Abstract

: Femtosecond laser pulses came of age and found applications in many fields of life-sciences that call for dispersion-managed guiding of very short optical pulses. We investigate the potential for delivering 25-fs, nanojoule pulses from a Ti:Sapphire laser through optical fibers with lengths of up to 2m.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Fu, X. Gan, and M. Gu, Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2005).
    [CrossRef] [PubMed]
  2. H. Wang, T. B. Huff, and J. -X. Cheng, "Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber," Opt. Lett. 31, 1417-1419 (2006).
    [CrossRef] [PubMed]
  3. S. A. Crooker, "Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields," Rev. Sci. Instrum. 73, 3258-3264 (2002).
    [CrossRef]
  4. R. Szipöcs, K. Ferencz, C. Spielmann, F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers," Opt. Lett. 19, 201 (1994).
    [CrossRef] [PubMed]
  5. A. M. Larson and A. T. Yeh, "Delivery of sub-10-fs pulses for nonlinear optical microscopy by polarization-maintaining single mode optical fiber," Opt. Express 16, 14723-14730 (2008).
    [CrossRef] [PubMed]
  6. G. Tempea et al., "All-Chirped-Mirror Pulse Compressor for Nonlinear Microscopy," Contributed paper CLEO 2006.
  7. S. W. Clark, F. Ö. Ilday, and F. W. Wise, "Fiber delivery of femtosecond pulses from a Ti:sapphire laser," Opt. Lett. 26, 1320-1322 (2001).
    [CrossRef]
  8. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1513-1515 (2002).
    [CrossRef]
  9. W. Göbel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber," Opt. Lett. 29, 1285-1287 (2004).
    [CrossRef] [PubMed]
  10. S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, "High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber," Opt. Lett. 30, 3225-3227 (2005).
    [CrossRef] [PubMed]
  11. F. Luan, J. Knight, P. Russell, S. Campbell, D. Xiao, D. Reid, B. Mangan, D. Williams, and P. Roberts, "Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers," Opt. Express 12, 835-840 (2004).
    [CrossRef] [PubMed]
  12. F. G. Omenetto, A. J. Taylor, M. D. Moores, and D. H. Reitze, "Adaptive control of femtosecond pulse propagation in optical fibers," Opt. Lett. 26, 938-940 (2001).
    [CrossRef]
  13. J. W. Nicholson, S. Ramachandran, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Propagation of femtosecond pulses in large-mode-area, higher-order-mode fiber," Opt. Lett. 31, 3191-3193 (2006).
    [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, CA, 2001).
  15. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, "Miniaturized probe for femtosecond laser microsurgery and two-photon imaging," Opt. Express 16, 9996-10005 (2008).
    [CrossRef] [PubMed]
  16. S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. Myaing, and D. A. Reis," Adaptive dispersion compensation for remote fiber delivery of near-infrared femtosecond pulses," Opt. