Abstract

In this paper an optical configuration of a transflective liquid crystal (LC) cell driven by a horizontal electric field is proposed, which shows high contrast, high cellgap tolerance, and single gamma, simultaneously. The dark state of the reflective part is realized by a polarizer (0°), a half-wave plate (15°), LC layer (120°), and a quarter-wave layer (-15°), while a wide-band quarter-wave plate (45°) and a polarizer (90°) are added for the dark state of the transmissive part. Since the optic axis of the homogeneously aligned LC layer is set to be parallel to the polarization direction of the light passed through the half-wave plate, the dark state is rarely affected by the cellgap of the LC layer. Due to the different directions of the electric fields, LCs are rotated to 97.5° for the bright state of the reflective part, but to 75° for that of the transmissive part. With the proposed configuration, a high contrast single-gamma transflective display with high cellgap tolerance can be realized in a single-cellgap structure.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Oh-e and K. Kondo, "Electro-optical characteristics and switching behavior of the in-plane switching mode," Appl. Phys. Lett. 67, 3895-3897 (1995).
    [CrossRef]
  2. S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," App. Phys. Lett. 73, 2881-2883 (1998).
    [CrossRef]
  3. Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, "Thin cell fringe-field-switching liquid crystal display with a chiral dopant," Appl. Phys. Lett. 92, 181109 (2008).
    [CrossRef]
  4. J. H. Song and S. H. Lee, "A single gap transflective display using in-plane switching mode," Jpn. J. Appl. Phys. 43, L1130 (2004).
    [CrossRef]
  5. J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y. Kim, and Y. J. Lim, "Novel transflective display with fringe-field switching mode," Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
    [CrossRef]
  6. K.-H. Park, J. C. Kim, and T.-H. Yoon, "Horizontal switching of half-wave liquid crystal cell for transflective display," Jpn. J. Appl. Phys. 44, 210-215 (2005).
    [CrossRef]
  7. M. Sakamoto, H. Nagai, and K. Mori, "Development of the novel transflective LCD module using super-fine-TFT technology," SID Int. Symp. Digest Tech. Papers 37, pp.1669-1672 (2006).
    [CrossRef]
  8. H. Imayama, J. Tanno, K. Igeta, M. Morimoto, S. Komura, and T. Nagata, "Novel pixel design for a transflective IPS-LCD with an in-cell retarder," SID Int. Symp. Digest Tech. Papers 38, pp.1651-1654 (2007).
    [CrossRef]
  9. Z. Ge. T. X. Wu, and S. T. Wu, "Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer," Appl. Phys. Lett. 92, 05119 (2008).
    [CrossRef]
  10. H. Y. Kim, Z. Ge, S. T. Wu, and S. H. Lee, "Wide-view transflective liquid crystal display for mobile applications," Appl. Phys. Lett. 91, 231108 (2007).
    [CrossRef]
  11. Z. Ge, S. T. Wu, and S. H. Lee, "Wide-view and sunlight readable transflective liquid crystal display for mobile application," Opt. Lett. 33, 2623 (2008).
    [CrossRef] [PubMed]
  12. T.-H. Yoon, G. D. Lee, and J. C. Kim, "Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display," Opt. Lett. 25, L1547 (2000).
    [CrossRef]
  13. G. S. Lee, J. H. Lee, D. H. Song, J. C. Kim, T.-H. Yoon, D. L. Park, S. S. Hwang, D. H. Kim, and S. I Park, "Fringe field switching of a twisted nematic liquid crystal device for a single-cell-gap transflective display," Appl. Opt. 47, 3041-3047 (2008).
    [CrossRef] [PubMed]
  14. G. S. Lee, J. C. Kim, and T.-H. Yoon, "Optimization of electrode structure and rubbing angle in in-plane-switching liquid crystal cell for single-gamma transflective display," Jpn. J. Appl. Phys. 46, 289-292 (2007).
    [CrossRef]

2008 (4)

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, "Thin cell fringe-field-switching liquid crystal display with a chiral dopant," Appl. Phys. Lett. 92, 181109 (2008).
[CrossRef]

Z. Ge. T. X. Wu, and S. T. Wu, "Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer," Appl. Phys. Lett. 92, 05119 (2008).
[CrossRef]

Z. Ge, S. T. Wu, and S. H. Lee, "Wide-view and sunlight readable transflective liquid crystal display for mobile application," Opt. Lett. 33, 2623 (2008).
[CrossRef] [PubMed]

