Abstract

This paper presents a novel method that realizes simultaneous and completely discriminative measurement of strain and temperature using one piece of Panda-type polarization-maintaining fibre. Two independent optical parameters in the fiber, the Brillouin frequency shift and the birefringence, are measured by evaluating the spectrum of stimulated Brillouin scattering (SBS) and that of the dynamic acoustic grating generated in SBS to get two independent responses to strain and temperature. We found that the Brillouin frequency shift and the birefringence have the same signs for strain-dependence but opposite signs for temperature-dependence. In experiment, the birefringence in the PMF is characterized with a precision of ~10-8 by detecting the diffraction spectrum of the dynamic acoustic grating. A reproducible accuracy of discriminating strain and temperature as fine as 3 micro-strains and 0.08 degrees Celsius is demonstrated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nikles and L. Thevenaz, "Simple distributed fiber sensor based on Brillouin gain spectrum analysis," Opt. Lett. 21, 758-760 (1996).
    [CrossRef] [PubMed]
  2. D. Garus, T. Gogolla, K. Krebber, and F. Schliep, "Brillouin optical-fiber frequency-domain analysis or distributed temperature and strain measurement," J. Lightwave Technol. 15, 654-662 (1997).
    [CrossRef]
  3. K. Hotate and M. Tanaka, "Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-cased continuous-wave technique," IEEE Photon. Technol. Lett. 14, 179-181 (2002).
    [CrossRef]
  4. T. Horiguchi, T. Kurashima, and M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fibers," IEEE Photon. Technol. Lett. 1, 107-108 (1989).
    [CrossRef]
  5. W. Zou, Z. He, and K. Hotate, "Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers," J. Lightwave Technol. 26, 1854-1861 (2008).
    [CrossRef]
  6. C. C. Lee, P. W. Chiang, and S. Chi, "Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift," IEEE Photon. Technol. Lett. 13, 1094-1096 (2001).
    [CrossRef]
  7. W. Zou, Z. He, M. Kishi, and K. Hotate, "Stimulated Brillouin scattering and its dependences on temperature and strain in a high-delta optical fiber with F-doped depressed inner cladding," Opt. Lett. 32, 600-602 (2007).
    [CrossRef] [PubMed]
  8. T. P. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, "Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers," Opt. Lett. 22, 787-789 (1997).
    [CrossRef] [PubMed]
  9. T. Okoshi, "Single-polarization single-mode optical fibers," IEEE J. Quantum Electron. 17, 879-884 (1981).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 3rd version, 2001).
  11. W. Zou, Z. He, and K. Hotate, "Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers," IEEE Photon. Technol. Lett. 18, 2487-2489 (2006).
    [CrossRef]
  12. K. Y. Song, W. Zou, Z. He, and K. Hotate, "All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber," Opt. Lett. 33, 926-929 (2008).
    [CrossRef] [PubMed]
  13. X. Bao, Q. Yu, and L. Chen, "Simultaneous strain and temperature measurements with polarization-maintaining fibers and their error analysis by use of a distributed Brillouin loss system," Opt. Lett. 29, 1342-1344 (2004).
    [CrossRef] [PubMed]
  14. S. L. Floch and P. Cambon, "Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4-370 K) and high hydrostatic pressures (1-250 bars)," Opt. Commun. 219, 395-410 (2003).
    [CrossRef]
  15. K. S. Chiang, D. Wong D, and P. L. Chu, "Strain-induced birefringence in a highly birefringent optical fiber," Electron. Lett. 26, 1344-1346 (1990).
    [CrossRef]

2008 (2)

2007 (1)

2006 (1)

W. Zou, Z. He, and K. Hotate, "Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers," IEEE Photon. Technol. Lett. 18, 2487-2489 (2006).
[CrossRef]

2004 (1)

2003 (1)

S. L. Floch and P. Cambon, "Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4-370 K) and high hydrostatic pressures (1-250 bars)," Opt. Commun. 219, 395-410 (2003).
[CrossRef]

2002 (1)

K. Hotate and M. Tanaka, "Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-cased continuous-wave technique," IEEE Photon. Technol. Lett. 14, 179-181 (2002).
[CrossRef]

2001 (1)

C. C. Lee, P. W. Chiang, and S. Chi, "Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift," IEEE Photon. Technol. Lett. 13, 1094-1096 (2001).
[CrossRef]

1997 (2)

T. P. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, "Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers," Opt. Lett. 22, 787-789 (1997).
[CrossRef] [PubMed]

