Abstract

In this report, we present the design principles to achieve a highly sensitive optical stress sensor. The structure we use is a double-layered (DL) photonic molecule with optical bonding and anti-bonding states based on whispering-gallery mode in photonic crystal microcavity. By applying finite-difference time-domain and finite-element methods, we simulate the change of optical properties (including wavelength and quality (Q) factor) of bonding mode caused by the DL structural variation due to the applied stress in two DL geometries. In the end, we summarize an optical stress sensor design with high Q factor, large structural response due to the applied stress, and large optical spectrum change due to the DL structural variation. The minimum detectable stress variation is estimated to be as small as 0.95 nN.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phy. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef]
  2. O. Painter, P. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  3. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photon. 1, 449-458 (2007).
    [CrossRef]
  4. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007).
    [CrossRef] [PubMed]
  5. S. Kita, K. Nozaki, and T. Baba, "Refractiveindex sensing utilizing a cw photonic crystal nanolaser and its array configuration," Opt. Express 16, 8174-8180 (2008).
    [CrossRef] [PubMed]
  6. S. H. Kwon, T. Sunner, M. Kamp, and A. Forchel, "Optimization of photonic crystal cavity for chemical sensing," Opt. Express 16, 11709-11717 (2008).
    [CrossRef] [PubMed]
  7. M. Adams, G. A. DeRose, M. Loncar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
    [CrossRef]
  8. T. Sunner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, "Photonic crystal cavity based gas sensor," Appl. Phys. Lett. 92, 261112 (2008).
    [CrossRef]
  9. M. R. Lee and P. M. Fauchet, "Nanoscale microcavity sensor for single particle detection," Opt. Lett. 32, 3284-3286 (2007).
    [CrossRef] [PubMed]
  10. F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nature Methods 5, 591-596 (2008).
    [CrossRef] [PubMed]
  11. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
    [CrossRef]
  12. C. K. Lee, R. Radhakrishnan, C. C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, "Design and Modeling of a Nanomechanical Sensor Using Silicon Photonic Crystals," IEEE J. Lightwave Technol. 26, 839-846 (2008).
    [CrossRef]
  13. C. K. Lee, J. Thillaigovindan, C. C. Chen, X. T. Chen, Y. T. Chao, S. Tao, W. Xiang, H. Feng, and G. Q. Lo, "Si nanophotonics based cantilever sensor," Appl. Phys. Lett. 93, 113113 (2008).
    [CrossRef]
  14. O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, "Ultrasensitive displacement sensing using photonic crystal waveguides," Appl. Phys. Lett. 86, 104102 (2005).
    [CrossRef]
  15. Z. Xu, L. Cao, C. Gu, Q. He, and G. Jin, "Micro displacement sensor based on line-defect resonant cavity in photonic crystal," Opt. Express 14, 298-305 (2006).
    [CrossRef] [PubMed]
  16. P. T. Lee, T. W. Lu, C. M. Yu, and C. C. Tseng, "Photonic crystal circular-shaped microcavity and its uniform cavity-waveguide coupling property due to presence of whispering gallery mode," Opt. Express 15, 9450-9457 (2007).
    [CrossRef] [PubMed]
  17. M. D. Barnes, S. M. Mahurin, A. Mehta, B. G. Sumpter, and D. W. Noid, "Three-dimensional photonic "molecules" from sequentially attached polymer-blend microparticles," Phys. Rev. Lett. 88, 015508 (2002).
    [CrossRef] [PubMed]
  18. M. Bayer, T. Gutbrod, J. P. Reithmaier, and A. Forchel, "Optical Modes in Photonic Molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
    [CrossRef]
  19. A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsP microdisks," Appl. Phys. Lett. 86, 041112 (2005).
    [CrossRef]
  20. Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
    [CrossRef]
  21. G. H. Kim, Y. H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004).
    [CrossRef] [PubMed]
  22. H. Tnaiyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, "Strong radiation force in two-dimensional photonic crystal slab cavities," Phys. Rev. B 78, 165129 (2008).
    [CrossRef]
  23. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, "Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers," Appl. Phys. Lett. 93, 111112 (2008).
    [CrossRef]
  24. Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocavity with Q-factor of similar to 109," IEEE J. Lightwave Technol. 26, 1532-1539 (2008).
    [CrossRef]

