Abstract

We used a reversal imprinting-in-metal (RIM) process to fabricate various three-dimensional (3D) metal structures under low pressure. Molds featuring different shapes were used to pattern various sub-wavelength metal structures, including pyramidal, hole-array, and craterlike structures. Refractive index matching and cavity effects both enhanced the degree of transmission of these structured metal films. The crater-like structure appears to be a promising material because of the unique properties imparted by the elongated and gradually tapering spacing of its cavities. From both near-field simulations and experimentally obtained optical spectra, we found that the cavity effect in the crater-like structure led to significantly enhanced transmission of the optical intensity. Thus, this RIM process allows the ready fabrication of various two- and three-dimensional metallic structures for use in surface plasmon-based devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  2. J. B. Pendry, L. Martyn-Moreno, F. J. Garcia-Vidal, "Mimicking Surface plasmons with structured surfaces," Science 305, 847-848 (2004).
    [CrossRef] [PubMed]
  3. H. Gao, J. Joel Henzie, T. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104-2108 (2006).
    [CrossRef] [PubMed]
  4. W. C. Liu, "High sensitivity of surface plasmon of weakly-distorted metallic surfaces," Opt. Express 13, 9766-9773 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9766
    [CrossRef] [PubMed]
  5. P. Andrew, W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002-1005 (2004).
    [CrossRef] [PubMed]
  6. J. M. Brockman, B. P. Nelson, R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem. 51, 41-63 (2000).
    [CrossRef] [PubMed]
  7. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).
    [CrossRef]
  8. T. H. Reilly, J. van de Lage, R. C. Tenent, A. J. Morfa and K. L. Rowlen, "Surface-plasmon enhanced transparent electrodes in organic photovoltaics," Appl. Phys. Lett. 92, 243304 (2008).
    [CrossRef]
  9. S. M. Orbons, A. Roberts, "Resonance and extraordinary transmission in annular aperture arrays," Opt. Express 14, 12623-12628 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-12623
    [CrossRef] [PubMed]
  10. N. Bonod, S, Enoch, L. Li, E. Popov, M. Neviere, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482-490 (2003). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-5-482
    [CrossRef] [PubMed]
  11. B. F. Bai, L. F. Li, L. J. Zeng, "Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes," Opt. Lett. 30, 2360-2362 (2005).
    [CrossRef] [PubMed]
  12. S. Wedge, I. R. Hooper, I. Sage, W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons," Phys. Rev. B 69, 245418 (2004).
    [CrossRef]
  13. Z. M. Zhu, T. G. J. Brown, "Nonperturbative analysis of cross coupling in corrugated metal films," Opt. Soc. Am. A 17, 1798-1806 (2000).
    [CrossRef]
  14. I. Avrutsky, Y. Zhao, V. Kochergin, "Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film," Opt. Lett. 25, 595-597 (2005).
    [CrossRef]
  15. S. Y. Chuang, H. L. Chen, S. S. Kuo, Y. H. Lai, C. C. Lee, "Using direct nanoimprinting to study extraordinary transmission in textured metal films," Opt. Express 16, 2415-2422 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2415
    [CrossRef] [PubMed]
  16. D. Suh, J. Rhee, H. H. Lee, "Bilayer reversal imprint lithography direct metal-polymer transfer," Nanotechnology 15, 1103-1107 (2004).
    [CrossRef]
  17. J. W. Kim, K.Y. Yang, S. H. Hong, H. Lee, "Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method," Appl. Surf. Sci. 254, 5607-5611 (2008).
    [CrossRef]
  18. J. Zaumseil, A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, J. A. Rogers, "Three dimensional and multilayer nanostructures formed by nanotransfer printing," Nano Lett. 3, 1223-1227 (2003).
    [CrossRef]
  19. Y. L. Loo, D. V. Lang, J. A. Rogers, J. W. P. Hsu, "Electrical contacts to molecular layers by nanotransfer printing," Nano Lett. 3, 913-917 (2003).
    [CrossRef]
  20. C. Peng, B. L. Cardozo, S. W. Pang, "Three-dimensional metal patterning over nanostructures by reversal imprint," J. Vac. Sci. Tech. B 26, 632-635 (2008).
    [CrossRef]
  21. J. Y. Ma, S. Y. Liu, D. W. Zhang, J. K. Yao, C. Xu, J. D. Shao, Y. X. Jin, Z. X. Fan, "Study of the surface plasma transmission properties of a Fabry-Perot resonator by numerical simulation," J. Opt. A 10, 035002 (2008)
    [CrossRef]
  22. H. Iu, J. Li, H. C. Ong, J. T. K. Wan, "Surface plasmon resonance in two-dimensional nanobottle arrays," Opt. Express 16, 10294-10302 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10294
    [CrossRef] [PubMed]
  23. E. D. Palik, Handbook of optical constants of solids (Academic, 1985)

