Abstract

We have demonstrated for the first time, attributes of a surface plasmons’ laser: threshold, gain, spectral line narrowing and feedback in the visible range. The surface metallic waveguides were consisted of a nano-scale hole-array in a 50 nm thick layer of aluminum oxide on top of aluminum substrate (anodized aluminum oxide or, AAO). In some cases, two-layer graphene was added on top of the perforated oxide layer, as well. The sub-wavelength array of holes enabled coupling to and from the waveguides as well as, providing feedback to the surface modes. The gain media molecules (fluorescein) were imbedded in the structure’s pores. Threshold and spectral line narrowing of 30% were clearly demonstrated when pumped with a pulsed laser.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Munk, Frequency selective surfaces (John Wiley & Sons, Inc., New York, 2000).
    [CrossRef]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  3. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007)
    [CrossRef] [PubMed]
  4. M. A. Cooper  "Optical biosensors in drug discovery," Nat. Rev. Drug Discov. 1, 515-528 (2002).
    [CrossRef] [PubMed]
  5. J. Seidel, S. Grafstrom, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401 (2005).
    [CrossRef] [PubMed]
  6. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, "Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium," Opt. Express 16, 1385 (2008).
    [CrossRef] [PubMed]
  7. A. Tredicucci, C.  Machl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface plasmon laser," Conference on Laser and Electro Optics pp 266-267, San Francisco CA 2000.
  8. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design," Science 293, 1123-1125 (2001).
    [CrossRef] [PubMed]
  9. X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, "Ultraviolet photonic crystal laser," Appl. Phys. Lett. 85, 3657-3659 (2004).
    [CrossRef]
  10. D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
  11. S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Surface plasmons and photoluminescence," Phys. Rev. B 52, 11441-11445 (1995).
    [CrossRef]
  12. C. Zhang, K. Abdijalilov, and H. Grebel, "Surface enhanced Raman with anodized aluminum oxide films," J. Chemical Phys. 127, 044701 (2007).
    [CrossRef]
  13. O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K.D. Möller, and H. Grebel, "Square-Shaped Metal Screens in the IR to THz Spectral Region: Resonance Frequency, Band gap and Bandpass Filter Characteristics," J. Appl. Phys. 104, 023103 (2008).
    [CrossRef]
  14. R-Q Li, A. Marek, A. I. Smirnov, and H. Grebel, "Polarization-dependent Fluorescence of Proteins Bound to Nanopore-confined Lipid Bilayers," J. Chem. Phys. 129, 095102 (2008).
    [CrossRef] [PubMed]
  15. A. Banerjee and H. Grebel, "Depositing Graphene Films on Solid and Perforated Substrates," Nanotechnology 19 1-5 art. no.365303 (2008).
    [CrossRef]
  16. R. Li and H. Grebel, Surface Enhanced Fluorescence (SEF): Polarization States Characteristics," submitted to IEEE Sensor J, 2008.

2008 (2)

2007 (2)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007)
[CrossRef] [PubMed]

C. Zhang, K. Abdijalilov, and H. Grebel, "Surface enhanced Raman with anodized aluminum oxide films," J. Chemical Phys. 127, 044701 (2007).
[CrossRef]

2005 (1)

J. Seidel, S. Grafstrom, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

2004 (1)

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, "Ultraviolet photonic crystal laser," Appl. Phys. Lett. 85, 3657-3659 (2004).
[CrossRef]

2003 (1)

D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).

2002 (1)

M. A. Cooper  "Optical biosensors in drug discovery," Nat. Rev. Drug Discov. 1, 515-528 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

1995 (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Surface plasmons and photoluminescence," Phys. Rev. B 52, 11441-11445 (1995).
[CrossRef]

Abdijalilov, K.

C. Zhang, K. Abdijalilov, and H. Grebel, "Surface enhanced Raman with anodized aluminum oxide films," J. Chemical Phys. 127, 044701 (2007).
[CrossRef]

Adegoke, J. A.