D. Garus, T. Gogolla, K. Krebber, and F. Schliep, "Brillouin optical-fiber frequency-domain analysis or distributed temperature and strain measurement," J. Lightwave Technol. 15, 654-662 (1997).
[CrossRef]

1996 (1)

1990 (1)

K. S. Chiang, D. Wong D, and P. L. Chu, "Strain-induced birefringence in a highly birefringent optical fiber," Electron. Lett. 26, 1344-1346 (1990).
[CrossRef]

1989 (1)

T. Horiguchi, T. Kurashima, and M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fibers," IEEE Photon. Technol. Lett. 1, 107-108 (1989).
[CrossRef]

1981 (1)

T. Okoshi, "Single-polarization single-mode optical fibers," IEEE J. Quantum Electron. 17, 879-884 (1981).
[CrossRef]

Bao, X.

Cambon, P.

S. L. Floch and P. Cambon, "Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4-370 K) and high hydrostatic pressures (1-250 bars)," Opt. Commun. 219, 395-410 (2003).
[CrossRef]

Chen, L.

Chi, S.

C. C. Lee, P. W. Chiang, and S. Chi, "Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift," IEEE Photon. Technol. Lett. 13, 1094-1096 (2001).
[CrossRef]

Chiang, K. S.

K. S. Chiang, D. Wong D, and P. L. Chu, "Strain-induced birefringence in a highly birefringent optical fiber," Electron. Lett. 26, 1344-1346 (1990).
[CrossRef]

Chiang, P. W.

C. C. Lee, P. W. Chiang, and S. Chi, "Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift," IEEE Photon. Technol. Lett. 13, 1094-1096 (2001).
[CrossRef]

Farhadiroushan, M.

Floch, S. L.

S. L. Floch and P. Cambon, "Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4-370 K) and high hydrostatic pressures (1-250 bars)," Opt. Commun. 219, 395-410 (2003).
[CrossRef]

Garus, D.

D. Garus, T. Gogolla, K. Krebber, and F. Schliep, "Brillouin optical-fiber frequency-domain analysis or distributed temperature and strain measurement," J. Lightwave Technol. 15, 654-662 (1997).
[CrossRef]

Gogolla, T.

D. Garus, T. Gogolla, K. Krebber, and F. Schliep, "Brillouin optical-fiber frequency-domain analysis or distributed temperature and strain measurement," J. Lightwave Technol. 15, 654-662 (1997).
[CrossRef]

Handerek, V. A.

He, Z.

Horiguchi, T.

T. Horiguchi, T. Kurashima, and M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fibers," IEEE Photon. Technol. Lett. 1, 107-108 (1989).
[CrossRef]

Hotate, K.

Kishi, M.

Krebber, K.

D. Garus, T. Gogolla, K. Krebber, and F. Schliep, "Brillouin optical-fiber frequency-domain analysis or distributed temperature and strain measurement," J. Lightwave Technol. 15, 654-662 (1997).
[CrossRef]

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fibers," IEEE Photon. Technol. Lett. 1, 107-108 (1989).
[CrossRef]

Lee, C. C.

C. C. Lee, P. W. Chiang, and S. Chi, "Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift," IEEE Photon. Technol. Lett. 13, 1094-1096 (2001).
[CrossRef]

Nikles, M.

Okoshi, T.

T. Okoshi, "Single-polarization single-mode optical fibers," IEEE J. Quantum Electron. 17, 879-884 (1981).
[CrossRef]

Parker, T. P.

Rogers, A. J.

Schliep, F.

D. Garus, T. Gogolla, K. Krebber, and F. Schliep, "Brillouin optical-fiber frequency-domain analysis or distributed temperature and strain measurement," J. Lightwave Technol. 15, 654-662 (1997).
[CrossRef]

Song, K. Y.

Tanaka, M.

K. Hotate and M. Tanaka, "Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-cased continuous-wave technique," IEEE Photon. Technol. Lett. 14, 179-181 (2002).
[CrossRef]

Tateda, M.

T. Horiguchi, T. Kurashima, and M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fibers," IEEE Photon. Technol. Lett. 1, 107-108 (1989).
[CrossRef]

Thevenaz, L.

Yu, Q.

Zou, W.

