Abstract

We demonstrate unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using a digital coherent receiver, where the decision-directed carrier-phase estimation is employed. The phase fluctuation is effectively eliminated in the 16-QAM system with such a phase-estimation method, when the linewidth of semiconductor lasers for the transmitter and the local oscillator is 150 kHz. Finite-impulse-response (FIR) filters at the receiver compensate for 4,000-ps/nm group-velocity dispersion (GVD) of the 200-km-long single-mode fiber and a part of self-phase modulation (SPM) in the digital domain. In spite of the launched power limitation due to SPM, the acceptable bit-error rate performance is obtained owing to high sensitivity of the digital coherent receiver.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and R. -J. Essiambre, "Advanced optical modulation formats," Chapter 2 in Optical Fiber Telecommunications V B (edited by I. P. Kaminow, T. Li, and A.E. Willner, Academic Press, 2008).
  2. L. E. Nelson, S. L. Woodward, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, D. McGhan, H. Sun, M. Moyer, and M. O'Sullivan, "Performance of a 46-Gbps Dual-Polarization QPSK Transceiver in a High-PMD Fiber Transmission Experiment," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP9. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-PDP9.
    [PubMed]
  3. X. Zhou, J. Yu, D. Qian, T. Wang, G. Zhang, and P. Magill "8x114 Gb/s, 25-GHz-spaced, polmux-RZ-8PSK transmission over 640 km of SSMF employing," Optical Fiber Communication Conference 2008, paper PDP6.
  4. Q1. K. Kikuchi, "Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation," IEEE J. Sel. Top. Quantum Electron. 12, 563-570 (2006).
    [CrossRef]
  5. M. Yoshida, H. Goto, K. Kasai, and M. Nakazawa, "64 and 128 coherent QAM optical transmission over 150 km using frequency-stabilized laser and heterodyne PLL detection," Opt. Express 16, 829-840 (2008).
    [CrossRef] [PubMed]
  6. M. Seimetz, " Performance of Coherent Optical Square-16-QAM-Systems Based on IQ-Transmitters and Homodyne Receivers with Digital Phase Estimation," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper NWA4. http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2006-NWA4
    [CrossRef]
  7. M. Seimetz, "Laser Linewidth Limitations for Optical Systems with High-Order Modulation Employing Feed Forward Digital Carrier Phase Estimation," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuM2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OTuM2.
  8. Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, "Unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using digital coherent optical receiver," Opto-Electronics and Communications Conference 2008, paper PDP-4.
  9. Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, "Transmission of 40-Gbit/s 16-QAM Signal over 100-km Standard Single-mode Fiber using Digital Coherent Optical Receiver," European Conference on Optical Communication 2008, paper Tu.1.E.4.
  10. S. Haykin, Adaptive filter theory, (Prentice Hall, 2001).
  11. K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, "Degradation of bit-error rate in coherent optical communications due to spectral spread of transmitter and the local oscillator," J. Lightwave Technol. 2, 1024-1033 (1984).
    [CrossRef]
  12. K. Kikuchi and S. Tsukamoto, "Evaluation of sensitivity of the digital coherent receiver," J. Lightwave Technol. 26, 1817-1822 (2008).
    [CrossRef]

2008

2006

Q1. K. Kikuchi, "Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation," IEEE J. Sel. Top. Quantum Electron. 12, 563-570 (2006).
[CrossRef]

1984

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, "Degradation of bit-error rate in coherent optical communications due to spectral spread of transmitter and the local oscillator," J. Lightwave Technol. 2, 1024-1033 (1984).
[CrossRef]

Goto, H.

Henmi, N.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, "Degradation of bit-error rate in coherent optical communications due to spectral spread of transmitter and the local oscillator," J. Lightwave Technol. 2, 1024-1033 (1984).
[CrossRef]

Kasai, K.

Kikuchi, K.

K. Kikuchi and S. Tsukamoto, "Evaluation of sensitivity of the digital coherent receiver," J. Lightwave Technol. 26, 1817-1822 (2008).
[CrossRef]

Q1. K. Kikuchi, "Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation," IEEE J. Sel. Top. Quantum Electron. 12, 563-570 (2006).
[CrossRef]

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, "Degradation of bit-error rate in coherent optical communications due to spectral spread of transmitter and the local oscillator," J. Lightwave Technol. 2, 1024-1033 (1984).
[CrossRef]

Nagamatsu, M.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, "Degradation of bit-error rate in coherent optical communications due to spectral spread of transmitter and the local oscillator," J. Lightwave Technol. 2, 1024-1033 (1984).
[CrossRef]

Nakazawa, M.

