRef] [PubMed]

Bokor, N.

Booker, G. R.

Bossi, M.

K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, "STED microscopy resolves nanoparticle assemblies," New. J. Phys. 8, 106 (2006).
[CrossRef]

Brown, T. G.

Chon, J. W. M.

J. W. M. Chon, X. Gan, and M. Gu, "Splitting of the focal spot of a high numerical-aperture objective in free space," Appl. Phys. Lett. 81, 1576-1578 (2002).
[CrossRef]

Dedecker, P.

Dholakia, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101-1103 (2002).
[CrossRef] [PubMed]

Donnert, G.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. U.S.A. 103, 11440-11445 (2006).
[CrossRef] [PubMed]

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. U.S.A 97, 8206-8210 (2000).
[CrossRef] [PubMed]

Eggeling, C.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. U.S.A. 103, 11440-11445 (2006).
[CrossRef] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," Proc. Natl. Acad. Sci. U.S.A. 102, 17565-17569 (2005).
[CrossRef] [PubMed]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Fluctuation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94, 178104 (2005).
[CrossRef] [PubMed]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. U.S.A 97, 8206-8210 (2000).
[CrossRef] [PubMed]

Enderlein, J.

Engel, E.

E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating λ/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003).
[CrossRef]

T. A. Klar, E. Engel, and S. W. Hell, "Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64066613 (2001).
[CrossRef]

Fujii, M.

M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, "Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy," Chem. Phys. Lett. 439, 171-176 (2007).
[CrossRef]

Y. Iketaki, T. Watanabe, N. Bokor, and M. Fujii, "Investigation of the center intensity of first- and second-order Laguerre-Gaussian beams with linear and circular polarization," Opt. Lett. 32, 2357-2359 (2007).
[CrossRef] [PubMed]

N. Bokor, Y. Iketaki, T. Watanabe and M. Fujii, "Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead," Opt. Express,  13,10440-10447 (2005).
[CrossRef] [PubMed]

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, "Two-color far-field super-resolution microscope using a doughnut beam," Chem. Phys. Lett. 371, 634-639 (2004).
[CrossRef]

Gan, X.

D. Ganic, X. Gan, and M. Gu, "Focusing of doughnut laser beams by a high numerical-aperture objective in free space," Opt. Express 11, 2747-2752 (2003).
[CrossRef] [PubMed]

J. W. M. Chon, X. Gan, and M. Gu, "Splitting of the focal spot of a high numerical-aperture objective in free space," Appl. Phys. Lett. 81, 1576-1578 (2002).
[CrossRef]

Ganic, D.

Gu, M.

D. Ganic, X. Gan, and M. Gu, "Focusing of doughnut laser beams by a high numerical-aperture objective in free space," Opt. Express 11, 2747-2752 (2003).
[CrossRef] [PubMed]

J. W. M. Chon, X. Gan, and M. Gu, "Splitting of the focal spot of a high numerical-aperture objective in free space," Appl. Phys. Lett. 81, 1576-1578 (2002).
[CrossRef]

Hein, B.

K. Willig, R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, "Nanoscale resolution in GFP-based microscopy," Nat. Methods,  3, 721-723 (2006).
[CrossRef] [PubMed]

Hell, S. W.

S. W. Hell, "Far-Field Optical Nanoscopy," Science 316, 1153-1158 (2007).
[CrossRef] [PubMed]

J. Keller, A. Schönle, and S. W. Hell, "Efficient fluorescence inhibition patterns for RESOLFT microscopy," Opt. Express 15, 3361-3371 (2007).
[CrossRef] [PubMed]

K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, "STED microscopy resolves nanoparticle assemblies," New. J. Phys. 8, 106 (2006).
[CrossRef]

K. Willig, R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, "Nanoscale resolution in GFP-based microscopy," Nat. Methods,  3, 721-723 (2006).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. U.S.A. 103, 11440-11445 (2006).
[CrossRef] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," Proc. Natl. Acad. Sci. U.S.A. 102, 17565-17569 (2005).
[CrossRef] [PubMed]

V. Westphal and S. W. Hell, "Nanoscale Resolution in the Focal Plane of an Optical Microscope," Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Fluctuation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94, 178104 (2005).
[CrossRef] [PubMed]

E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating λ/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003).
[CrossRef]

T. A. Klar, E. Engel, and S. W. Hell, "Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64066613 (2001).
[CrossRef]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. U.S.A 97, 8206-8210 (2000).
[CrossRef] [PubMed]

S. W. Hell and M. Kroug, "Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit," Appl. Phys. B 60, 495-497 (1999).
[CrossRef]

S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy," Opt. Lett. 19, 780-782 (1994).
[CrossRef] [PubMed]

Helseth, L. E.

