Abstract

Two types of ultra-high-Q monopole modes are designed in a woodpile three-dimensional photonic crystal. The unit cell size modulation is applied to a woodpile photonic crystal waveguide in a complete photonic band gap. A monopole mode overlapping with a dielectric rod is designed for solid-state sub-wavelength-scale light-matter interaction devices such as nanolasers, cavity-QED and optical switches, whereas another type of monopole mode overlapping with vacuum is designed for optical trapping experiments. For the mode overlapping with vacuum, the mode volume is as small as 0.4 cubic half-wavelengths.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic ban gap materials: Low-loss bends and high Q cavities," J. Appl. Phys. 75, 4753-4755 (1994).
    [CrossRef]
  4. T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. G. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
    [CrossRef]
  5. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002).
    [PubMed]
  6. Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocaivty with Q-factor of ~109," J. Lightwave Technol. 26, 1532-1539 (2008).
    [CrossRef]
  7. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
    [CrossRef]
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensonal photonic crystal band-gap defect mode laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
    [CrossRef] [PubMed]
  10. D. Englund, I. Fushman, and J. Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5975 (2005).
    [CrossRef] [PubMed]
  11. Z. Zhang and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Express 12, 3988-3995 (2004).
    [CrossRef] [PubMed]
  12. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
    [CrossRef]
  13. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
    [CrossRef] [PubMed]
  14. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defect," Nature 429, 538-542 (2004).
    [CrossRef] [PubMed]
  15. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, "Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity," Nat. Photonics 2, 688-692 (2008)
    [CrossRef]
  16. L. Tang, and T. Yoshie, "Ultra-high-Q three-dimensional photonic crystal nano-resonators," Opt. Express 15, 17254-17263 (2007).
    [CrossRef] [PubMed]
  17. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S.G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in FDTD," Opt. Lett. 31, 2972-2974 (2006).
    [CrossRef] [PubMed]
  18. L. Novotony and B. Hecht, "Forces in confined fields," in Principles of Nano-Optics (Cambridge Univ. Press, 2006), pp. 419-445.

2008 (2)

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, "Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity," Nat. Photonics 2, 688-692 (2008)
[CrossRef]

Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocaivty with Q-factor of ~109," J. Lightwave Technol. 26, 1532-1539 (2008).
[CrossRef]

2007 (1)

2006 (2)

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S.G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in FDTD," Opt. Lett. 31, 2972-2974 (2006).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

2005 (1)

2004 (3)

Z. Zhang and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Express 12, 3988-3995 (2004).
[CrossRef] [PubMed]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defect," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. G. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
[CrossRef]

2000 (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensonal photonic crystal band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

1994 (2)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic ban gap materials: Low-loss bends and high Q cavities," J. Appl. Phys. 75, 4753-4755 (1994).
[CrossRef]

1987 (2)

E. Yablonovitch, "Inhibited spontaneous in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Alerhand, O. L.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic ban gap materials: Low-loss bends and high Q cavities," J. Appl. Phys. 75, 4753-4755 (1994).
[CrossRef]

Aoki, K.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, "Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity," Nat. Photonics 2, 688-692 (2008)
[CrossRef]

Arakawa, Y.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, "Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity," Nat. Photonics 2, 688-692 (2008)
[CrossRef]

Asano, T.

Bermel, P.

Biswas, R.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Burr, G.

Chan, C. T.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Chen, H.

T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. G. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
[CrossRef]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensonal photonic crystal band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. G. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
[CrossRef]

Devenyi, A.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic ban gap materials: Low-loss bends and high Q cavities," J. Appl. Phys. 75, 4753-4755 (1994).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Englund, D.

Farjadpour, A.

Fushman, I.

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Guimard, D.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, "Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity," Nat. Photonics 2, 688-692 (2008)
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Ho, K. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Ibanescu, M.

Ippen, E. P.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defect," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Iwamoto, S.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, "Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity," Nat. Photonics 2, 688-692 (2008)
[CrossRef]

Joannopoulos, J. D.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S.G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in FDTD," Opt. Lett. 31, 2972-2974 (2006).
[CrossRef] [PubMed]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defect," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic ban gap materials: Low-loss bends and high Q cavities," J. Appl. Phys. 75, 4753-4755 (1994).
[CrossRef]

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defect," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Johnson, S.G.