G. S. Lee, J. H. Lee, D. H. Song, J. C. Kim, T.-H. Yoon, D. L. Park, S. S. Hwang, D. H. Kim, and S. I Park, "Fringe field switching of a twisted nematic liquid crystal device for a single-cell-gap transflective display," Appl. Opt. 47, 3041-3047 (2008).
[CrossRef] [PubMed]

2007 (3)

G. S. Lee, J. C. Kim, and T.-H. Yoon, "Optimization of electrode structure and rubbing angle in in-plane-switching liquid crystal cell for single-gamma transflective display," Jpn. J. Appl. Phys. 46, 289-292 (2007).
[CrossRef]

H. Y. Kim, Z. Ge, S. T. Wu, and S. H. Lee, "Wide-view transflective liquid crystal display for mobile applications," Appl. Phys. Lett. 91, 231108 (2007).
[CrossRef]

H. Imayama, J. Tanno, K. Igeta, M. Morimoto, S. Komura, and T. Nagata, "Novel pixel design for a transflective IPS-LCD with an in-cell retarder," SID Int. Symp. Digest Tech. Papers 38, pp.1651-1654 (2007).
[CrossRef]

2006 (1)

M. Sakamoto, H. Nagai, and K. Mori, "Development of the novel transflective LCD module using super-fine-TFT technology," SID Int. Symp. Digest Tech. Papers 37, pp.1669-1672 (2006).
[CrossRef]

2005 (2)

J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y. Kim, and Y. J. Lim, "Novel transflective display with fringe-field switching mode," Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
[CrossRef]

K.-H. Park, J. C. Kim, and T.-H. Yoon, "Horizontal switching of half-wave liquid crystal cell for transflective display," Jpn. J. Appl. Phys. 44, 210-215 (2005).
[CrossRef]

2004 (1)

J. H. Song and S. H. Lee, "A single gap transflective display using in-plane switching mode," Jpn. J. Appl. Phys. 43, L1130 (2004).
[CrossRef]

2000 (1)

T.-H. Yoon, G. D. Lee, and J. C. Kim, "Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display," Opt. Lett. 25, L1547 (2000).
[CrossRef]

1998 (1)

S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," App. Phys. Lett. 73, 2881-2883 (1998).
[CrossRef]

1995 (1)

M. Oh-e and K. Kondo, "Electro-optical characteristics and switching behavior of the in-plane switching mode," Appl. Phys. Lett. 67, 3895-3897 (1995).
[CrossRef]

Ge, Z.

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, "Thin cell fringe-field-switching liquid crystal display with a chiral dopant," Appl. Phys. Lett. 92, 181109 (2008).
[CrossRef]

Z. Ge. T. X. Wu, and S. T. Wu, "Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer," Appl. Phys. Lett. 92, 05119 (2008).
[CrossRef]

Z. Ge, S. T. Wu, and S. H. Lee, "Wide-view and sunlight readable transflective liquid crystal display for mobile application," Opt. Lett. 33, 2623 (2008).
[CrossRef] [PubMed]

H. Y. Kim, Z. Ge, S. T. Wu, and S. H. Lee, "Wide-view transflective liquid crystal display for mobile applications," Appl. Phys. Lett. 91, 231108 (2007).
[CrossRef]

Hwang, S. S.

Igeta, K.

H. Imayama, J. Tanno, K. Igeta, M. Morimoto, S. Komura, and T. Nagata, "Novel pixel design for a transflective IPS-LCD with an in-cell retarder," SID Int. Symp. Digest Tech. Papers 38, pp.1651-1654 (2007).
[CrossRef]

Imayama, H.

H. Imayama, J. Tanno, K. Igeta, M. Morimoto, S. Komura, and T. Nagata, "Novel pixel design for a transflective IPS-LCD with an in-cell retarder," SID Int. Symp. Digest Tech. Papers 38, pp.1651-1654 (2007).
[CrossRef]

Jeong, Y. H.

J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y. Kim, and Y. J. Lim, "Novel transflective display with fringe-field switching mode," Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
[CrossRef]

Kim, D. H.

Kim, H. Y.

H. Y. Kim, Z. Ge, S. T. Wu, and S. H. Lee, "Wide-view transflective liquid crystal display for mobile applications," Appl. Phys. Lett. 91, 231108 (2007).
[CrossRef]

J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y. Kim, and Y. J. Lim, "Novel transflective display with fringe-field switching mode," Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
[CrossRef]

S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," App. Phys. Lett. 73, 2881-2883 (1998).
[CrossRef]

Kim, J. C.