L. E. Helseth, "Smallest focal hole," Opt. Commun. 257, 1-8 (2006).
[CrossRef]

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4714 (1997).
[CrossRef]

Hofkens, J.

Hofmann, M.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," Proc. Natl. Acad. Sci. U.S.A. 102, 17565-17569 (2005).
[CrossRef] [PubMed]

Hotta, J.

Huse, N.

E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating λ/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003).
[CrossRef]

Iketaki, Y.

Ishiuchi, S.

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, "Two-color far-field super-resolution microscope using a doughnut beam," Chem. Phys. Lett. 371, 634-639 (2004).
[CrossRef]

Jahn, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. U.S.A. 103, 11440-11445 (2006).
[CrossRef] [PubMed]

Jakobs, S.

K. Willig, R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, "Nanoscale resolution in GFP-based microscopy," Nat. Methods,  3, 721-723 (2006).
[CrossRef] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," Proc. Natl. Acad. Sci. U.S.A. 102, 17565-17569 (2005).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. U.S.A 97, 8206-8210 (2000).
[CrossRef] [PubMed]

Kastrup, L.

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Fluctuation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94, 178104 (2005).
[CrossRef] [PubMed]

Kawashima, Y.

M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, "Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy," Chem. Phys. Lett. 439, 171-176 (2007).
[CrossRef]

Keller, J.

J. Keller, A. Schönle, and S. W. Hell, "Efficient fluorescence inhibition patterns for RESOLFT microscopy," Opt. Express 15, 3361-3371 (2007).
[CrossRef] [PubMed]

K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, "STED microscopy resolves nanoparticle assemblies," New. J. Phys. 8, 106 (2006).
[CrossRef]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. U.S.A. 103, 11440-11445 (2006).
[CrossRef] [PubMed]

Kellner, R.

K. Willig, R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, "Nanoscale resolution in GFP-based microscopy," Nat. Methods,  3, 721-723 (2006).
[CrossRef] [PubMed]

Klar, T. A.

E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating λ/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003).
[CrossRef]

T. A. Klar, E. Engel, and S. W. Hell, "Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64066613 (2001).
[CrossRef]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. U.S.A 97, 8206-8210 (2000).
[CrossRef] [PubMed]

Kroug, M.

S. W. Hell and M. Kroug, "Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit," Appl. Phys. B 60, 495-497 (1999).
[CrossRef]

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4714 (1997).
[CrossRef]

Laczik, Z.

Lührmann, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. U.S.A. 103, 11440-11445 (2006).
[CrossRef] [PubMed]

MacDonald, M. P.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101-1103 (2002).
[CrossRef] [PubMed]

Medda, R.

K. Willig, R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, "Nanoscale resolution in GFP-based microscopy," Nat. Methods,  3, 721-723 (2006).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. U.S.A. 103, 11440-11445 (2006).
[CrossRef] [PubMed]

Muls, B.

Munro, P. R. T.

Ohmori, T.

M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, "Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy," Chem. Phys. Lett. 439, 171-176 (2007).
[CrossRef]

Omatsu, T.

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, "Two-color far-field super-resolution microscope using a doughnut beam," Chem. Phys. Lett. 371, 634-639 (2004).
[CrossRef]

Paterson, L.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101-1103 (2002).
[CrossRef] [PubMed]

Richards, B.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systemsII.Structure of the image field in an aplanatic system," Proc. R. Soc. London A 253, 358-379 (1959).
[CrossRef]

Rizzoli, S. O.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. U.S.A. 103, 11440-11445 (2006).
[CrossRef] [PubMed]

Sakai, M.

M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, "Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy," Chem. Phys. Lett. 439, 171-176 (2007).
[CrossRef]

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, "Two-color far-field super-resolution microscope using a doughnut beam," Chem. Phys. Lett. 371, 634-639 (2004).
[CrossRef]

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4714 (1997).
[CrossRef]

Schönle, A.

Senthilkumaran, P.

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4714 (1997).
[CrossRef]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4714 (1997).
[CrossRef]

Sibbett, W.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101-1103 (2002).
[CrossRef] [PubMed]

Singh, K.

Singh, R. K.

Takeda, A.

M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, "Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy," Chem. Phys. Lett. 439, 171-176 (2007).
[CrossRef]

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4714 (1997).
[CrossRef]

Török, P.

Varga, P.

Visser, T. D.

Volke-Sepulveda, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101-1103 (2002).
[CrossRef] [PubMed]

Watanabe, T.

Westphal, V.