Kash, K.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic ban gap materials: Low-loss bends and high Q cavities," J. Appl. Phys. 75, 4753-4755 (1994).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensonal photonic crystal band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensonal photonic crystal band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Lidorikis, E.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defect," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Meade, R. D.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic ban gap materials: Low-loss bends and high Q cavities," J. Appl. Phys. 75, 4753-4755 (1994).
[CrossRef]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Nishioka, M.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, "Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity," Nat. Photonics 2, 688-692 (2008)
[CrossRef]

Noda, S.

Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocaivty with Q-factor of ~109," J. Lightwave Technol. 26, 1532-1539 (2008).
[CrossRef]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Nomura, M.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, "Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity," Nat. Photonics 2, 688-692 (2008)
[CrossRef]

Notomi, M.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensonal photonic crystal band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002).
[PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensonal photonic crystal band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Qi, M.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defect," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Qiu, M.

Rakich, P. T.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defect," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Rodriguez, A.

Roundy, D.

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. G. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensonal photonic crystal band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Sigalas, M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Smith, D. A.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic ban gap materials: Low-loss bends and high Q cavities," J. Appl. Phys. 75, 4753-4755 (1994).
[CrossRef]

Smith, H. I.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defect," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Srinivasan, K.

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Tanaka, Y.

Tang, L.

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Vuckovic, J.

D. Englund, I. Fushman, and J. Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5975 (2005).
[CrossRef] [PubMed]

T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. G. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensonal photonic crystal band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Yoshie, T.

L. Tang, and T. Yoshie, "Ultra-high-Q three-dimensional photonic crystal nano-resonators," Opt. Express 15, 17254-17263 (2007).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. G. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
[CrossRef]

Zhang, Z.

Appl. Phys. Lett. (2)

T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. G. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

J. Appl. Phys. (1)

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic ban gap materials: Low-loss bends and high Q cavities," J. Appl. Phys. 75, 4753-4755 (1994).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, "Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity," Nat. Photonics 2, 688-692 (2008)
[CrossRef]

Nature (2)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defect," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

E. Yablonovitch, "Inhibited spontaneous in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Science (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensonal photonic crystal band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Solid State Commun. (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Other (1)

L. Novotony and B. Hecht, "Forces in confined fields," in Principles of Nano-Optics (Cambridge Univ. Press, 2006), pp. 419-445.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Design of woodpile photonic crystal monopole mode overlapping with dielectrics. The unit cells size is 5×5×5.

Fig. 2.
Fig. 2.

Electric field energy distribution of monopole mode overlapping with dielectrics on xy, yz, and zx planes intersecting the middle point of the structure with m=2.

Fig. 3.
Fig. 3.

Modeling results for the monopole mode overlapping with dielectrics. (a) The Q factor, mode volume and normalized frequency as a function of wy/a for wx = 0.1a and m = 7. (b) The quality factor vs. the size parameter m for some different size variables with the monopole mode overlapping with dielectrics. The inset shows Ez component on the central xy plane.

Fig. 4.
Fig. 4.

Design of woodpile photonic crystal monopole mode overlapping with air or vacuum. The unit cells size is 5×5×5. The parameters in the core region are: a’= 1.1a, and wy’ = 0.35a.

Fig. 5.
Fig. 5.

Properties of the monopole mode overlapping with vacuum. (a) Electric field energy distributions on xy, yz, and zx planes intersecting the middle point of the structure with m=3. (b) The Q factor vs. the size parameter m. The inset shows Ez component on the central xy plane.

Fig. 6.
Fig. 6.

Normalized electric field intensity and dipole force vector plot for monopole mode overlapping with vacuum near a maximum electric field position in the central yz plane. The grey region shows the lower-right corner of the central dielectric rod in the middle panel of Fig.5 (a). There is another trapping point on the lower-left corner of the central rod.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F = i = x , y , z μ i E i
μ i = Re [ α E ̂ i ( r ) e iωt ]
E i =Re [ E ̂ i ( r ) e iωt ] .
F = 1 2 i Re [ α E ̂ i ( r ) E ̂ i * ( r ) ]
= 1 2 α R E 0 ( r ) E 0 ( r ) + 1 2 E 0 2 ( r ) α I i [ Re { n i ( r ) } Im { n i ( r ) } Im { n i ( r ) } Re { n i ( r ) } ]

Metrics