Abstract

We report on emission and detection of pulsed terahertz radiation of radial and azimuthal polarization by microstructured photoconductive antennas. To this end the electrode geometry of the emitter is inverse to the desired THz field pattern and a second periodic structure prevents destructive interference effects. Beam profiles of freely propagating THz waves are studied for divergent and refocused beams. They can be well described as the lowest order Bessel-Gauss modes with a divergence comparable to linearly polarized Gaussian beams. Additionally, mode sensitive detection is demonstrated for radially polarized radiation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Hall, "Vector-beam solutions of Maxwell's wave equation," Opt. Lett. 21, 9-11 (1996).
    [CrossRef] [PubMed]
  2. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).
    [CrossRef] [PubMed]
  3. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Comm. 179, 1-7 (2000).
    [CrossRef]
  4. H. P. Urbach and S. F. Pereira, "Field in focus with a maximum longitudinal electric component," Phys. Rev. Lett. 100, 123904 (2008).
    [CrossRef] [PubMed]
  5. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, "Creation of a needle of longitudinally polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
    [CrossRef]
  6. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  7. G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
    [CrossRef]
  8. B. Hao and J. Leger, "Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam," Opt. Express 15, 3550-3556 (2007).
    [CrossRef] [PubMed]
  9. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  10. T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
    [CrossRef]
  11. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical waveguides," Opt. Express 14, 279-290 (2006).
    [CrossRef] [PubMed]
  12. J. A. Deibel, M. D. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Electron. Lett. 41, 9-10 (2005).
    [CrossRef]
  13. J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite-element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95,1624-1640, (2007).
    [CrossRef]
  14. G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, "Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification," Opt. Lett. 32, 433-435 (2007).
    [CrossRef] [PubMed]
  15. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, "High-intensity terahertz radiation from a microstructured large-area photoconductor," Appl. Phys. Lett. 86, 121114, (2005).
    [CrossRef]
  16. A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, "Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device," Opt. Lett. 31, 1546-1548, (2006).
    [CrossRef] [PubMed]
  17. G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riemann, G. Notni, and A. Tünnermann, "Microlens coupled interdigital photoconductive switch," Appl. Phys. Lett. 93, 091110 (2008).
    [CrossRef]
  18. F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, "Coherent terahertz detection with a large-area photoconductive antenna," Appl. Phys. Lett. 91, 081109, (2007).
    [CrossRef]
  19. S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, "Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes," IEEE J. Sel. Top. Quantum Electron. 14, 449-457 (2008).
    [CrossRef]
  20. E. Castro-Camus, J. Lloyd-Hyghes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagdish, "Polarization-sensitive terahertz detection by multicontact photoconductive receivers," Appl. Phys. Lett. 86, 254102 (2005).
    [CrossRef]

2008 (4)

H. P. Urbach and S. F. Pereira, "Field in focus with a maximum longitudinal electric component," Phys. Rev. Lett. 100, 123904 (2008).
[CrossRef] [PubMed]

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, "Creation of a needle of longitudinally polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
[CrossRef]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riemann, G. Notni, and A. Tünnermann, "Microlens coupled interdigital photoconductive switch," Appl. Phys. Lett. 93, 091110 (2008).
[CrossRef]

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, "Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes," IEEE J. Sel. Top. Quantum Electron. 14, 449-457 (2008).
[CrossRef]

2007 (4)

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, "Coherent terahertz detection with a large-area photoconductive antenna," Appl. Phys. Lett. 91, 081109, (2007).
[CrossRef]

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite-element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95,1624-1640, (2007).
[CrossRef]

G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, "Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification," Opt. Lett. 32, 433-435 (2007).
[CrossRef] [PubMed]

B. Hao and J. Leger, "Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam," Opt. Express 15, 3550-3556 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (4)

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

J. A. Deibel, M. D. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Electron. Lett. 41, 9-10 (2005).
[CrossRef]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, "High-intensity terahertz radiation from a microstructured large-area photoconductor," Appl. Phys. Lett. 86, 121114, (2005).
[CrossRef]

E. Castro-Camus, J. Lloyd-Hyghes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagdish, "Polarization-sensitive terahertz detection by multicontact photoconductive receivers," Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

2004 (2)

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
[CrossRef]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

2000 (2)

K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Comm. 179, 1-7 (2000).
[CrossRef]

1996 (1)

Berndsen, N.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite-element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95,1624-1640, (2007).
[CrossRef]

Brown, T. G.

