Abstract

A special kind of microstructured optical fiber is proposed and fabricated in which, in addition to the holey region (solid core and silica-air cladding), two large holes exist for electrode insertion. Either Bi-Sn or Au-Sn alloys were selectively inserted into the large holes forming two parallel, continuous and homogeneous internal electrodes. We demonstrate the production of a monolithic device and its use to externally control some of the guidance properties (e.g. polarization) of the fiber.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  3. J. M. Fini, "Microstructure fibers for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
    [CrossRef]
  4. C. M. B Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
    [CrossRef] [PubMed]
  5. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
    [CrossRef] [PubMed]
  6. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005).
    [CrossRef] [PubMed]
  7. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
    [CrossRef] [PubMed]
  8. F. Du, Y. Lu, and S. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
    [CrossRef]
  9. M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, "Integrated fiber Mach-Zehnder interferometer for electro-optic switching," Opt. Lett. 27, 1643-1645 (2002).
    [CrossRef]
  10. N. Myrén, M. Fokine, O. Tarasenko, L. E. Nilsson, H. Olsson, and W. Margulis, "In-fiber electrode lithography," J. Opt. Soc. Am. B 21, 2085-2088 (2004).
    [CrossRef]
  11. K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, "A 200m optical fiber with integrated electrode and its poling," Opt. Lett. 29, 2124-2126 (2004).
    [CrossRef] [PubMed]
  12. H. Knape and W. Margulis, "All-fiber polarization switch," Opt. Lett. 32, 614-616 (2007).
    [CrossRef] [PubMed]
  13. Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, "Nanosecond switching of fiber Bragg gratings," Opt. Express 15, 14948-14953 (2007).
    [CrossRef] [PubMed]
  14. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
    [CrossRef] [PubMed]
  15. P. G. Kazansky and P. St. J. Russel, "Thermally poled glass: frozen-in electric field or oriented dipoles?," Opt. Commun. 110, 611-614 (1994).
    [CrossRef]
  16. T. Fujiwara, D. Wong, and S. Fleming, "Large electrooptic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Technol. Lett. 7, 1177-1179 (1995).
    [CrossRef]
  17. D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
    [CrossRef]
  18. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  19. J. G. Hayashi, C. M. B Cordeiro, M. A. R. Franco, and F. Sircilli, "Numerical and Experimental Studies for a High Pressure Photonic Crystal Fiber Based Sensor," in 1st Workshop on Specialty Optical Fibers and Their Applications, AIP Conference Proceedings 1055, 133-136 (2008).
    [CrossRef]
  20. A. Claesson, S. Smuk, H. Arsalane, W. Margulis, T. Naterstad, E. Zimmer, and A. Malthe-Sorenssen, "Internal Electrode Fiber Polarization," in Optical Fiber Communication Conference, 2003 paper MF35.

2007

2006

2005

2004

K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, "A 200m optical fiber with integrated electrode and its poling," Opt. Lett. 29, 2124-2126 (2004).
[CrossRef] [PubMed]

N. Myrén, M. Fokine, O. Tarasenko, L. E. Nilsson, H. Olsson, and W. Margulis, "In-fiber electrode lithography," J. Opt. Soc. Am. B 21, 2085-2088 (2004).
[CrossRef]

J. M. Fini, "Microstructure fibers for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

F. Du, Y. Lu, and S. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

2003

2002

2001

1999

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

1995

T. Fujiwara, D. Wong, and S. Fleming, "Large electrooptic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Technol. Lett. 7, 1177-1179 (1995).
[CrossRef]

1994

P. G. Kazansky and P. St. J. Russel, "Thermally poled glass: frozen-in electric field or oriented dipoles?," Opt. Commun. 110, 611-614 (1994).
[CrossRef]

1991

Argyros, A.

Bang, O.

Barretto, E. C. S.

Baxter, J.

Berlemont, D.

Bjarklev, A.

Blows, J. L.

Brito Cruz, C. H.

Broeng, J.

Brueck, S. R. J.

Chesini, G.

Claesson, A.

Cordeiro, C. M. B

Cox, F. M.

Du, F.

F. Du, Y. Lu, and S. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

Eggleton, B. J.

Emiliyanov, G.

Fini, J. M.

J. M. Fini, "Microstructure fibers for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Fleming, S.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

T. Fujiwara, D. Wong, and S. Fleming, "Large electrooptic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Technol. Lett. 7, 1177-1179 (1995).
[CrossRef]

Fokine, M.

