Abstract

Modulation instability of a continuous infrared wave leading to red-shifting solitons and blue-shifting dispersive waves and then subsequent soliton trapping is shown to enable the generation of blue solitary waves in optical fibers. The physical mechanism is described in the context of continuous wave supercontinuum generation leading to a spectrum which spans the visible and near infrared within practical experimental conditions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. 16, 694-697 (1980).
    [CrossRef]
  2. T. Taniuti and H. Washimi, "Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma," Phys. Rev. Lett. 21, 209-212 (1968).
    [CrossRef]
  3. P. Persephonis, S. V. Chernikov, and J. R. Taylor, "Cascaded CW fibre Raman laser source 1.6-1.9 μm," Electron. Lett. 32, 1486-1487 (1996).
    [CrossRef]
  4. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "29 W High power CW supercontinuum source," Opt. Express 16, 5954-5962 (2008).
    [CrossRef] [PubMed]
  5. A. Abeeluck and C. Headley, "Continuous-wave pumping in the anomalous-and normal-dispersion regimes of nonlinear fibers for supercontinuum generation," Opt. Lett. 30, 61-63 (2005).
    [CrossRef] [PubMed]
  6. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
    [CrossRef] [PubMed]
  7. A. Gouveia-Neto, M. Faldon, and J. Taylor, "Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers," Opt. Lett 13, 770-772 (1988).
    [CrossRef] [PubMed]
  8. V. I. Karpman, "Radiation by solitons due to higher-order dispersion," Phys. Rev. E 47, 2073-2082 (1993).
    [CrossRef]
  9. A. Efimov, A. Yulin, D. Skryabin, J. Knight, N. Joly, F. Omenetto, A. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
    [CrossRef] [PubMed]
  10. P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
    [CrossRef]
  11. J. M. Stone and J. C. Knight, "Visibly "white" light generation in uniformphotonic crystal fiber using a microchip laser," Opt. Express 16, 2670-2675 (2008).
    [CrossRef] [PubMed]
  12. J. F. Currie, J. A. Krumhansl, A. R. Bishop, and S. E. Trullinger, "Statistical mechanics of one-dimensional solitary-wave-bearing scalar fields: Exact results and ideal-gas phenomenology," Phys. Rev. B 22, 477-496 (1980).
    [CrossRef]
  13. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves." Nature 450, 1054-7 (2007).
    [CrossRef] [PubMed]
  14. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, "Visible supercontinuum generation in photonic crystal fibers with a 400w continuous wave fiber laser," Opt. Express 16, 14435-14447 (2008).
    [CrossRef] [PubMed]
  15. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "Towards visible CW pumped supercontinua," Opt. Lett. 33, 2122-2124 (2008).
    [CrossRef] [PubMed]
  16. A. Kudlinski and A. Mussot, "Visible cw-pumped supercontinuum," Opt. Lett. 33, 2407-2409 (2008).
    [CrossRef] [PubMed]
  17. A. V. Gorbach and D. V. Skryabin, "Theory of radiation trapping by the accelerating solitons in optical fibers," Phys. Rev. A 76, 053803 (2007).
    [CrossRef]
  18. A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nature Photonics 1, 653 (2007).
    [CrossRef]
  19. A. Schwache and F. Mitschke, "Properties of an optical soliton gas," Phys. Rev. E 55, 7720 (1997).
    [CrossRef]
  20. J. Lægsgaard, "Mode profile dispersion in the generalised nonlinear Schrödinger equation," Opt. Express 15, 16110-16123 (2007).
    [CrossRef] [PubMed]
  21. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser," J. Opt. Soc. Am. B 24, 1729-1738 (2007).
    [CrossRef]
  22. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006).
    [CrossRef] [PubMed]
  23. B. Barviau, S. Randoux, and P. Suret, "Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber," Opt. Lett. 31, 1696-1698 (2006).
    [CrossRef] [PubMed]
  24. J. C. Travers, S. V. Popov, and J. R. Taylor, "A new model for cw supercontinuum generation," Conference on Lasers and Electro-Optics p. CMT3 (2008).
  25. S. M. Kobtsev and S. V. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005).
    [CrossRef] [PubMed]
  26. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  27. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).
  28. F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers," Phys. Rev. E 70, 016615 (2004).
    [CrossRef]