G. S. Lee, J. H. Lee, D. H. Song, J. C. Kim, T.-H. Yoon, D. L. Park, S. S. Hwang, D. H. Kim, and S. I Park, "Fringe field switching of a twisted nematic liquid crystal device for a single-cell-gap transflective display," Appl. Opt. 47, 3041-3047 (2008).
[CrossRef] [PubMed]

G. S. Lee, J. C. Kim, and T.-H. Yoon, "Optimization of electrode structure and rubbing angle in in-plane-switching liquid crystal cell for single-gamma transflective display," Jpn. J. Appl. Phys. 46, 289-292 (2007).
[CrossRef]

K.-H. Park, J. C. Kim, and T.-H. Yoon, "Horizontal switching of half-wave liquid crystal cell for transflective display," Jpn. J. Appl. Phys. 44, 210-215 (2005).
[CrossRef]

T.-H. Yoon, G. D. Lee, and J. C. Kim, "Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display," Opt. Lett. 25, L1547 (2000).
[CrossRef]

Kim, S. S.

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, "Thin cell fringe-field-switching liquid crystal display with a chiral dopant," Appl. Phys. Lett. 92, 181109 (2008).
[CrossRef]

Kim, S. Y.

J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y. Kim, and Y. J. Lim, "Novel transflective display with fringe-field switching mode," Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
[CrossRef]

Komura, S.

H. Imayama, J. Tanno, K. Igeta, M. Morimoto, S. Komura, and T. Nagata, "Novel pixel design for a transflective IPS-LCD with an in-cell retarder," SID Int. Symp. Digest Tech. Papers 38, pp.1651-1654 (2007).
[CrossRef]

Kondo, K.

M. Oh-e and K. Kondo, "Electro-optical characteristics and switching behavior of the in-plane switching mode," Appl. Phys. Lett. 67, 3895-3897 (1995).
[CrossRef]

Lee, G. D.

T.-H. Yoon, G. D. Lee, and J. C. Kim, "Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display," Opt. Lett. 25, L1547 (2000).
[CrossRef]

Lee, G. S.

G. S. Lee, J. H. Lee, D. H. Song, J. C. Kim, T.-H. Yoon, D. L. Park, S. S. Hwang, D. H. Kim, and S. I Park, "Fringe field switching of a twisted nematic liquid crystal device for a single-cell-gap transflective display," Appl. Opt. 47, 3041-3047 (2008).
[CrossRef] [PubMed]

G. S. Lee, J. C. Kim, and T.-H. Yoon, "Optimization of electrode structure and rubbing angle in in-plane-switching liquid crystal cell for single-gamma transflective display," Jpn. J. Appl. Phys. 46, 289-292 (2007).
[CrossRef]

Lee, J. H.

Lee, S. H.

Z. Ge, S. T. Wu, and S. H. Lee, "Wide-view and sunlight readable transflective liquid crystal display for mobile application," Opt. Lett. 33, 2623 (2008).
[CrossRef] [PubMed]

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, "Thin cell fringe-field-switching liquid crystal display with a chiral dopant," Appl. Phys. Lett. 92, 181109 (2008).
[CrossRef]

H. Y. Kim, Z. Ge, S. T. Wu, and S. H. Lee, "Wide-view transflective liquid crystal display for mobile applications," Appl. Phys. Lett. 91, 231108 (2007).
[CrossRef]

J. H. Song and S. H. Lee, "A single gap transflective display using in-plane switching mode," Jpn. J. Appl. Phys. 43, L1130 (2004).
[CrossRef]

S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," App. Phys. Lett. 73, 2881-2883 (1998).
[CrossRef]

Lee, S. L.

S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," App. Phys. Lett. 73, 2881-2883 (1998).
[CrossRef]

Lim, Y. J.

J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y. Kim, and Y. J. Lim, "Novel transflective display with fringe-field switching mode," Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
[CrossRef]

Mori, K.

M. Sakamoto, H. Nagai, and K. Mori, "Development of the novel transflective LCD module using super-fine-TFT technology," SID Int. Symp. Digest Tech. Papers 37, pp.1669-1672 (2006).
[CrossRef]

Morimoto, M.

H. Imayama, J. Tanno, K. Igeta, M. Morimoto, S. Komura, and T. Nagata, "Novel pixel design for a transflective IPS-LCD with an in-cell retarder," SID Int. Symp. Digest Tech. Papers 38, pp.1651-1654 (2007).
[CrossRef]

Nagai, H.