Castro-Camus, E.

E. Castro-Camus, J. Lloyd-Hyghes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagdish, "Polarization-sensitive terahertz detection by multicontact photoconductive receivers," Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

Chang, G.

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, "Creation of a needle of longitudinally polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
[CrossRef]

Deibel, J. A.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite-element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95,1624-1640, (2007).
[CrossRef]

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical waveguides," Opt. Express 14, 279-290 (2006).
[CrossRef] [PubMed]

J. A. Deibel, M. D. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Electron. Lett. 41, 9-10 (2005).
[CrossRef]

Dekorsy, T.

A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, "Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device," Opt. Lett. 31, 1546-1548, (2006).
[CrossRef] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, "High-intensity terahertz radiation from a microstructured large-area photoconductor," Appl. Phys. Lett. 86, 121114, (2005).
[CrossRef]

Divin, C. J.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Comm. 179, 1-7 (2000).
[CrossRef]

Dreyhaupt, A.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, "Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes," IEEE J. Sel. Top. Quantum Electron. 14, 449-457 (2008).
[CrossRef]

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, "Coherent terahertz detection with a large-area photoconductive antenna," Appl. Phys. Lett. 91, 081109, (2007).
[CrossRef]

A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, "Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device," Opt. Lett. 31, 1546-1548, (2006).
[CrossRef] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, "High-intensity terahertz radiation from a microstructured large-area photoconductor," Appl. Phys. Lett. 86, 121114, (2005).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Comm. 179, 1-7 (2000).
[CrossRef]

Escarra, M.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite-element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95,1624-1640, (2007).
[CrossRef]

Escarra, M. D.

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical waveguides," Opt. Express 14, 279-290 (2006).
[CrossRef] [PubMed]

J. A. Deibel, M. D. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Electron. Lett. 41, 9-10 (2005).
[CrossRef]

Fraser, M. D.

E. Castro-Camus, J. Lloyd-Hyghes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagdish, "Polarization-sensitive terahertz detection by multicontact photoconductive receivers," Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

Galvanauskas, A.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Comm. 179, 1-7 (2000).
[CrossRef]

Grischkowsky, D.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Hall, D. G.

Hao, B.

Helm, M.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, "Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes," IEEE J. Sel. Top. Quantum Electron. 14, 449-457 (2008).
[CrossRef]

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, "Coherent terahertz detection with a large-area photoconductive antenna," Appl. Phys. Lett. 91, 081109, (2007).
[CrossRef]

A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, "Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device," Opt. Lett. 31, 1546-1548, (2006).
[CrossRef] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, "High-intensity terahertz radiation from a microstructured large-area photoconductor," Appl. Phys. Lett. 86, 121114, (2005).
[CrossRef]

Hohmuth, R.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riemann, G. Notni, and A. Tünnermann, "Microlens coupled interdigital photoconductive switch," Appl. Phys. Lett. 93, 091110 (2008).
[CrossRef]

Jagdish, C.

E. Castro-Camus, J. Lloyd-Hyghes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagdish, "Polarization-sensitive terahertz detection by multicontact photoconductive receivers," Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

Jeon, T.-I.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Johnston, M. B.

E. Castro-Camus, J. Lloyd-Hyghes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagdish, "Polarization-sensitive terahertz detection by multicontact photoconductive receivers," Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

Köhler, K.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, "Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes," IEEE J. Sel. Top. Quantum Electron. 14, 449-457 (2008).
[CrossRef]

Leger, J.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Comm. 179, 1-7 (2000).
[CrossRef]

Liu, C.-H.

Lloyd-Hyghes, J.