2008 (5)

2007 (5)

A. V. Gorbach and D. V. Skryabin, "Theory of radiation trapping by the accelerating solitons in optical fibers," Phys. Rev. A 76, 053803 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nature Photonics 1, 653 (2007).
[CrossRef]

J. Lægsgaard, "Mode profile dispersion in the generalised nonlinear Schrödinger equation," Opt. Express 15, 16110-16123 (2007).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser," J. Opt. Soc. Am. B 24, 1729-1738 (2007).
[CrossRef]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves." Nature 450, 1054-7 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (4)

2004 (1)

F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers," Phys. Rev. E 70, 016615 (2004).
[CrossRef]

1997 (1)

A. Schwache and F. Mitschke, "Properties of an optical soliton gas," Phys. Rev. E 55, 7720 (1997).
[CrossRef]

1996 (2)

P. Persephonis, S. V. Chernikov, and J. R. Taylor, "Cascaded CW fibre Raman laser source 1.6-1.9 μm," Electron. Lett. 32, 1486-1487 (1996).
[CrossRef]

J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

1993 (1)

V. I. Karpman, "Radiation by solitons due to higher-order dispersion," Phys. Rev. E 47, 2073-2082 (1993).
[CrossRef]

1988 (1)

A. Gouveia-Neto, M. Faldon, and J. Taylor, "Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers," Opt. Lett 13, 770-772 (1988).
[CrossRef] [PubMed]

1987 (1)

P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

1985 (1)

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

1980 (2)

J. F. Currie, J. A. Krumhansl, A. R. Bishop, and S. E. Trullinger, "Statistical mechanics of one-dimensional solitary-wave-bearing scalar fields: Exact results and ideal-gas phenomenology," Phys. Rev. B 22, 477-496 (1980).
[CrossRef]

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. 16, 694-697 (1980).
[CrossRef]

1968 (1)

T. Taniuti and H. Washimi, "Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma," Phys. Rev. Lett. 21, 209-212 (1968).
[CrossRef]

Abeeluck, A.

Atkin, D. M.

Babin, S. A.

Bang, O.

Barviau, B.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Biancalana, F.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers," Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Birks, T. A.

Bishop, A. R.

J. F. Currie, J. A. Krumhansl, A. R. Bishop, and S. E. Trullinger, "Statistical mechanics of one-dimensional solitary-wave-bearing scalar fields: Exact results and ideal-gas phenomenology," Phys. Rev. B 22, 477-496 (1980).
[CrossRef]

Bjarklev, A.

Brinkman, W. F.

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. 16, 694-697 (1980).
[CrossRef]

Chernikov, S. V.

P. Persephonis, S. V. Chernikov, and J. R. Taylor, "Cascaded CW fibre Raman laser source 1.6-1.9 μm," Electron. Lett. 32, 1486-1487 (1996).
[CrossRef]

Churkin, D. V.

Coen, S.

Cumberland, B. A.

Currie, J. F.

J. F. Currie, J. A. Krumhansl, A. R. Bishop, and S. E. Trullinger, "Statistical mechanics of one-dimensional solitary-wave-bearing scalar fields: Exact results and ideal-gas phenomenology," Phys. Rev. B 22, 477-496 (1980).
[CrossRef]

Dianov, E. M.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Efimov, A.

A. Efimov, A. Yulin, D. Skryabin, J. Knight, N. Joly, F. Omenetto, A. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Faldon, M.

A. Gouveia-Neto, M. Faldon, and J. Taylor, "Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers," Opt. Lett 13, 770-772 (1988).
[CrossRef] [PubMed]

Fomichev, A. A.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Frosz, M. H.

