Abstract

Holograms are recorded with focused beams in an iron-doped lithium niobate crystal. The diffraction efficiency shows a maximum after several seconds of recording, unlike in the case of writing with two homogeneous plane waves in the same crystal. This behavior can be attributed to a compensation field caused by incomplete illumination of the crystal. The field finally stops the bulk photovoltaic effect, which is the main driving force of the process. Based on this assumptions, we derive an analytical expression for the evolution of the diffraction efficiency which correctly fits the experimental data.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter and J.-P. Huignard, Eds., "Photorefractive materials and their applications 1-3," Springer series in optical sciences, (Springer, Berlin, 2005, 2006, 2007).
  2. K. Buse, "Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods," Appl. Phys. B 64, 273-291 (1997).
    [CrossRef]
  3. N. V. Kukhtarev, "Kinetics of hologram recording and erasure in electrooptic crystals," Sov. Tech. Phys. Lett. 2, 438-440 (1976).
  4. K. Peithmann, A. Wiebrock, K. Buse, and E. Krätzig, "Low-spatial-frequency refractive-index changes in irondoped lithium niobate crystals upon illumination with a focused continuous-wave laser beam," J. Opt. Soc. Am. B 17, 586-592 (2000).
    [CrossRef]
  5. A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field," Phys. Rev. A 51, 1520-1532 (1995).
    [CrossRef]
  6. K. Peithmann, A. Wiebrock, and K. Buse, "Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared," Appl. Phys. B 68, 777-784 (1999).
    [CrossRef]
  7. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical, Mössbauer, and EPR-methods," Appl. Phys. 12, 355-368 (1977).
    [CrossRef]
  8. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  9. S. Tao, B. Wang, G. Burr, and J. Chen, "Diffraction efficiency of volume gratings with finite size: corrected analytical solution," J. Mod. Opt. 51, 1115-1122 (2004).
  10. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Kratzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys Rev. B 56, 1225-1235 (1997).
    [CrossRef]
  11. H. A. Eggert, B. Hecking, and K. Buse, "Electrical Fixing in Near-Stoichiometric Lithium Niobate Crystals," Opt. Lett. 29, 2476-2478 (2004).
    [CrossRef]
  12. M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407-414 (2002).
    [CrossRef]

2004 (2)

S. Tao, B. Wang, G. Burr, and J. Chen, "Diffraction efficiency of volume gratings with finite size: corrected analytical solution," J. Mod. Opt. 51, 1115-1122 (2004).

H. A. Eggert, B. Hecking, and K. Buse, "Electrical Fixing in Near-Stoichiometric Lithium Niobate Crystals," Opt. Lett. 29, 2476-2478 (2004).
[CrossRef]

2002 (1)

M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407-414 (2002).
[CrossRef]

2000 (1)

1999 (1)

K. Peithmann, A. Wiebrock, and K. Buse, "Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared," Appl. Phys. B 68, 777-784 (1999).
[CrossRef]

1997 (2)

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Kratzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys Rev. B 56, 1225-1235 (1997).
[CrossRef]

K. Buse, "Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods," Appl. Phys. B 64, 273-291 (1997).
[CrossRef]

1995 (1)

A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field," Phys. Rev. A 51, 1520-1532 (1995).
[CrossRef]

1977 (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical, Mössbauer, and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

1976 (1)

N. V. Kukhtarev, "Kinetics of hologram recording and erasure in electrooptic crystals," Sov. Tech. Phys. Lett. 2, 438-440 (1976).

1969 (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Anderson, D. Z.

A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field," Phys. Rev. A 51, 1520-1532 (1995).
[CrossRef]

Breer, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Kratzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys Rev. B 56, 1225-1235 (1997).
[CrossRef]

Burr, G.

S. Tao, B. Wang, G. Burr, and J. Chen, "Diffraction efficiency of volume gratings with finite size: corrected analytical solution," J. Mod. Opt. 51, 1115-1122 (2004).

Buse, K.

H. A. Eggert, B. Hecking, and K. Buse, "Electrical Fixing in Near-Stoichiometric Lithium Niobate Crystals," Opt. Lett. 29, 2476-2478 (2004).
[CrossRef]

K. Peithmann, A. Wiebrock, K. Buse, and E. Krätzig, "Low-spatial-frequency refractive-index changes in irondoped lithium niobate crystals upon illumination with a focused continuous-wave laser beam," J. Opt. Soc. Am. B 17, 586-592 (2000).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, "Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared," Appl. Phys. B 68, 777-784 (1999).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Kratzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys Rev. B 56, 1225-1235 (1997).
[CrossRef]

K. Buse, "Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods," Appl. Phys. B 64, 273-291 (1997).
[CrossRef]

Chen, J.