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007)
[CrossRef] [PubMed]

Bahoura, M.

Barnes, W. L.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Surface plasmons and photoluminescence," Phys. Rev. B 52, 11441-11445 (1995).
[CrossRef]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).

Cao, H.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, "Ultraviolet photonic crystal laser," Appl. Phys. Lett. 85, 3657-3659 (2004).
[CrossRef]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007)
[CrossRef] [PubMed]

Chang, R. P. H.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, "Ultraviolet photonic crystal laser," Appl. Phys. Lett. 85, 3657-3659 (2004).
[CrossRef]

Chutinan, A.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Cooper, M. A.

M. A. Cooper  "Optical biosensors in drug discovery," Nat. Rev. Drug Discov. 1, 515-528 (2002).
[CrossRef] [PubMed]

Dravid, V. P.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, "Ultraviolet photonic crystal laser," Appl. Phys. Lett. 85, 3657-3659 (2004).
[CrossRef]

Eng, L.

J. Seidel, S. Grafstrom, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

Grafstrom, S.

J. Seidel, S. Grafstrom, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

Grebel, H.

R-Q Li, A. Marek, A. I. Smirnov, and H. Grebel, "Polarization-dependent Fluorescence of Proteins Bound to Nanopore-confined Lipid Bilayers," J. Chem. Phys. 129, 095102 (2008).
[CrossRef] [PubMed]

C. Zhang, K. Abdijalilov, and H. Grebel, "Surface enhanced Raman with anodized aluminum oxide films," J. Chemical Phys. 127, 044701 (2007).
[CrossRef]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007)
[CrossRef] [PubMed]

Imada, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Surface plasmons and photoluminescence," Phys. Rev. B 52, 11441-11445 (1995).
[CrossRef]

Li, R-Q

R-Q Li, A. Marek, A. I. Smirnov, and H. Grebel, "Polarization-dependent Fluorescence of Proteins Bound to Nanopore-confined Lipid Bilayers," J. Chem. Phys. 129, 095102 (2008).
[CrossRef] [PubMed]

Li, S.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, "Ultraviolet photonic crystal laser," Appl. Phys. Lett. 85, 3657-3659 (2004).
[CrossRef]

Liu, X.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, "Ultraviolet photonic crystal laser," Appl. Phys. Lett. 85, 3657-3659 (2004).
[CrossRef]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007)
[CrossRef] [PubMed]

Marek, A.

R-Q Li, A. Marek, A. I. Smirnov, and H. Grebel, "Polarization-dependent Fluorescence of Proteins Bound to Nanopore-confined Lipid Bilayers," J. Chem. Phys. 129, 095102 (2008).
[CrossRef] [PubMed]

Mayy, M.

Mochizuki, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007)
[CrossRef] [PubMed]

Noda, S.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Noginov, M. A.

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007)
[CrossRef] [PubMed]

Podolskiy, V. A.

Reynolds, K.

Ritzo, B. A.

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Surface plasmons and photoluminescence," Phys. Rev. B 52, 11441-11445 (1995).
[CrossRef]

Seidel, J.

J. Seidel, S. Grafstrom, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

Smirnov, A. I.

R-Q Li, A. Marek, A. I. Smirnov, and H. Grebel, "Polarization-dependent Fluorescence of Proteins Bound to Nanopore-confined Lipid Bilayers," J. Chem. Phys. 129, 095102 (2008).
[CrossRef] [PubMed]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).

Wu, X.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, "Ultraviolet photonic crystal laser," Appl. Phys. Lett. 85, 3657-3659 (2004).
[CrossRef]

Yamilov, A.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, "Ultraviolet photonic crystal laser," Appl. Phys. Lett. 85, 3657-3659 (2004).
[CrossRef]

Yokoyama, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007)
[CrossRef] [PubMed]

Zhang, C.