E. Castro-Camus, J. Lloyd-Hyghes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagdish, "Polarization-sensitive terahertz detection by multicontact photoconductive receivers," Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, "Creation of a needle of longitudinally polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
[CrossRef]

Matthäus, G.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riemann, G. Notni, and A. Tünnermann, "Microlens coupled interdigital photoconductive switch," Appl. Phys. Lett. 93, 091110 (2008).
[CrossRef]

Mittleman, D. M.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite-element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95,1624-1640, (2007).
[CrossRef]

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical waveguides," Opt. Express 14, 279-290 (2006).
[CrossRef] [PubMed]

J. A. Deibel, M. D. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Electron. Lett. 41, 9-10 (2005).
[CrossRef]

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Miyaji, G.

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
[CrossRef]

Miyanaga, N.

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
[CrossRef]

Nitsche, S.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, "Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes," IEEE J. Sel. Top. Quantum Electron. 14, 449-457 (2008).
[CrossRef]

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, "Coherent terahertz detection with a large-area photoconductive antenna," Appl. Phys. Lett. 91, 081109, (2007).
[CrossRef]

Nolte, S.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riemann, G. Notni, and A. Tünnermann, "Microlens coupled interdigital photoconductive switch," Appl. Phys. Lett. 93, 091110 (2008).
[CrossRef]

Norris, T. B.

Notni, G.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riemann, G. Notni, and A. Tünnermann, "Microlens coupled interdigital photoconductive switch," Appl. Phys. Lett. 93, 091110 (2008).
[CrossRef]

Ohbayashi, K.

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
[CrossRef]

Pereira, S. F.

H. P. Urbach and S. F. Pereira, "Field in focus with a maximum longitudinal electric component," Phys. Rev. Lett. 100, 123904 (2008).
[CrossRef] [PubMed]

Peter, F.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, "Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes," IEEE J. Sel. Top. Quantum Electron. 14, 449-457 (2008).
[CrossRef]

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, "Coherent terahertz detection with a large-area photoconductive antenna," Appl. Phys. Lett. 91, 081109, (2007).
[CrossRef]

Pradarutti, B.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riemann, G. Notni, and A. Tünnermann, "Microlens coupled interdigital photoconductive switch," Appl. Phys. Lett. 93, 091110 (2008).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Comm. 179, 1-7 (2000).
[CrossRef]

Richter, W.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riemann, G. Notni, and A. Tünnermann, "Microlens coupled interdigital photoconductive switch," Appl. Phys. Lett. 93, 091110 (2008).
[CrossRef]

Riemann, S.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riemann, G. Notni, and A. Tünnermann, "Microlens coupled interdigital photoconductive switch," Appl. Phys. Lett. 93, 091110 (2008).
[CrossRef]

Schneider, H.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, "Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes," IEEE J. Sel. Top. Quantum Electron. 14, 449-457 (2008).
[CrossRef]

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, "Coherent terahertz detection with a large-area photoconductive antenna," Appl. Phys. Lett. 91, 081109, (2007).
[CrossRef]

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, "Creation of a needle of longitudinally polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
[CrossRef]

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, "Creation of a needle of longitudinally polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
[CrossRef]

Sueda, K.

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
[CrossRef]

Tan, H. H.

E. Castro-Camus, J. Lloyd-Hyghes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagdish, "Polarization-sensitive terahertz detection by multicontact photoconductive receivers," Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

Tsubakimoto, K.

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
[CrossRef]

Tünnermann, A.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riemann, G. Notni, and A. Tünnermann, "Microlens coupled interdigital photoconductive switch," Appl. Phys. Lett. 93, 091110 (2008).
[CrossRef]

Urbach, H. P.

H. P. Urbach and S. F. Pereira, "Field in focus with a maximum longitudinal electric component," Phys. Rev. Lett. 100, 123904 (2008).
[CrossRef] [PubMed]

Voitsch, M.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riemann, G. Notni, and A. Tünnermann, "Microlens coupled interdigital photoconductive switch," Appl. Phys. Lett. 93, 091110 (2008).
[CrossRef]

Wagner, M.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, "Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes," IEEE J. Sel. Top. Quantum Electron. 14, 449-457 (2008).
[CrossRef]

Wang, H.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, "Creation of a needle of longitudinally polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
[CrossRef]

Wang, K.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite-element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95,1624-1640, (2007).
[CrossRef]

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical waveguides," Opt. Express 14, 279-290 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Williamson, S. L.