2008 (9)

F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nature Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

C. K. Lee, R. Radhakrishnan, C. C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, "Design and Modeling of a Nanomechanical Sensor Using Silicon Photonic Crystals," IEEE J. Lightwave Technol. 26, 839-846 (2008).
[CrossRef]

C. K. Lee, J. Thillaigovindan, C. C. Chen, X. T. Chen, Y. T. Chao, S. Tao, W. Xiang, H. Feng, and G. Q. Lo, "Si nanophotonics based cantilever sensor," Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

T. Sunner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, "Photonic crystal cavity based gas sensor," Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

H. Tnaiyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, "Strong radiation force in two-dimensional photonic crystal slab cavities," Phys. Rev. B 78, 165129 (2008).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, "Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers," Appl. Phys. Lett. 93, 111112 (2008).
[CrossRef]

Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocavity with Q-factor of similar to 109," IEEE J. Lightwave Technol. 26, 1532-1539 (2008).
[CrossRef]

S. Kita, K. Nozaki, and T. Baba, "Refractiveindex sensing utilizing a cw photonic crystal nanolaser and its array configuration," Opt. Express 16, 8174-8180 (2008).
[CrossRef] [PubMed]

S. H. Kwon, T. Sunner, M. Kamp, and A. Forchel, "Optimization of photonic crystal cavity for chemical sensing," Opt. Express 16, 11709-11717 (2008).
[CrossRef] [PubMed]

2007 (5)

2006 (1)

2005 (3)

M. Adams, G. A. DeRose, M. Loncar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsP microdisks," Appl. Phys. Lett. 86, 041112 (2005).
[CrossRef]

O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, "Ultrasensitive displacement sensing using photonic crystal waveguides," Appl. Phys. Lett. 86, 104102 (2005).
[CrossRef]

2004 (1)

2003 (1)

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

2002 (1)

M. D. Barnes, S. M. Mahurin, A. Mehta, B. G. Sumpter, and D. W. Noid, "Three-dimensional photonic "molecules" from sequentially attached polymer-blend microparticles," Phys. Rev. Lett. 88, 015508 (2002).
[CrossRef] [PubMed]

1999 (1)

O. Painter, P. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

1998 (1)

M. Bayer, T. Gutbrod, J. P. Reithmaier, and A. Forchel, "Optical Modes in Photonic Molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

1987 (1)

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phy. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

Adams, M.

M. Adams, G. A. DeRose, M. Loncar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Arnold, S.

F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nature Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

Asano, T.

Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocavity with Q-factor of similar to 109," IEEE J. Lightwave Technol. 26, 1532-1539 (2008).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photon. 1, 449-458 (2007).
[CrossRef]

Baba, T.

Balasubramanian, N.

C. K. Lee, R. Radhakrishnan, C. C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, "Design and Modeling of a Nanomechanical Sensor Using Silicon Photonic Crystals," IEEE J. Lightwave Technol. 26, 839-846 (2008).
[CrossRef]

Barnes, M. D.

M. D. Barnes, S. M. Mahurin, A. Mehta, B. G. Sumpter, and D. W. Noid, "Three-dimensional photonic "molecules" from sequentially attached polymer-blend microparticles," Phys. Rev. Lett. 88, 015508 (2002).
[CrossRef] [PubMed]

Bayer, M.

M. Bayer, T. Gutbrod, J. P. Reithmaier, and A. Forchel, "Optical Modes in Photonic Molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

Boag, A.

O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, "Ultrasensitive displacement sensing using photonic crystal waveguides," Appl. Phys. Lett. 86, 104102 (2005).
[CrossRef]

Cao, L.