González-Herráez, M.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, "Theory of radiation trapping by the accelerating solitons in optical fibers," Phys. Rev. A 76, 053803 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nature Photonics 1, 653 (2007).
[CrossRef]

Gouveia-Neto, A.

A. Gouveia-Neto, M. Faldon, and J. Taylor, "Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers," Opt. Lett 13, 770-772 (1988).
[CrossRef] [PubMed]

Hasegawa, A.

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. 16, 694-697 (1980).
[CrossRef]

Headley, C.

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Ismagulov, A. E.

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves." Nature 450, 1054-7 (2007).
[CrossRef] [PubMed]

Joly, N.

A. Efimov, A. Yulin, D. Skryabin, J. Knight, N. Joly, F. Omenetto, A. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Kablukov, S. I.

Karasik, A. Y.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Karpman, V. I.

V. I. Karpman, "Radiation by solitons due to higher-order dispersion," Phys. Rev. E 47, 2073-2082 (1993).
[CrossRef]

Knight, J.

A. Efimov, A. Yulin, D. Skryabin, J. Knight, N. Joly, F. Omenetto, A. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Knight, J. C.

Kobtsev, S. M.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves." Nature 450, 1054-7 (2007).
[CrossRef] [PubMed]

Krumhansl, J. A.

J. F. Currie, J. A. Krumhansl, A. R. Bishop, and S. E. Trullinger, "Statistical mechanics of one-dimensional solitary-wave-bearing scalar fields: Exact results and ideal-gas phenomenology," Phys. Rev. B 22, 477-496 (1980).
[CrossRef]

Kudlinski, A.

Lægsgaard, J.

Mamyshev, P. V.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Martin-Lopez, S.

Mitschke, F.

A. Schwache and F. Mitschke, "Properties of an optical soliton gas," Phys. Rev. E 55, 7720 (1997).
[CrossRef]

Mussot, A.

Omenetto, F.

A. Efimov, A. Yulin, D. Skryabin, J. Knight, N. Joly, F. Omenetto, A. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Persephonis, P.

P. Persephonis, S. V. Chernikov, and J. R. Taylor, "Cascaded CW fibre Raman laser source 1.6-1.9 μm," Electron. Lett. 32, 1486-1487 (1996).
[CrossRef]

Podivilov, E. V.

Popov, S. V.

Prokhorov, A. M.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Randoux, S.

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves." Nature 450, 1054-7 (2007).
[CrossRef] [PubMed]

Rulkov, A. B.

Russell, P.

A. Efimov, A. Yulin, D. Skryabin, J. Knight, N. Joly, F. Omenetto, A. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Russell, P. S.

Schwache, A.

A. Schwache and F. Mitschke, "Properties of an optical soliton gas," Phys. Rev. E 55, 7720 (1997).
[CrossRef]

Serkin, V. N.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Skryabin, D.

A. Efimov, A. Yulin, D. Skryabin, J. Knight, N. Joly, F. Omenetto, A. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nature Photonics 1, 653 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, "Theory of radiation trapping by the accelerating solitons in optical fibers," Phys. Rev. A 76, 053803 (2007).
[CrossRef]

F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers," Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Smirnov, S. V.

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves." Nature 450, 1054-7 (2007).
[CrossRef] [PubMed]

Stelmakh, M. F.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Stone, J. M.

Suret, P.

Taniuti, T.

T. Taniuti and H. Washimi, "Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma," Phys. Rev. Lett. 21, 209-212 (1968).
[CrossRef]

Taylor, A.

A. Efimov, A. Yulin, D. Skryabin, J. Knight, N. Joly, F. Omenetto, A. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Taylor, J.

A. Gouveia-Neto, M. Faldon, and J. Taylor, "Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers," Opt. Lett 13, 770-772 (1988).
[CrossRef] [PubMed]

Taylor, J. R.

Travers, J. C.

Trullinger, S. E.