Electron. Lett. (1)

K. S. Chiang, D. Wong D, and P. L. Chu, "Strain-induced birefringence in a highly birefringent optical fiber," Electron. Lett. 26, 1344-1346 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Okoshi, "Single-polarization single-mode optical fibers," IEEE J. Quantum Electron. 17, 879-884 (1981).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

C. C. Lee, P. W. Chiang, and S. Chi, "Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift," IEEE Photon. Technol. Lett. 13, 1094-1096 (2001).
[CrossRef]

K. Hotate and M. Tanaka, "Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-cased continuous-wave technique," IEEE Photon. Technol. Lett. 14, 179-181 (2002).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fibers," IEEE Photon. Technol. Lett. 1, 107-108 (1989).
[CrossRef]

W. Zou, Z. He, and K. Hotate, "Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers," IEEE Photon. Technol. Lett. 18, 2487-2489 (2006).
[CrossRef]

J. Lightwave Technol. (2)

W. Zou, Z. He, and K. Hotate, "Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers," J. Lightwave Technol. 26, 1854-1861 (2008).
[CrossRef]

D. Garus, T. Gogolla, K. Krebber, and F. Schliep, "Brillouin optical-fiber frequency-domain analysis or distributed temperature and strain measurement," J. Lightwave Technol. 15, 654-662 (1997).
[CrossRef]

Opt. Commun. (1)

S. L. Floch and P. Cambon, "Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4-370 K) and high hydrostatic pressures (1-250 bars)," Opt. Commun. 219, 395-410 (2003).
[CrossRef]

Opt. Lett. (5)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 3rd version, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Strong acoustic grating (phonons) is longitudinally generated by SBS process in a Panda-type polarization-maintaining fiber (birefringence B = ~3.3 × 104) when two linearly-polarized lightwaves (pump and probe) counter-propagate through the fiber with their polarization along the fiber’s x-axis (slow axis), and their frequency difference (fx - fx ’) equals the Brillouin frequency shift (vB ). (b) A linearly-polarized readout light launched into the fiber with its polarization along fiber’s y-axis (fast axis) is significantly diffracted backward by the acoustic grating, provided its frequency (fy ) satisfies a birefringence-determined frequency deviation (fyx ) from that of pump light.

Fig. 2.
Fig. 2.

Configuration of the measurement system. Part A, Pump-probe scheme to measure the Brillouin gain spectrum and thus the Brillouin frequency shift along x-axis. Part B, Detection of the diffraction spectrum of the acoustic grating in SBS to y-polarized readout light. DFB-LDs, distributed-feedback laser diodes; EDFAs, erbium-doped fiber amplifiers; SSBM, single-sideband electro-optic modulator; EOM, intensity electro-optic modulator; PCs, polarization controllers; VOA, variable optical attenuator; TBF, tunable band-pass filter; PDs, photo-diodes; LIAs, lock-in amplifiers; DAQ, data acquisition card; FUT, fiber sample under test; PM, polarization-maintaining; PM-CIRs, PM circulators; PM-ISO, PM isolator; PBS, polarization beam splitter/combiner.

Fig. 3.
Fig. 3.

Measured Brillouin gain spectrum (a) and the diffraction spectrum of the dynamic acoustic grating induced by SBS to y-polarized readout light (b) in a 31-meter-long fiber at room temperature and in loose condition. Circles denote experimental data. The solid (dashed) curve corresponds to Gaussian (Lorentzian) fitting to experimental data.

Fig. 4.
Fig. 4.

Dependences of the spectra on strain and temperature. Measured Brillouin gain spectra when applied strain is enlarged (a) or temperature is increased (b). Measured diffraction spectra of the acoustic grating with an incremental strain (c) or temperature (d). Symbolic points, experimental data. Solid curves denotes Lorentzian fitting in (a) and (b) or Gaussian fitting in (c) and (d) giving Brillouin frequency shift (νB) or the birefringence-determined frequency deviation (fyx ), respectively.

Fig. 5.
Fig. 5.

Measured strain and temperature coefficients. (a) Strain dependence. (b) Temperature dependence. Circles denote the experimental results for Brillouin frequency shift (vB ) in left vertical axes, and triangles correspond to the birefringence-determined frequency deviation (fyx ) in right vertical axes, respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ v B = v B v B 0 = C v ε Δ ε + C v T Δ T ,
Δ f y x = f y x f y x 0 = C f ε Δ ε + C f T Δ T ,
Δ ε Δ T = 1 C v ε · C f T C v T · C f ε ( C f T C v T C f ε C v ε ) Δ v B Δ f y x ,
B σ x y = k · ( α 3 α 2 ) · ( T fic T i ) ,
Δ B T = B 0 · Δ T T fic 25 ,
Δ B ε = + B 0 · ( γ 3 γ 2 ) ( α 3 α 2 ) ( T fic 25 ) · Δε ,
C f ε = + f y x 0 · ( γ 3 γ 2 ) ( α 3 α 2 ) ( T fic 25 ) ,
C f T = f y x 0 · 1 ( T fic 25 ) ,

Metrics