Chao, Y. T.

C. K. Lee, J. Thillaigovindan, C. C. Chen, X. T. Chen, Y. T. Chao, S. Tao, W. Xiang, H. Feng, and G. Q. Lo, "Si nanophotonics based cantilever sensor," Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

Chen, C. C.

C. K. Lee, J. Thillaigovindan, C. C. Chen, X. T. Chen, Y. T. Chao, S. Tao, W. Xiang, H. Feng, and G. Q. Lo, "Si nanophotonics based cantilever sensor," Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

C. K. Lee, R. Radhakrishnan, C. C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, "Design and Modeling of a Nanomechanical Sensor Using Silicon Photonic Crystals," IEEE J. Lightwave Technol. 26, 839-846 (2008).
[CrossRef]

Chen, X. T.

C. K. Lee, J. Thillaigovindan, C. C. Chen, X. T. Chen, Y. T. Chao, S. Tao, W. Xiang, H. Feng, and G. Q. Lo, "Si nanophotonics based cantilever sensor," Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

Dapkus, P. D.

O. Painter, P. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

DeRose, G. A.

M. Adams, G. A. DeRose, M. Loncar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Fan, S.

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

Fauchet, P. M.

Feng, H.

C. K. Lee, J. Thillaigovindan, C. C. Chen, X. T. Chen, Y. T. Chao, S. Tao, W. Xiang, H. Feng, and G. Q. Lo, "Si nanophotonics based cantilever sensor," Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

Forchel, A.

S. H. Kwon, T. Sunner, M. Kamp, and A. Forchel, "Optimization of photonic crystal cavity for chemical sensing," Opt. Express 16, 11709-11717 (2008).
[CrossRef] [PubMed]

T. Sunner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, "Photonic crystal cavity based gas sensor," Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

M. Bayer, T. Gutbrod, J. P. Reithmaier, and A. Forchel, "Optical Modes in Photonic Molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photon. 1, 449-458 (2007).
[CrossRef]

Gu, C.

Gutbrod, T.

M. Bayer, T. Gutbrod, J. P. Reithmaier, and A. Forchel, "Optical Modes in Photonic Molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

Hane, K.

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

He, Q.

Hofling, S.

T. Sunner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, "Photonic crystal cavity based gas sensor," Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Ishii, S.

A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsP microdisks," Appl. Phys. Lett. 86, 041112 (2005).
[CrossRef]

Jin, G.

Kamp, M.

S. H. Kwon, T. Sunner, M. Kamp, and A. Forchel, "Optimization of photonic crystal cavity for chemical sensing," Opt. Express 16, 11709-11717 (2008).
[CrossRef] [PubMed]

T. Sunner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, "Photonic crystal cavity based gas sensor," Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Kanamori, Y.

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

Kim, G. H.

Kim, I.

O. Painter, P. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kita, S.

Kitani, T.

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

Kuga, T.

H. Tnaiyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, "Strong radiation force in two-dimensional photonic crystal slab cavities," Phys. Rev. B 78, 165129 (2008).
[CrossRef]

Kuramochi, E.

H. Tnaiyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, "Strong radiation force in two-dimensional photonic crystal slab cavities," Phys. Rev. B 78, 165129 (2008).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, "Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers," Appl. Phys. Lett. 93, 111112 (2008).
[CrossRef]

Kwon, S. H.

S. H. Kwon, T. Sunner, M. Kamp, and A. Forchel, "Optimization of photonic crystal cavity for chemical sensing," Opt. Express 16, 11709-11717 (2008).
[CrossRef] [PubMed]

T. Sunner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, "Photonic crystal cavity based gas sensor," Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Lee, C. K.