V. Westphal and S. W. Hell, "Nanoscale Resolution in the Focal Plane of an Optical Microscope," Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

Wichmann, J.

Wiersma, S. H.

Willig, K.

K. Willig, R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, "Nanoscale resolution in GFP-based microscopy," Nat. Methods,  3, 721-723 (2006).
[CrossRef] [PubMed]

Willig, K. I.

K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, "STED microscopy resolves nanoparticle assemblies," New. J. Phys. 8, 106 (2006).
[CrossRef]

Wolf, E.

E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proc. R. Soc. London A 253, 349-357 (1959).
[CrossRef]

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systemsII.Structure of the image field in an aplanatic system," Proc. R. Soc. London A 253, 358-379 (1959).
[CrossRef]

Yamamoto, K.

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, "Two-color far-field super-resolution microscope using a doughnut beam," Chem. Phys. Lett. 371, 634-639 (2004).
[CrossRef]

Appl. Phys. (1)

P. Török and P. Varga, "Electromagnetic diffraction of light focused through a stratified medium," Appl. Phys. 36, 2305-2312 (1997).

Appl. Phys. B (2)

S. W. Hell and M. Kroug, "Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit," Appl. Phys. B 60, 495-497 (1999).
[CrossRef]

E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating λ/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

J. W. M. Chon, X. Gan, and M. Gu, "Splitting of the focal spot of a high numerical-aperture objective in free space," Appl. Phys. Lett. 81, 1576-1578 (2002).
[CrossRef]

Chem. Phys. Lett. (2)

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, "Two-color far-field super-resolution microscope using a doughnut beam," Chem. Phys. Lett. 371, 634-639 (2004).
[CrossRef]

M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, "Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy," Chem. Phys. Lett. 439, 171-176 (2007).
[CrossRef]

J. Opt. Soc. Am. A (3)

Nat. Methods (1)

K. Willig, R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, "Nanoscale resolution in GFP-based microscopy," Nat. Methods,  3, 721-723 (2006).
[CrossRef] [PubMed]

New. J. Phys. (1)

K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, "STED microscopy resolves nanoparticle assemblies," New. J. Phys. 8, 106 (2006).
[CrossRef]

Opt. Commun. (2)

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

L. E. Helseth, "Smallest focal hole," Opt. Commun. 257, 1-8 (2006).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. E (1)

T. A. Klar, E. Engel, and S. W. Hell, "Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64066613 (2001).
[CrossRef]

Phys. Rev. Lett. (3)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4714 (1997).
[CrossRef]

V. Westphal and S. W. Hell, "Nanoscale Resolution in the Focal Plane of an Optical Microscope," Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Fluctuation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94, 178104 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. U.S.A 97, 8206-8210 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. U.S.A. 103, 11440-11445 (2006).
[CrossRef] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," Proc. Natl. Acad. Sci. U.S.A. 102, 17565-17569 (2005).
[CrossRef] [PubMed]

Proc. R. Soc. London A (2)

E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proc. R. Soc. London A 253, 349-357 (1959).
[CrossRef]

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systemsII.Structure of the image field in an aplanatic system," Proc. R. Soc. London A 253, 358-379 (1959).
[CrossRef]

Science (2)

S. W. Hell, "Far-Field Optical Nanoscopy," Science 316, 1153-1158 (2007).
[CrossRef] [PubMed]

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101-1103 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic drawing of the focusing geometry.

Fig. 2.
Fig. 2.

Calculated intensity distribution on the focal plane (a–c) and the normalized intensity distribution through the focus (d–f) of an x -polarized LG beam with m = 1 for different position of the interface: (a) and (d) d = 0 ; (b) and (e) d = 10 ; (c) and (f) d = 20.

Fig. 3.
Fig. 3.

Calculated intensity distribution on the focal plane (a–c) and the normalized intensity distribution through the focus (d–f) of a LC-polarized LG beam with m = 1 for different position of the interface: (a) and (d) d = 0 ; (b) and (e) d = 10 ; (c) and (f) d = 20.

Fig. 4.
Fig. 4.

Calculated intensity distribution on the focal plane of a Gaussian beam inserted with a semi-circular (a–c) and a central λ/2 phase plate (d–f) for different position of the interface: (a) and (d) d = 0 ; (b) and (e) d =10 ; (c) and (f) d = 20

Fig. 5.
Fig. 5.

Normalized intensity profiles through central zero intensity of different patterns: (a) x -polarized LG beam (m = 1) ; (b) LC-polarized LG beam (m = 1) ; (c) a semi-circularλ/2 phase plate; (d) a central λ/2 phase plate.

Fig. 6.
Fig. 6.