Fonjallaz, P.-Y.

Franco, M. A. R.

Fujiwara, T.

T. Fujiwara, D. Wong, and S. Fleming, "Large electrooptic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Technol. Lett. 7, 1177-1179 (1995).
[CrossRef]

Hale, A.

Hermann, D. S.

Hoiby, P.

Hu, P.

Janos, M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

Jensen, J.

Kazansky, P. G.

P. G. Kazansky and P. St. J. Russel, "Thermally poled glass: frozen-in electric field or oriented dipoles?," Opt. Commun. 110, 611-614 (1994).
[CrossRef]

Kerbage, C.

Kjellberg, L.

Knape, H.

Knight, J. C.

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Krummenacher, L.

Large, M. C. J.

Larsen, T. T.

Lee, K.

Lo, K. M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

Lu, Y.

F. Du, Y. Lu, and S. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

Lwin, R.

Margulis, W.

Mukherjee, N.

Myers, R. A.

Myrén, N.

Nilsson, L. E.

Olsson, H.

Pedersen, L. H.

Russel, P. St. J.

P. G. Kazansky and P. St. J. Russel, "Thermally poled glass: frozen-in electric field or oriented dipoles?," Opt. Commun. 110, 611-614 (1994).
[CrossRef]

Russell, P.

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Tarasenko, O.

Thorncraft, D.

Westbrook, P. S.

Windeler, R. S.

Wong, D.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

T. Fujiwara, D. Wong, and S. Fleming, "Large electrooptic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Technol. Lett. 7, 1177-1179 (1995).
[CrossRef]

Wu, S.

F. Du, Y. Lu, and S. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

Xu, W.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

Yu, Z.

Appl. Phys. Lett.

F. Du, Y. Lu, and S. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Fujiwara, D. Wong, and S. Fleming, "Large electrooptic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Technol. Lett. 7, 1177-1179 (1995).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

J. M. Fini, "Microstructure fibers for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Nature

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Commun.

P. G. Kazansky and P. St. J. Russel, "Thermally poled glass: frozen-in electric field or oriented dipoles?," Opt. Commun. 110, 611-614 (1994).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, "Frozen-in electrical field in thermally poled fibers," Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

Opt. Lett.

Science

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other

J. G. Hayashi, C. M. B Cordeiro, M. A. R. Franco, and F. Sircilli, "Numerical and Experimental Studies for a High Pressure Photonic Crystal Fiber Based Sensor," in 1st Workshop on Specialty Optical Fibers and Their Applications, AIP Conference Proceedings 1055, 133-136 (2008).
[CrossRef]

A. Claesson, S. Smuk, H. Arsalane, W. Margulis, T. Naterstad, E. Zimmer, and A. Malthe-Sorenssen, "Internal Electrode Fiber Polarization," in Optical Fiber Communication Conference, 2003 paper MF35.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Cross-sectional view of the manufactured borosilicate PCF with two external holes. The white bar represents 10μm. (b) Scanning electron microscope image of the silica fiber with the two holes filled with metal. The white bar represents 10μm. (c) Lateral view of the borosilicate fiber with the internal electrodes (two parallel bright lines).

Fig. 2.
Fig. 2.

(a) Bi-Sn-filled fiber with only one electrode exposed at two different places and connected to a current source. (b) Au-Sn-filled fiber with both electrodes exposed and connected to a high voltage (HV) source. (c) Lateral view of the fiber tip without metal.

Fig. 3.
Fig. 3.

Setup for optical characterization of the setup of Fig. 2(a) with a linearly polarized He-Ne laser. WP is a half-wave plate (for 633nm), O are objectives, A is a rotating polarizer and D a detector connected to an oscilloscope.

Fig. 4.
Fig. 4.

(a) Polarization ellipticity of the light exiting the fiber filled with metal. (b) Intensity through the fixed analyzer as a function of the applied “square wave” electric current. The inset shows a real-time measurement of the output intensity through the analyzer for three different current amplitudes.

Fig. 5.
Fig. 5.

Output intensity through the fixed analyzer as a function of time for two different steady electric currents (15 and 20mA). When the electric current is switched on the birefringence of the fiber is modified and the light state of polarization changes. The number of cycles the polarization undergoes depends on the value of the electric current.

Fig. 6.
Fig. 6.

(a) Output intensity through the fixed analyzer as a function of time for three different incoming polarizations. (b) Intensity through the fixed analyzer, for θ = 48°, as a function of time and the applied “square wave” electric current.

Metrics