C. K. Lee, R. Radhakrishnan, C. C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, "Design and Modeling of a Nanomechanical Sensor Using Silicon Photonic Crystals," IEEE J. Lightwave Technol. 26, 839-846 (2008).
[CrossRef]

C. K. Lee, J. Thillaigovindan, C. C. Chen, X. T. Chen, Y. T. Chao, S. Tao, W. Xiang, H. Feng, and G. Q. Lo, "Si nanophotonics based cantilever sensor," Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

Lee, M. R.

Lee, P. K.

O. Painter, P. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Lee, P. T.

Lee, Y. H.

Levy, O.

O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, "Ultrasensitive displacement sensing using photonic crystal waveguides," Appl. Phys. Lett. 86, 104102 (2005).
[CrossRef]

Li, J.

C. K. Lee, R. Radhakrishnan, C. C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, "Design and Modeling of a Nanomechanical Sensor Using Silicon Photonic Crystals," IEEE J. Lightwave Technol. 26, 839-846 (2008).
[CrossRef]

Lo, G. Q.

C. K. Lee, J. Thillaigovindan, C. C. Chen, X. T. Chen, Y. T. Chao, S. Tao, W. Xiang, H. Feng, and G. Q. Lo, "Si nanophotonics based cantilever sensor," Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

Loncar, M.

M. Adams, G. A. DeRose, M. Loncar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Lu, T. W.

Mahurin, S. M.

M. D. Barnes, S. M. Mahurin, A. Mehta, B. G. Sumpter, and D. W. Noid, "Three-dimensional photonic "molecules" from sequentially attached polymer-blend microparticles," Phys. Rev. Lett. 88, 015508 (2002).
[CrossRef] [PubMed]

Mehta, A.

M. D. Barnes, S. M. Mahurin, A. Mehta, B. G. Sumpter, and D. W. Noid, "Three-dimensional photonic "molecules" from sequentially attached polymer-blend microparticles," Phys. Rev. Lett. 88, 015508 (2002).
[CrossRef] [PubMed]

Nakagawa, A.

A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsP microdisks," Appl. Phys. Lett. 86, 041112 (2005).
[CrossRef]

Nathan, M.

O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, "Ultrasensitive displacement sensing using photonic crystal waveguides," Appl. Phys. Lett. 86, 104102 (2005).
[CrossRef]

Noda, S.

Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocavity with Q-factor of similar to 109," IEEE J. Lightwave Technol. 26, 1532-1539 (2008).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photon. 1, 449-458 (2007).
[CrossRef]

Noid, D. W.

M. D. Barnes, S. M. Mahurin, A. Mehta, B. G. Sumpter, and D. W. Noid, "Three-dimensional photonic "molecules" from sequentially attached polymer-blend microparticles," Phys. Rev. Lett. 88, 015508 (2002).
[CrossRef] [PubMed]

Notomi, M.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, "Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers," Appl. Phys. Lett. 93, 111112 (2008).
[CrossRef]

H. Tnaiyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, "Strong radiation force in two-dimensional photonic crystal slab cavities," Phys. Rev. B 78, 165129 (2008).
[CrossRef]

G. H. Kim, Y. H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004).
[CrossRef] [PubMed]

Nozaki, K.

O’Brien, J. D.

O. Painter, P. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

O. Painter, P. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Radhakrishnan, R.

C. K. Lee, R. Radhakrishnan, C. C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, "Design and Modeling of a Nanomechanical Sensor Using Silicon Photonic Crystals," IEEE J. Lightwave Technol. 26, 839-846 (2008).
[CrossRef]

Reithmaier, J. P.

M. Bayer, T. Gutbrod, J. P. Reithmaier, and A. Forchel, "Optical Modes in Photonic Molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

Scherer, A.

M. Adams, G. A. DeRose, M. Loncar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

O. Painter, P. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Schlereth, T. W.

T. Sunner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, "Photonic crystal cavity based gas sensor," Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Shinya, A.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, "Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers," Appl. Phys. Lett. 93, 111112 (2008).
[CrossRef]

G. H. Kim, Y. H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004).
[CrossRef] [PubMed]

Solgaard, O.

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

Steinberg, B. Z.