Calculated intensity distribution in STED microscopy using different patterns: (a) x -polarized LG beam (m = 1) ; (b) LC-polarized LG beam (m = 1) for different d with λexc = 633nm , λsted = 785nm. The values listed in the images are the maximum fluorescence emission Fmax

Fig. 7.
Fig. 7.

Calculated intensity distribution in STED microscopy using inhibition patterns created by inserting (a) a semi-circularλ/2 phase plate; (b) a central λ/2 phase plate in Gaussian beam for different d with λexc = 633nm, λsted = 785nm. The values listed in the images are the maximum fluorescence emission Fmax.

Fig. 8.
Fig. 8.

The peak fluorescence emission (a) and the FWHM of the fluorescence spot (b) as a function of different values of the interface positions in STED microscopy. Both the interface positions and the FWHM are given in wavelength of the excitation.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( θ , ϕ ) = A 0 ( 2 γ sin θ sin α ) m L l m ( 2 γ 2 sin 2 θ sin 2 α ) exp ( γ 2 sin 2 θ sin 2 α ) exp ( i m ϕ )
E 0 ( θ , ϕ ) = A 1 ( θ ) exp ( i m ϕ )
E ( p ) = i n 1 f λ 0 0 α 0 2 π A 1 ( θ 1 ) A 2 ( θ 1 , ϕ ) P ( θ 1 , ϕ ) exp { i k 0 [ r p κ + ψ d + ψ s ( θ 1 , ϕ ) ] } exp ( i m ϕ ) sin θ 1 d θ 1 d ϕ
P ( θ 1 , ϕ ) = [ a ( t p cos θ 2 cos 2 ϕ + t s sin 2 ϕ ) + b ( t p cos θ 2 t s ) sin ϕ cos ϕ a ( t p cos θ 2 t s ) sin ϕ cos ϕ + b ( t p cos θ 2 sin 2 ϕ + t s cos 2 ϕ ) a t p sin θ 2 cos ϕ b t p sin θ 2 sin ϕ ]
κ = n 1 sin θ 1 sin θ p cos ( ϕ ϕ p ) + n 2 cos θ 2 cos θ p
ψ d = d ( n 1 cos θ 1 n 2 cos θ 2 )
E x = i n 1 f 2 λ 0 { 2 π i m I m exp ( i m ϕ p ) 2 π i m + 2 I m + 2 exp [ i ( m + 2 ) ϕ p ] 2 π i m 2 I m 2 exp [ i ( m 2 ) ϕ p ] }
E y = i n 1 f 2 λ 0 { i 2 π i m + 2 I m + 2 exp [ i ( m + 2 ) ϕ p ] i 2 π i m 2 I m 2 exp [ i ( m 2 ) ϕ p ] }
E z = i n 1 f 2 λ 0 { i 2 π i m + 1 I m + 1 exp [ i ( m + 1 ) ϕ p ] + 2 π i m 1 I m 1 exp [ i ( m 1 ) ϕ p ] }
I m = 0 α A 1 ( θ 1 ) cos θ 1 ( t s + t p cos θ 2 ) J m ( k 0 n 1 sin θ 1 ρ p ) exp { i k 0 [ ψ d + ψ s ( θ 1 ) + z p n 2 cos θ 2 ] } sin θ 1 d θ 1
I m ± 1 = 0 α A 1 ( θ 1 ) cos θ 1 t p J m ± 1 ( k 0 n 1 sin θ 1 ρ p ) exp { i k 0 [ ψ d + ψ s ( θ 1 ) + z p n 2 cos θ 2 ] } sin θ 1 sin θ 2 d θ 1
I m ± 2 = 1 2 0 α A 1 ( θ 1 ) cos θ 1 ( t s t p cos cos θ 2 ) J m ± 2 ( k 0 n 1 sin θ 1 ρ p ) exp { i k 0 [ ψ d + ψ s ( θ 1 ) + z p n 2 cos θ 2 ] } sin θ 1 d θ 1
E x = i n 1 f 2 λ 0 { 2 π i m I m exp ( i m ϕ p ) 4 π i m + 2 I m + 2 exp [ i ( m + 2 ) ϕ p ] }
E y = i n 1 f 2 λ 0 { 2 π i m I m exp ( i m ϕ p ) + i 4 π i m + 2 I m + 2 exp [ i ( m + 2 ) ϕ p ] }
E z = i n 1 f 2 λ 0 { 4 π i m + 1 I m + 1 exp [ i ( m + 1 ) ϕ p ] }
h eff ( r ) = h exc ( r ) exp [ σ h sted ( r ) Φ max ]

Metrics