J. F. Currie, J. A. Krumhansl, A. R. Bishop, and S. E. Trullinger, "Statistical mechanics of one-dimensional solitary-wave-bearing scalar fields: Exact results and ideal-gas phenomenology," Phys. Rev. B 22, 477-496 (1980).
[CrossRef]

Vanholsbeeck, F.

Washimi, H.

T. Taniuti and H. Washimi, "Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma," Phys. Rev. Lett. 21, 209-212 (1968).
[CrossRef]

Weber, H.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Yulin, A.

A. Efimov, A. Yulin, D. Skryabin, J. Knight, N. Joly, F. Omenetto, A. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Yulin, A. V.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers," Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Electron. Lett. (1)

P. Persephonis, S. V. Chernikov, and J. R. Taylor, "Cascaded CW fibre Raman laser source 1.6-1.9 μm," Electron. Lett. 32, 1486-1487 (1996).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. 16, 694-697 (1980).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves." Nature 450, 1054-7 (2007).
[CrossRef] [PubMed]

Nature Photonics (1)

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nature Photonics 1, 653 (2007).
[CrossRef]

Opt. Express (7)

Opt. Lett (1)

A. Gouveia-Neto, M. Faldon, and J. Taylor, "Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers," Opt. Lett 13, 770-772 (1988).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. A (1)

A. V. Gorbach and D. V. Skryabin, "Theory of radiation trapping by the accelerating solitons in optical fibers," Phys. Rev. A 76, 053803 (2007).
[CrossRef]

Phys. Rev. B (1)

J. F. Currie, J. A. Krumhansl, A. R. Bishop, and S. E. Trullinger, "Statistical mechanics of one-dimensional solitary-wave-bearing scalar fields: Exact results and ideal-gas phenomenology," Phys. Rev. B 22, 477-496 (1980).
[CrossRef]

Phys. Rev. E (3)

A. Schwache and F. Mitschke, "Properties of an optical soliton gas," Phys. Rev. E 55, 7720 (1997).
[CrossRef]

V. I. Karpman, "Radiation by solitons due to higher-order dispersion," Phys. Rev. E 47, 2073-2082 (1993).
[CrossRef]

F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers," Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

A. Efimov, A. Yulin, D. Skryabin, J. Knight, N. Joly, F. Omenetto, A. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

T. Taniuti and H. Washimi, "Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma," Phys. Rev. Lett. 21, 209-212 (1968).
[CrossRef]

Other (1)

J. C. Travers, S. V. Popov, and J. R. Taylor, "A new model for cw supercontinuum generation," Conference on Lasers and Electro-Optics p. CMT3 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) The group velocity dispersion and (b) the group velocity curves for the PCFs considered.

Fig. 2.
Fig. 2.

Evolution from a CW field to intensity pulsations through increasing lengths of F34.

Fig. 3.
Fig. 3.

Spectral evolution of the continuum in (a) F22, (b) F28 and (c) F34.

Fig. 4.
Fig. 4.

(a) The phase matching curves between a soliton at 1.07 μm and dispersive radiation for the PCFs considered. The solid lines are for a 100 W peak power soliton, the dashed lines for 10 kW peak power, intermediate powers phase match between these curves. (b) The group velocity matching (GVM) curves between a soliton and dispersive wave.

Fig. 5.
Fig. 5.

Spectrograms of the continuum evolution in F34; (a) 2.25 m, (b) 4.5 m, (c) 9 m and (d)18m.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

z E ( ω , z ) = i ( β ( ω ) β ( ω 0 ) ω β ( ω ) ω 0 Ω ) E ( ω , z )
i n 2 ω c A eff ( 1 / 4 ) ( ω ) d ω 1 E ̄ ( ω 1 , z ) R ( ω 1 ω )
× d ω 2 E _ ( ω 1 ω 2 ω ) E _ ( ω 1 ) ,
E _ ( ω , z ) = E ( ω , z ) A eff ( 1 / 4 ) ( ω ) .

Metrics