2008 (6)

T. H. Reilly, J. van de Lage, R. C. Tenent, A. J. Morfa and K. L. Rowlen, "Surface-plasmon enhanced transparent electrodes in organic photovoltaics," Appl. Phys. Lett. 92, 243304 (2008).
[CrossRef]

J. W. Kim, K.Y. Yang, S. H. Hong, H. Lee, "Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method," Appl. Surf. Sci. 254, 5607-5611 (2008).
[CrossRef]

C. Peng, B. L. Cardozo, S. W. Pang, "Three-dimensional metal patterning over nanostructures by reversal imprint," J. Vac. Sci. Tech. B 26, 632-635 (2008).
[CrossRef]

J. Y. Ma, S. Y. Liu, D. W. Zhang, J. K. Yao, C. Xu, J. D. Shao, Y. X. Jin, Z. X. Fan, "Study of the surface plasma transmission properties of a Fabry-Perot resonator by numerical simulation," J. Opt. A 10, 035002 (2008)
[CrossRef]

S. Y. Chuang, H. L. Chen, S. S. Kuo, Y. H. Lai, C. C. Lee, "Using direct nanoimprinting to study extraordinary transmission in textured metal films," Opt. Express 16, 2415-2422 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2415
[CrossRef] [PubMed]

H. Iu, J. Li, H. C. Ong, J. T. K. Wan, "Surface plasmon resonance in two-dimensional nanobottle arrays," Opt. Express 16, 10294-10302 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10294
[CrossRef] [PubMed]

2006 (2)

S. M. Orbons, A. Roberts, "Resonance and extraordinary transmission in annular aperture arrays," Opt. Express 14, 12623-12628 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-12623
[CrossRef] [PubMed]

H. Gao, J. Joel Henzie, T. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104-2108 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (4)

D. Suh, J. Rhee, H. H. Lee, "Bilayer reversal imprint lithography direct metal-polymer transfer," Nanotechnology 15, 1103-1107 (2004).
[CrossRef]

P. Andrew, W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002-1005 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martyn-Moreno, F. J. Garcia-Vidal, "Mimicking Surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

S. Wedge, I. R. Hooper, I. Sage, W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons," Phys. Rev. B 69, 245418 (2004).
[CrossRef]

2003 (3)

J. Zaumseil, A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, J. A. Rogers, "Three dimensional and multilayer nanostructures formed by nanotransfer printing," Nano Lett. 3, 1223-1227 (2003).
[CrossRef]

Y. L. Loo, D. V. Lang, J. A. Rogers, J. W. P. Hsu, "Electrical contacts to molecular layers by nanotransfer printing," Nano Lett. 3, 913-917 (2003).
[CrossRef]

N. Bonod, S, Enoch, L. Li, E. Popov, M. Neviere, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482-490 (2003). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-5-482
[CrossRef] [PubMed]

2000 (2)

Z. M. Zhu, T. G. J. Brown, "Nonperturbative analysis of cross coupling in corrugated metal films," Opt. Soc. Am. A 17, 1798-1806 (2000).
[CrossRef]

J. M. Brockman, B. P. Nelson, R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Acharya, B. R.

J. Zaumseil, A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, J. A. Rogers, "Three dimensional and multilayer nanostructures formed by nanotransfer printing," Nano Lett. 3, 1223-1227 (2003).
[CrossRef]

Andrew, P.

P. Andrew, W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002-1005 (2004).
[CrossRef] [PubMed]

Avrutsky, I.

Bai, B. F.

Baldwin, K. W.

J. Zaumseil, A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, J. A. Rogers, "Three dimensional and multilayer nanostructures formed by nanotransfer printing," Nano Lett. 3, 1223-1227 (2003).
[CrossRef]

Barnes, W. L.

P. Andrew, W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002-1005 (2004).
[CrossRef] [PubMed]

S. Wedge, I. R. Hooper, I. Sage, W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons," Phys. Rev. B 69, 245418 (2004).
[CrossRef]

Bonod, N.

Brockman, J. M.

J. M. Brockman, B. P. Nelson, R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

Brown, T. G. J.

Z. M. Zhu, T. G. J. Brown, "Nonperturbative analysis of cross coupling in corrugated metal films," Opt. Soc. Am. A 17, 1798-1806 (2000).
[CrossRef]

Cardozo, B. L.

C. Peng, B. L. Cardozo, S. W. Pang, "Three-dimensional metal patterning over nanostructures by reversal imprint," J. Vac. Sci. Tech. B 26, 632-635 (2008).
[CrossRef]

Chen, H. L.

Chuang, S. Y.

Corn, R. M.

J. M. Brockman, B. P. Nelson, R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Fan, Z. X.

J. Y. Ma, S. Y. Liu, D. W. Zhang, J. K. Yao, C. Xu, J. D. Shao, Y. X. Jin, Z. X. Fan, "Study of the surface plasma transmission properties of a Fabry-Perot resonator by numerical simulation," J. Opt. A 10, 035002 (2008)
[CrossRef]

Gao, H.

H. Gao, J. Joel Henzie, T. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104-2108 (2006).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martyn-Moreno, F. J. Garcia-Vidal, "Mimicking Surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Hong, S. H.

J. W. Kim, K.Y. Yang, S. H. Hong, H. Lee, "Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method," Appl. Surf. Sci. 254, 5607-5611 (2008).
[CrossRef]

Hooper, I. R.

S. Wedge, I. R. Hooper, I. Sage, W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons," Phys. Rev. B 69, 245418 (2004).
[CrossRef]

Hsu, J. W. P.

Y. L. Loo, D. V. Lang, J. A. Rogers, J. W. P. Hsu, "Electrical contacts to molecular layers by nanotransfer printing," Nano Lett. 3, 913-917 (2003).
[CrossRef]

J. Zaumseil, A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, J. A. Rogers, "Three dimensional and multilayer nanostructures formed by nanotransfer printing," Nano Lett. 3, 1223-1227 (2003).
[CrossRef]

Iu, H.

Jin, Y. X.

J. Y. Ma, S. Y. Liu, D. W. Zhang, J. K. Yao, C. Xu, J. D. Shao, Y. X. Jin, Z. X. Fan, "Study of the surface plasma transmission properties of a Fabry-Perot resonator by numerical simulation," J. Opt. A 10, 035002 (2008)
[CrossRef]

Joel Henzie, J.

H. Gao, J. Joel Henzie, T. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104-2108 (2006).
[CrossRef] [PubMed]

Kim, J. W.

J. W. Kim, K.Y. Yang, S. H. Hong, H. Lee, "Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method," Appl. Surf. Sci. 254, 5607-5611 (2008).
[CrossRef]

Kochergin, V.

Kuo, S. S.

Lai, Y. H.

Lang, D. V.

Y. L. Loo, D. V. Lang, J. A. Rogers, J. W. P. Hsu, "Electrical contacts to molecular layers by nanotransfer printing," Nano Lett. 3, 913-917 (2003).
[CrossRef]

Lee, C. C.

Lee, H.