M. Sakamoto, H. Nagai, and K. Mori, "Development of the novel transflective LCD module using super-fine-TFT technology," SID Int. Symp. Digest Tech. Papers 37, pp.1669-1672 (2006).
[CrossRef]

Nagata, T.

H. Imayama, J. Tanno, K. Igeta, M. Morimoto, S. Komura, and T. Nagata, "Novel pixel design for a transflective IPS-LCD with an in-cell retarder," SID Int. Symp. Digest Tech. Papers 38, pp.1651-1654 (2007).
[CrossRef]

Oh-e, M.

M. Oh-e and K. Kondo, "Electro-optical characteristics and switching behavior of the in-plane switching mode," Appl. Phys. Lett. 67, 3895-3897 (1995).
[CrossRef]

Park, D. L.

Park, J. B.

J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y. Kim, and Y. J. Lim, "Novel transflective display with fringe-field switching mode," Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
[CrossRef]

Park, J. W.

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, "Thin cell fringe-field-switching liquid crystal display with a chiral dopant," Appl. Phys. Lett. 92, 181109 (2008).
[CrossRef]

Park, K.-H.

K.-H. Park, J. C. Kim, and T.-H. Yoon, "Horizontal switching of half-wave liquid crystal cell for transflective display," Jpn. J. Appl. Phys. 44, 210-215 (2005).
[CrossRef]

Park, S. I

Sakamoto, M.

M. Sakamoto, H. Nagai, and K. Mori, "Development of the novel transflective LCD module using super-fine-TFT technology," SID Int. Symp. Digest Tech. Papers 37, pp.1669-1672 (2006).
[CrossRef]

Song, D. H.

Song, J. H.

J. H. Song and S. H. Lee, "A single gap transflective display using in-plane switching mode," Jpn. J. Appl. Phys. 43, L1130 (2004).
[CrossRef]

Tanno, J.

H. Imayama, J. Tanno, K. Igeta, M. Morimoto, S. Komura, and T. Nagata, "Novel pixel design for a transflective IPS-LCD with an in-cell retarder," SID Int. Symp. Digest Tech. Papers 38, pp.1651-1654 (2007).
[CrossRef]

Wu, S. T.

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, "Thin cell fringe-field-switching liquid crystal display with a chiral dopant," Appl. Phys. Lett. 92, 181109 (2008).
[CrossRef]

Z. Ge, S. T. Wu, and S. H. Lee, "Wide-view and sunlight readable transflective liquid crystal display for mobile application," Opt. Lett. 33, 2623 (2008).
[CrossRef] [PubMed]

H. Y. Kim, Z. Ge, S. T. Wu, and S. H. Lee, "Wide-view transflective liquid crystal display for mobile applications," Appl. Phys. Lett. 91, 231108 (2007).
[CrossRef]

Yoon, T.-H.

G. S. Lee, J. H. Lee, D. H. Song, J. C. Kim, T.-H. Yoon, D. L. Park, S. S. Hwang, D. H. Kim, and S. I Park, "Fringe field switching of a twisted nematic liquid crystal device for a single-cell-gap transflective display," Appl. Opt. 47, 3041-3047 (2008).
[CrossRef] [PubMed]

G. S. Lee, J. C. Kim, and T.-H. Yoon, "Optimization of electrode structure and rubbing angle in in-plane-switching liquid crystal cell for single-gamma transflective display," Jpn. J. Appl. Phys. 46, 289-292 (2007).
[CrossRef]

K.-H. Park, J. C. Kim, and T.-H. Yoon, "Horizontal switching of half-wave liquid crystal cell for transflective display," Jpn. J. Appl. Phys. 44, 210-215 (2005).
[CrossRef]

T.-H. Yoon, G. D. Lee, and J. C. Kim, "Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display," Opt. Lett. 25, L1547 (2000).
[CrossRef]

App. Phys. Lett. (1)

S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," App. Phys. Lett. 73, 2881-2883 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

M. Oh-e and K. Kondo, "Electro-optical characteristics and switching behavior of the in-plane switching mode," Appl. Phys. Lett. 67, 3895-3897 (1995).
[CrossRef]

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, "Thin cell fringe-field-switching liquid crystal display with a chiral dopant," Appl. Phys. Lett. 92, 181109 (2008).
[CrossRef]

Z. Ge. T. X. Wu, and S. T. Wu, "Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer," Appl. Phys. Lett. 92, 05119 (2008).
[CrossRef]

H. Y. Kim, Z. Ge, S. T. Wu, and S. H. Lee, "Wide-view transflective liquid crystal display for mobile applications," Appl. Phys. Lett. 91, 231108 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (4)