C. Zhang, K. Abdijalilov, and H. Grebel, "Surface enhanced Raman with anodized aluminum oxide films," J. Chemical Phys. 127, 044701 (2007).
[CrossRef]

Zhu, G.

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007)
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, "Ultraviolet photonic crystal laser," Appl. Phys. Lett. 85, 3657-3659 (2004).
[CrossRef]

J. Chem. Phys. (1)

R-Q Li, A. Marek, A. I. Smirnov, and H. Grebel, "Polarization-dependent Fluorescence of Proteins Bound to Nanopore-confined Lipid Bilayers," J. Chem. Phys. 129, 095102 (2008).
[CrossRef] [PubMed]

J. Chemical Phys. (1)

C. Zhang, K. Abdijalilov, and H. Grebel, "Surface enhanced Raman with anodized aluminum oxide films," J. Chemical Phys. 127, 044701 (2007).
[CrossRef]

Nat. Rev. Drug Discov. (1)

M. A. Cooper  "Optical biosensors in drug discovery," Nat. Rev. Drug Discov. 1, 515-528 (2002).
[CrossRef] [PubMed]

Nature (1)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007)
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Surface plasmons and photoluminescence," Phys. Rev. B 52, 11441-11445 (1995).
[CrossRef]

Phys. Rev. Lett. (2)

J. Seidel, S. Grafstrom, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).

Science (1)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Other (6)

A. Tredicucci, C.  Machl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface plasmon laser," Conference on Laser and Electro Optics pp 266-267, San Francisco CA 2000.

A. Banerjee and H. Grebel, "Depositing Graphene Films on Solid and Perforated Substrates," Nanotechnology 19 1-5 art. no.365303 (2008).
[CrossRef]

R. Li and H. Grebel, Surface Enhanced Fluorescence (SEF): Polarization States Characteristics," submitted to IEEE Sensor J, 2008.

B. J. Munk, Frequency selective surfaces (John Wiley & Sons, Inc., New York, 2000).
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K.D. Möller, and H. Grebel, "Square-Shaped Metal Screens in the IR to THz Spectral Region: Resonance Frequency, Band gap and Bandpass Filter Characteristics," J. Appl. Phys. 104, 023103 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the dispersion relations used. The folded Brillouin zone (gray area) is scaled by m across the light lines, ω=±ck 0. Each incident angle θ is associated with two frequencies ω + and ω - and SP wave vectors, β + and β -, respectively. Frequencies marked by the same color belong to wave vectors, separated by a reciprocal vector G/m.

Fig. 2.
Fig. 2.

(a) Hole-array in alumina (pale yellow) sandwiched between aluminum (blue) and a semi-transparent 2-layered graphene (gray). a=90 nm. The electric field is concentrated at the hole-air interface, removed from the aluminum substrate. (b) Unit vectors and the polarization state of the pump laser. (c) Example of graphene on anodized aluminum oxide (AAO). (d) Experimental configuration. We used a f=5 cm lens to focus the pump laser light onto the sample and f=10 cm to focus the scattered light onto the spectrometer. Two sharp spectral filters cut the laser line off.

Fig. 3.
Fig. 3.

(a)–(b) with graphene and (c)–(d) without it. (b) and (d) Fluorescence as a function of input intensity. The arrows mark the curves in (a) and (c). The linewidth has narrowed by 30% for both samples. The spectral linewidth remained constant for the AAO defect line at 680 nm.

Fig. 4.
Fig. 4.

Graphenated sample: (a) Fluorescence as a function of wavelength. (b) Fluorescence as a function of input intensity. The spectral linewidth remained the same for fluorescein yet, narrowed for the AAO from 32 to 25 nm when the pump intensity increased from 6 mW to 8 mW.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin ( θ ) = λ 0 a ( 4 3 ) ( q 1 2 q 1 q 2 + q 2 2 ) n eff

Metrics