J. W. Kim, K.Y. Yang, S. H. Hong, H. Lee, "Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method," Appl. Surf. Sci. 254, 5607-5611 (2008).
[CrossRef]

Lee, H. H.

D. Suh, J. Rhee, H. H. Lee, "Bilayer reversal imprint lithography direct metal-polymer transfer," Nanotechnology 15, 1103-1107 (2004).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Li, J.

Li, L. F.

Liu, S. Y.

J. Y. Ma, S. Y. Liu, D. W. Zhang, J. K. Yao, C. Xu, J. D. Shao, Y. X. Jin, Z. X. Fan, "Study of the surface plasma transmission properties of a Fabry-Perot resonator by numerical simulation," J. Opt. A 10, 035002 (2008)
[CrossRef]

Liu, W. C.

Loo, Y. L.

Y. L. Loo, D. V. Lang, J. A. Rogers, J. W. P. Hsu, "Electrical contacts to molecular layers by nanotransfer printing," Nano Lett. 3, 913-917 (2003).
[CrossRef]

J. Zaumseil, A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, J. A. Rogers, "Three dimensional and multilayer nanostructures formed by nanotransfer printing," Nano Lett. 3, 1223-1227 (2003).
[CrossRef]

Ma, J. Y.

J. Y. Ma, S. Y. Liu, D. W. Zhang, J. K. Yao, C. Xu, J. D. Shao, Y. X. Jin, Z. X. Fan, "Study of the surface plasma transmission properties of a Fabry-Perot resonator by numerical simulation," J. Opt. A 10, 035002 (2008)
[CrossRef]

Martyn-Moreno, L.

J. B. Pendry, L. Martyn-Moreno, F. J. Garcia-Vidal, "Mimicking Surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Meitl, A.

J. Zaumseil, A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, J. A. Rogers, "Three dimensional and multilayer nanostructures formed by nanotransfer printing," Nano Lett. 3, 1223-1227 (2003).
[CrossRef]

Morfa, A. J.

T. H. Reilly, J. van de Lage, R. C. Tenent, A. J. Morfa and K. L. Rowlen, "Surface-plasmon enhanced transparent electrodes in organic photovoltaics," Appl. Phys. Lett. 92, 243304 (2008).
[CrossRef]

Nelson, B. P.

J. M. Brockman, B. P. Nelson, R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

Odom, T.

H. Gao, J. Joel Henzie, T. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104-2108 (2006).
[CrossRef] [PubMed]

Ong, H. C.

Orbons, S. M.

Pang, S. W.

C. Peng, B. L. Cardozo, S. W. Pang, "Three-dimensional metal patterning over nanostructures by reversal imprint," J. Vac. Sci. Tech. B 26, 632-635 (2008).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Martyn-Moreno, F. J. Garcia-Vidal, "Mimicking Surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Peng, C.

C. Peng, B. L. Cardozo, S. W. Pang, "Three-dimensional metal patterning over nanostructures by reversal imprint," J. Vac. Sci. Tech. B 26, 632-635 (2008).
[CrossRef]

Reilly, T. H.

T. H. Reilly, J. van de Lage, R. C. Tenent, A. J. Morfa and K. L. Rowlen, "Surface-plasmon enhanced transparent electrodes in organic photovoltaics," Appl. Phys. Lett. 92, 243304 (2008).
[CrossRef]

Rhee, J.

D. Suh, J. Rhee, H. H. Lee, "Bilayer reversal imprint lithography direct metal-polymer transfer," Nanotechnology 15, 1103-1107 (2004).
[CrossRef]

Roberts, A.

Rogers, J. A.

Y. L. Loo, D. V. Lang, J. A. Rogers, J. W. P. Hsu, "Electrical contacts to molecular layers by nanotransfer printing," Nano Lett. 3, 913-917 (2003).
[CrossRef]

J. Zaumseil, A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, J. A. Rogers, "Three dimensional and multilayer nanostructures formed by nanotransfer printing," Nano Lett. 3, 1223-1227 (2003).
[CrossRef]

Rowlen, K. L.