O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, "Ultrasensitive displacement sensing using photonic crystal waveguides," Appl. Phys. Lett. 86, 104102 (2005).
[CrossRef]

Stichel, T.

T. Sunner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, "Photonic crystal cavity based gas sensor," Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Suh, W.

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

Sumpter, B. G.

M. D. Barnes, S. M. Mahurin, A. Mehta, B. G. Sumpter, and D. W. Noid, "Three-dimensional photonic "molecules" from sequentially attached polymer-blend microparticles," Phys. Rev. Lett. 88, 015508 (2002).
[CrossRef] [PubMed]

Sunner, T.

S. H. Kwon, T. Sunner, M. Kamp, and A. Forchel, "Optimization of photonic crystal cavity for chemical sensing," Opt. Express 16, 11709-11717 (2008).
[CrossRef] [PubMed]

T. Sunner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, "Photonic crystal cavity based gas sensor," Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Tanabe, T.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, "Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers," Appl. Phys. Lett. 93, 111112 (2008).
[CrossRef]

Tanaka, Y.

Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocavity with Q-factor of similar to 109," IEEE J. Lightwave Technol. 26, 1532-1539 (2008).
[CrossRef]

Taniyama, H.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, "Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers," Appl. Phys. Lett. 93, 111112 (2008).
[CrossRef]

Tao, S.

C. K. Lee, J. Thillaigovindan, C. C. Chen, X. T. Chen, Y. T. Chao, S. Tao, W. Xiang, H. Feng, and G. Q. Lo, "Si nanophotonics based cantilever sensor," Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

Thillaigovindan, J.

C. K. Lee, J. Thillaigovindan, C. C. Chen, X. T. Chen, Y. T. Chao, S. Tao, W. Xiang, H. Feng, and G. Q. Lo, "Si nanophotonics based cantilever sensor," Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

C. K. Lee, R. Radhakrishnan, C. C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, "Design and Modeling of a Nanomechanical Sensor Using Silicon Photonic Crystals," IEEE J. Lightwave Technol. 26, 839-846 (2008).
[CrossRef]

Tnaiyama, H.

H. Tnaiyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, "Strong radiation force in two-dimensional photonic crystal slab cavities," Phys. Rev. B 78, 165129 (2008).
[CrossRef]

Torii, Y.

H. Tnaiyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, "Strong radiation force in two-dimensional photonic crystal slab cavities," Phys. Rev. B 78, 165129 (2008).
[CrossRef]

Tseng, C. C.

Vollmer, F.

F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nature Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

Xiang, W.

C. K. Lee, J. Thillaigovindan, C. C. Chen, X. T. Chen, Y. T. Chao, S. Tao, W. Xiang, H. Feng, and G. Q. Lo, "Si nanophotonics based cantilever sensor," Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

Xu, Z.

Yablonovitch, E.

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phy. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

Yamamoto, T.

H. Tnaiyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, "Strong radiation force in two-dimensional photonic crystal slab cavities," Phys. Rev. B 78, 165129 (2008).
[CrossRef]

Yanik, M. F.

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

Yariv, A.

O. Painter, P. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Yoshikawa, Y.

H. Tnaiyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, "Strong radiation force in two-dimensional photonic crystal slab cavities," Phys. Rev. B 78, 165129 (2008).
[CrossRef]

Yu, C. M.

Appl. Phys. Lett. (7)

C. K. Lee, J. Thillaigovindan, C. C. Chen, X. T. Chen, Y. T. Chao, S. Tao, W. Xiang, H. Feng, and G. Q. Lo, "Si nanophotonics based cantilever sensor," Appl. Phys. Lett. 93, 113113 (2008).
[CrossRef]

O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, "Ultrasensitive displacement sensing using photonic crystal waveguides," Appl. Phys. Lett. 86, 104102 (2005).
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsP microdisks," Appl. Phys. Lett. 86, 041112 (2005).
[CrossRef]