Winnerl, S.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, "Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes," IEEE J. Sel. Top. Quantum Electron. 14, 449-457 (2008).
[CrossRef]

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, "Coherent terahertz detection with a large-area photoconductive antenna," Appl. Phys. Lett. 91, 081109, (2007).
[CrossRef]

A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, "Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device," Opt. Lett. 31, 1546-1548, (2006).
[CrossRef] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, "High-intensity terahertz radiation from a microstructured large-area photoconductor," Appl. Phys. Lett. 86, 121114, (2005).
[CrossRef]

Youngworth, K. S.

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Zimmermann, B.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, "Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes," IEEE J. Sel. Top. Quantum Electron. 14, 449-457 (2008).
[CrossRef]

Appl. Phys. Lett. (6)

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
[CrossRef]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, "High-intensity terahertz radiation from a microstructured large-area photoconductor," Appl. Phys. Lett. 86, 121114, (2005).
[CrossRef]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riemann, G. Notni, and A. Tünnermann, "Microlens coupled interdigital photoconductive switch," Appl. Phys. Lett. 93, 091110 (2008).
[CrossRef]

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, "Coherent terahertz detection with a large-area photoconductive antenna," Appl. Phys. Lett. 91, 081109, (2007).
[CrossRef]

E. Castro-Camus, J. Lloyd-Hyghes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagdish, "Polarization-sensitive terahertz detection by multicontact photoconductive receivers," Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

Electron. Lett. (1)

J. A. Deibel, M. D. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Electron. Lett. 41, 9-10 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, "Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes," IEEE J. Sel. Top. Quantum Electron. 14, 449-457 (2008).
[CrossRef]

Nature (1)

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Nature Photon. (1)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, "Creation of a needle of longitudinally polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
[CrossRef]

Opt. Comm. (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Comm. 179, 1-7 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

H. P. Urbach and S. F. Pereira, "Field in focus with a maximum longitudinal electric component," Phys. Rev. Lett. 100, 123904 (2008).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Proc. IEEE (1)

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite-element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95,1624-1640, (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Sketch of electrode geometry (a, d), full emitter structure (b, e) with second metallization layer (orange) and resulting mode pattern (c, f) for radial (a-c) and azimuthal (d-f) polarization. The arrows in the mode patterns indicate the electric field, the shade the intensity distribution. The rectangles in the mode patterns mark the cross section of the pattern that is studied in the experiments.

Fig. 2.
Fig. 2.

THz transients emitted from an antenna for radially polarized beams detected with an antenna optimized for this mode (red solid) and detected with an antenna optimized for azimuthal polarization (blue dots) (a). Experimental data (dots) for detection of linearly polarized beams with respect to the azimuthal angle α of the detector for linear polarization (b). The solid line in (b) represents a cos(α) function.

Fig 3.
Fig 3.

THz transients of the horizontally polarized component emitted by the emitter for radially polarized beams. The traces are shifted both horizontally and vertically for clarity.

Fig. 4.
Fig. 4.

Beam profiles for divergent beams (a) and refocused beams (b) of linear (black squares and solid lines), radial (red circles and dashed lines) and azimuthal (blue triangles and short dashed lines) polarization. The dots represent experimental data, the lines are calculated. The calculated curves are fits based on Eq. (1) for the radially and azimuthally polarized beams and fits using a Gaussian function for the linearly polarized beams. Both experimental and calculated data for the radially and azimuthally polarized focused beams are scaled vertically by a factor of 4 and 2, respectively, for clarity reasons.

Fig. 5.
Fig. 5.

Measured (dots) and calculated (lines) beam profiles for 0.5 THz (a), 1 THz (b) and 2 THz (c). Black rectangles and solid lines correspond to linear polarization, red circles and dashed lines to the radial polarization, blue triangles and dotted lines to azimuthal polarization.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ( x ) = E 0 J 1 ( x d 1 ) exp ( 4 In 2 · x 2 d 2 2 )

Metrics