T. H. Reilly, J. van de Lage, R. C. Tenent, A. J. Morfa and K. L. Rowlen, "Surface-plasmon enhanced transparent electrodes in organic photovoltaics," Appl. Phys. Lett. 92, 243304 (2008).
[CrossRef]

Sage, I.

S. Wedge, I. R. Hooper, I. Sage, W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons," Phys. Rev. B 69, 245418 (2004).
[CrossRef]

Shao, J. D.

J. Y. Ma, S. Y. Liu, D. W. Zhang, J. K. Yao, C. Xu, J. D. Shao, Y. X. Jin, Z. X. Fan, "Study of the surface plasma transmission properties of a Fabry-Perot resonator by numerical simulation," J. Opt. A 10, 035002 (2008)
[CrossRef]

Suh, D.

D. Suh, J. Rhee, H. H. Lee, "Bilayer reversal imprint lithography direct metal-polymer transfer," Nanotechnology 15, 1103-1107 (2004).
[CrossRef]

Tenent, R. C.

T. H. Reilly, J. van de Lage, R. C. Tenent, A. J. Morfa and K. L. Rowlen, "Surface-plasmon enhanced transparent electrodes in organic photovoltaics," Appl. Phys. Lett. 92, 243304 (2008).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

van de Lage, J.

T. H. Reilly, J. van de Lage, R. C. Tenent, A. J. Morfa and K. L. Rowlen, "Surface-plasmon enhanced transparent electrodes in organic photovoltaics," Appl. Phys. Lett. 92, 243304 (2008).
[CrossRef]

Wan, J. T. K.

Wedge, S.

S. Wedge, I. R. Hooper, I. Sage, W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons," Phys. Rev. B 69, 245418 (2004).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Xu, C.

J. Y. Ma, S. Y. Liu, D. W. Zhang, J. K. Yao, C. Xu, J. D. Shao, Y. X. Jin, Z. X. Fan, "Study of the surface plasma transmission properties of a Fabry-Perot resonator by numerical simulation," J. Opt. A 10, 035002 (2008)
[CrossRef]

Yang, K. Y.

J. W. Kim, K.Y. Yang, S. H. Hong, H. Lee, "Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method," Appl. Surf. Sci. 254, 5607-5611 (2008).
[CrossRef]

Yao, J. K.

J. Y. Ma, S. Y. Liu, D. W. Zhang, J. K. Yao, C. Xu, J. D. Shao, Y. X. Jin, Z. X. Fan, "Study of the surface plasma transmission properties of a Fabry-Perot resonator by numerical simulation," J. Opt. A 10, 035002 (2008)
[CrossRef]

Zaumseil, J.

J. Zaumseil, A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, J. A. Rogers, "Three dimensional and multilayer nanostructures formed by nanotransfer printing," Nano Lett. 3, 1223-1227 (2003).
[CrossRef]

Zeng, L. J.

Zhang, D. W.

J. Y. Ma, S. Y. Liu, D. W. Zhang, J. K. Yao, C. Xu, J. D. Shao, Y. X. Jin, Z. X. Fan, "Study of the surface plasma transmission properties of a Fabry-Perot resonator by numerical simulation," J. Opt. A 10, 035002 (2008)
[CrossRef]

Zhao, Y.

Zhu, Z. M.

Z. M. Zhu, T. G. J. Brown, "Nonperturbative analysis of cross coupling in corrugated metal films," Opt. Soc. Am. A 17, 1798-1806 (2000).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

J. M. Brockman, B. P. Nelson, R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

T. H. Reilly, J. van de Lage, R. C. Tenent, A. J. Morfa and K. L. Rowlen, "Surface-plasmon enhanced transparent electrodes in organic photovoltaics," Appl. Phys. Lett. 92, 243304 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

J. W. Kim, K.Y. Yang, S. H. Hong, H. Lee, "Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method," Appl. Surf. Sci. 254, 5607-5611 (2008).
[CrossRef]

J. Opt. A (1)

J. Y. Ma, S. Y. Liu, D. W. Zhang, J. K. Yao, C. Xu, J. D. Shao, Y. X. Jin, Z. X. Fan, "Study of the surface plasma transmission properties of a Fabry-Perot resonator by numerical simulation," J. Opt. A 10, 035002 (2008)
[CrossRef]

J. Vac. Sci. Tech. B (1)

C. Peng, B. L. Cardozo, S. W. Pang, "Three-dimensional metal patterning over nanostructures by reversal imprint," J. Vac. Sci. Tech. B 26, 632-635 (2008).
[CrossRef]

Nano Lett. (3)

J. Zaumseil, A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, J. A. Rogers, "Three dimensional and multilayer nanostructures formed by nanotransfer printing," Nano Lett. 3, 1223-1227 (2003).
[CrossRef]

Y. L. Loo, D. V. Lang, J. A. Rogers, J. W. P. Hsu, "Electrical contacts to molecular layers by nanotransfer printing," Nano Lett. 3, 913-917 (2003).
[CrossRef]

H. Gao, J. Joel Henzie, T. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104-2108 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

D. Suh, J. Rhee, H. H. Lee, "Bilayer reversal imprint lithography direct metal-polymer transfer," Nanotechnology 15, 1103-1107 (2004).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Opt. Soc. Am. A (1)

Z. M. Zhu, T. G. J. Brown, "Nonperturbative analysis of cross coupling in corrugated metal films," Opt. Soc. Am. A 17, 1798-1806 (2000).
[CrossRef]

Phys. Rev. B (1)

S. Wedge, I. R. Hooper, I. Sage, W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons," Phys. Rev. B 69, 245418 (2004).
[CrossRef]

Science (2)

J. B. Pendry, L. Martyn-Moreno, F. J. Garcia-Vidal, "Mimicking Surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

P. Andrew, W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002-1005 (2004).
[CrossRef] [PubMed]

Other (2)

J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).
[CrossRef]

E. D. Palik, Handbook of optical constants of solids (Academic, 1985)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic representation of the RIM process for the preparation: (a) a two-dimensional corrugated metal film and (b) a metal hole-array structure.

Fig. 2.
Fig. 2.

SEM images of silicon molds and structures of gold films patterned using the RIM process. (a) 2D corrugated silicon mold; (b) corrugated thin gold film; (c) deep hole-array mold; (d) gold hole-array structure.

Fig. 3.
Fig. 3.

(a) Schematic representation of a crater-like structure fabricated using the RIM process. (b, c) SEM images of (b) a sharp silicon mold and (c) a gold crater structure.

Fig. 4.
Fig. 4.

Transmittance spectra of a 45-nm-thick (a) flat gold film, (b) corrugated gold film, and (c) corrugated gold film covered with resist.

Fig. 5.
Fig. 5.

FDTD diagrams of (a) an empty gold hole-array and (b) a resist (SU-8)-filled hole-array; thickness, 45 nm; hole diameter, 400 nm; period, 800 nm.

Fig. 6.
Fig. 6.

Gold films on a glass substrate coated with SU-8, possessing (a) periodic empty holes and (b) periodic holes filled with SU-8.

Fig. 7.
Fig. 7.

Transmittance spectra of (a) an empty hole-array structure, (b) a resist-filled hole-array structure, and (c) a three-layer resist-filled hole-array structure.

Fig. 8.
Fig. 8.

(a) FDTD-simulated diagram of a crater structure having a height of 200 nm. (b) Electric field intensities determined from a near-field analysis of hole-array structures of various depths and crater structures.

Fig. 9.
Fig. 9.

Near-field simulations of the electric field intensities at distinct positions within a craterlike structure.

Fig. 10
Fig. 10

(a) Transmittance spectra of flat gold film, hole-array, and crater structures. (b, c) SEM images of (b) hole-array and (c) crater-like structures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k sp = k 0 ε d ε m ε d + ε m
k sp = k 0 sin θ ± n k g

Metrics