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, "Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers," Appl. Phys. Lett. 93, 111112 (2008).
[CrossRef]

T. Sunner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, "Photonic crystal cavity based gas sensor," Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

IEEE J. Lightwave Technol. (2)

Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocavity with Q-factor of similar to 109," IEEE J. Lightwave Technol. 26, 1532-1539 (2008).
[CrossRef]

C. K. Lee, R. Radhakrishnan, C. C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, "Design and Modeling of a Nanomechanical Sensor Using Silicon Photonic Crystals," IEEE J. Lightwave Technol. 26, 839-846 (2008).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. Adams, G. A. DeRose, M. Loncar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Nature Methods (1)

F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nature Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

Nature Photon. (1)

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photon. 1, 449-458 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phy. Rev. Lett. (1)

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phy. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

Phys. Rev. B (1)

H. Tnaiyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, "Strong radiation force in two-dimensional photonic crystal slab cavities," Phys. Rev. B 78, 165129 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

M. D. Barnes, S. M. Mahurin, A. Mehta, B. G. Sumpter, and D. W. Noid, "Three-dimensional photonic "molecules" from sequentially attached polymer-blend microparticles," Phys. Rev. Lett. 88, 015508 (2002).
[CrossRef] [PubMed]

M. Bayer, T. Gutbrod, J. P. Reithmaier, and A. Forchel, "Optical Modes in Photonic Molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

Science (1)

O. Painter, P. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of DL PhC microcavity based on PhC CD2 microcavity design. The PhC CD2 microcavity and the simulated well-sustained WG6, 1 mode profile in electrical filed are also shown in the right insets.

Fig. 2.
Fig. 2.

The simulated mode profiles in electrical field in x-z plane of (a) bonding and (b) anti-bonding modes. (c) The simulated wavelengths of bonding and anti-bonding modes versus the air-gap distance d.

Fig. 3.
Fig. 3.

The simulated Qbonding (open circle) for air-gap distance d varied from 165 to 660 nm. High Qbonding ~ 110,000 is obtained when d = 550 nm. The wavelength shift rate W (open square) under different d is also presented, which decreases when the two membranes become far apart. The original Q factor (~36,000) of WG6, 1 mode in single-membrane PhC CD2 microcavity is also denoted by the red horizontal dash-line.

Fig. 4.
Fig. 4.

(a) Scheme of DL PhC microcavity in bridge geometry. The simulated (b) air-gap displacement Δd and (c) torsion distribution of the InGaAsP bridge geometry when F = 50 nN. The torsion mainly distributes at both sides of the bridge from the center. The PhC pattern is denoted by the white dash-line enclosed region. (d) The simulated Qbonding and wavelength variations with d = 495 nm when AFM tip with different diameters contacts the center of the microcavity to apply stress. When the tip size is smaller than 680 nm in diameter, Qbonding will not be affected significantly. (e) The simulated bonding mode wavelength shift when d = 495 nm with Δd increased from 0 to 165 nm.

Fig. 5.
Fig. 5.

(a) Scheme of DL PhC microcavity in BwWs geometry. The applied stress and PhC patterns are located in bridge and wing regions, respectively. The simulated (b) air-gap displacement Δd and (c) torsion distribution of the InGaAsP BwWs geometry when F = 50 nN. The PhC pattern is also denoted by the white dash-line enclosed region. The torsion-free regions appear on the wings.

Fig. 6.
Fig. 6.

(a) The simulated relationship between the applied stress and air-gap displacement Δd. The relationships of bridge and BwWs geometries for silicon and InGaAsP materials are presented. (b) The calculated minimum detectable stress variation δF for the BwWs geometry under different air-gap distance d.

Tables (1)

Tables Icon

Table I. Material parameters for silicon and InGaAsP used in FEM simulation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F det = Δ F Δ λ = Δ F Δ d × Δ d Δ λ
δF = Δ F Δ d × Δ d Δ λ × λ Q = λ SWQ

Metrics