J. H. Song and S. H. Lee, "A single gap transflective display using in-plane switching mode," Jpn. J. Appl. Phys. 43, L1130 (2004).
[CrossRef]

J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y. Kim, and Y. J. Lim, "Novel transflective display with fringe-field switching mode," Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
[CrossRef]

K.-H. Park, J. C. Kim, and T.-H. Yoon, "Horizontal switching of half-wave liquid crystal cell for transflective display," Jpn. J. Appl. Phys. 44, 210-215 (2005).
[CrossRef]

G. S. Lee, J. C. Kim, and T.-H. Yoon, "Optimization of electrode structure and rubbing angle in in-plane-switching liquid crystal cell for single-gamma transflective display," Jpn. J. Appl. Phys. 46, 289-292 (2007).
[CrossRef]

Opt. Lett. (2)

Z. Ge, S. T. Wu, and S. H. Lee, "Wide-view and sunlight readable transflective liquid crystal display for mobile application," Opt. Lett. 33, 2623 (2008).
[CrossRef] [PubMed]

T.-H. Yoon, G. D. Lee, and J. C. Kim, "Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display," Opt. Lett. 25, L1547 (2000).
[CrossRef]

SID Int. Symp. Digest Tech. Papers (2)

M. Sakamoto, H. Nagai, and K. Mori, "Development of the novel transflective LCD module using super-fine-TFT technology," SID Int. Symp. Digest Tech. Papers 37, pp.1669-1672 (2006).
[CrossRef]

H. Imayama, J. Tanno, K. Igeta, M. Morimoto, S. Komura, and T. Nagata, "Novel pixel design for a transflective IPS-LCD with an in-cell retarder," SID Int. Symp. Digest Tech. Papers 38, pp.1651-1654 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Light leakage at the dark state in reflective LCDs. With the increase of the incident angle, light leakage at the dark state in vertical switching modes gets higher than that in horizontal switching modes.

Fig. 2.
Fig. 2.

Optical configuration and electro-optic characteristics of a transflective LCD with two-layered in-cell retarder. Since LC layer is aligned parallel to the transmission axis of the top polarizer, optical retardation of LC layer rarely affects optical properties at the dark state. However, in-cell retarder serves as a dielectric layer that makes the operating voltage higher.

Fig. 3.
Fig. 3.

Light leakage averaged over the entire range of visible wavelengths at the dark state of the reflective part of two-layered configuration (Fig. 2) as a function of tλ/4 with tλ/2 as a parameter. tλ/4 and tλ/2 are the thickness of in-cell retarder for λ/4 and λ/2 retardations, respectively.

Fig. 4.
Fig. 4.

Optical configuration and electro-optic characteristics of a transflective LCD configured with one-layered in-cell retarder. While one-layer in-cell retarder makes the increase in the operating voltage relatively low, change of the optical retardation of LC layer is fatal to contrast ratio.

Fig. 5.
Fig. 5.

Optical configuration of a reflective LC cell at the dark state. So as to make LC layer serve as a null layer, the angle between OA of the LC layer and TA of TP is set to be twice of that between OA of HWP and TA of TP.

Fig. 6.
Fig. 6.

Polarization deviations as a function of the wavelength

Fig. 7.
Fig. 7.

Optical configuration of a reflective LC cell for broadband operation.

Fig. 8.
Fig. 8.

Reflection and transmission spectra of the proposed transflective LC cell with broadband operation.

Fig. 9.
Fig. 9.

Maximum and minimum brightness, and contrast ratio as functions of cellgap deviation. Since the LC layer in the proposed structure plays a role of a null component at the dark state, changes in cellgap of the LC layer rarely affects the contrast ratio.

Fig. 10.
Fig. 10.

Optical configuration for wide viewing-angle characteristics.

Fig. 11.
Fig. 11.

Operating voltage and the peak reflectance (transmittance) as functions of electrode directions.

Fig. 12.
Fig. 12.

Operating voltage and the peak reflectance (transmittance) as functions of distance between electrodes.

Fig. 13.
Fig. 13.

Single gamma characteristics of the proposed transflective LC cell.

Tables (1)

Tables Icon

Table 1. Threshold voltages and voltages for peak brightness.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S o = M Q M LC M H S i ,
Δ S = cos 1 ( [ 2 ( S 1 2 + S 2 2 + ( S 3 ± 1 ) 2 ) ] 2 )
D = 1 2 ε 0 Δ ε E 0 2 sin 2 β ,

Metrics