Okoshi, T.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, "Degradation of bit-error rate in coherent optical communications due to spectral spread of transmitter and the local oscillator," J. Lightwave Technol. 2, 1024-1033 (1984).
[CrossRef]

Tsukamoto, S.

Yoshida, M.

IEEE J. Sel. Top. Quantum Electron.

Q1. K. Kikuchi, "Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation," IEEE J. Sel. Top. Quantum Electron. 12, 563-570 (2006).
[CrossRef]

J. Lightwave Technol.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, "Degradation of bit-error rate in coherent optical communications due to spectral spread of transmitter and the local oscillator," J. Lightwave Technol. 2, 1024-1033 (1984).
[CrossRef]

K. Kikuchi and S. Tsukamoto, "Evaluation of sensitivity of the digital coherent receiver," J. Lightwave Technol. 26, 1817-1822 (2008).
[CrossRef]

Opt. Express

Other

P. J. Winzer and R. -J. Essiambre, "Advanced optical modulation formats," Chapter 2 in Optical Fiber Telecommunications V B (edited by I. P. Kaminow, T. Li, and A.E. Willner, Academic Press, 2008).

L. E. Nelson, S. L. Woodward, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, D. McGhan, H. Sun, M. Moyer, and M. O'Sullivan, "Performance of a 46-Gbps Dual-Polarization QPSK Transceiver in a High-PMD Fiber Transmission Experiment," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP9. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-PDP9.
[PubMed]

X. Zhou, J. Yu, D. Qian, T. Wang, G. Zhang, and P. Magill "8x114 Gb/s, 25-GHz-spaced, polmux-RZ-8PSK transmission over 640 km of SSMF employing," Optical Fiber Communication Conference 2008, paper PDP6.

M. Seimetz, " Performance of Coherent Optical Square-16-QAM-Systems Based on IQ-Transmitters and Homodyne Receivers with Digital Phase Estimation," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper NWA4. http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2006-NWA4
[CrossRef]

M. Seimetz, "Laser Linewidth Limitations for Optical Systems with High-Order Modulation Employing Feed Forward Digital Carrier Phase Estimation," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuM2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OTuM2.

Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, "Unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using digital coherent optical receiver," Opto-Electronics and Communications Conference 2008, paper PDP-4.

Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, "Transmission of 40-Gbit/s 16-QAM Signal over 100-km Standard Single-mode Fiber using Digital Coherent Optical Receiver," European Conference on Optical Communication 2008, paper Tu.1.E.4.

S. Haykin, Adaptive filter theory, (Prentice Hall, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Block diagram of the decision-directed carrier-phase estimation.

Fig. 2.
Fig. 2.

Computational framework for decision-directed carrier-phase estimation. The part “Ck ” includes the LMS-based calculation (Eqs.(1) and (2)). “Dec” represents the symbol decision circuit.

Fig. 3.
Fig. 3.

Phase-noise tolerance of the 10-Gsymbol/s 16-QAM system, where the decision-directed carrier-phase estimation is employed. (a) δf = 0 Hz, (b) δf = 150 kHz, and (c) δf = 500 kHz.

Fig. 4.
Fig. 4.

Experimental setup for 16-QAM transmission.

Fig. 5.
Fig. 5.

Constellation maps of a 40-Gbit/s 16-QAM signal before (upper row) and after (lower row) adaptive equalization when Pin = -30 dBm. (a) back-to-back, (b) after 100-km transmission, and (c) after 200-km transmission.

Fig. 6.
Fig. 6.

BER characteristics of 40-Gbit/s 16-QAM signals measured as a function of the received average power Pin .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

c ( n + 1 ) = c ( n ) + μ x ( n ) 2 e ( n ) x * ( n ) ,
e ( n ) = d ( n ) c ( n ) x ( n ) ,
σ 2 = 4 πδ fT ,

Metrics