S. Tao, B. Wang, G. Burr, and J. Chen, "Diffraction efficiency of volume gratings with finite size: corrected analytical solution," J. Mod. Opt. 51, 1115-1122 (2004).

Dischler, B.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical, Mössbauer, and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Eggert, H. A.

Engelmann, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical, Mössbauer, and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Gao, M.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Kratzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys Rev. B 56, 1225-1235 (1997).
[CrossRef]

Gonser, U.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical, Mössbauer, and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Hecking, B.

Jazbinsek, M.

M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407-414 (2002).
[CrossRef]

Kapphan, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Kratzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys Rev. B 56, 1225-1235 (1997).
[CrossRef]

Keune, W.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical, Mössbauer, and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Kratzig, E.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Kratzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys Rev. B 56, 1225-1235 (1997).
[CrossRef]

Krätzig, E.

K. Peithmann, A. Wiebrock, K. Buse, and E. Krätzig, "Low-spatial-frequency refractive-index changes in irondoped lithium niobate crystals upon illumination with a focused continuous-wave laser beam," J. Opt. Soc. Am. B 17, 586-592 (2000).
[CrossRef]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical, Mössbauer, and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, "Kinetics of hologram recording and erasure in electrooptic crystals," Sov. Tech. Phys. Lett. 2, 438-440 (1976).

Kurz, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical, Mössbauer, and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Peithmann, K.

K. Peithmann, A. Wiebrock, K. Buse, and E. Krätzig, "Low-spatial-frequency refractive-index changes in irondoped lithium niobate crystals upon illumination with a focused continuous-wave laser beam," J. Opt. Soc. Am. B 17, 586-592 (2000).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, "Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared," Appl. Phys. B 68, 777-784 (1999).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Kratzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys Rev. B 56, 1225-1235 (1997).
[CrossRef]

Räuber, A.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical, Mössbauer, and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Tao, S.

S. Tao, B. Wang, G. Burr, and J. Chen, "Diffraction efficiency of volume gratings with finite size: corrected analytical solution," J. Mod. Opt. 51, 1115-1122 (2004).

Wang, B.

S. Tao, B. Wang, G. Burr, and J. Chen, "Diffraction efficiency of volume gratings with finite size: corrected analytical solution," J. Mod. Opt. 51, 1115-1122 (2004).

Wiebrock, A.

K. Peithmann, A. Wiebrock, K. Buse, and E. Krätzig, "Low-spatial-frequency refractive-index changes in irondoped lithium niobate crystals upon illumination with a focused continuous-wave laser beam," J. Opt. Soc. Am. B 17, 586-592 (2000).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, "Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared," Appl. Phys. B 68, 777-784 (1999).
[CrossRef]

Zgonik, M.

M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407-414 (2002).
[CrossRef]

Zozulya, A. A.

A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field," Phys. Rev. A 51, 1520-1532 (1995).
[CrossRef]

Appl. Phys. (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical, Mössbauer, and EPR-methods," Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Appl. Phys. B (3)

K. Buse, "Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods," Appl. Phys. B 64, 273-291 (1997).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, "Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared," Appl. Phys. B 68, 777-784 (1999).
[CrossRef]

M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407-414 (2002).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

J. Mod. Opt. (1)

S. Tao, B. Wang, G. Burr, and J. Chen, "Diffraction efficiency of volume gratings with finite size: corrected analytical solution," J. Mod. Opt. 51, 1115-1122 (2004).

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys Rev. B (1)

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Kratzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys Rev. B 56, 1225-1235 (1997).
[CrossRef]

Phys. Rev. A (1)

A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field," Phys. Rev. A 51, 1520-1532 (1995).
[CrossRef]

Sov. Tech. Phys. Lett. (1)

N. V. Kukhtarev, "Kinetics of hologram recording and erasure in electrooptic crystals," Sov. Tech. Phys. Lett. 2, 438-440 (1976).

Other (1)

P. Günter and J.-P. Huignard, Eds., "Photorefractive materials and their applications 1-3," Springer series in optical sciences, (Springer, Berlin, 2005, 2006, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics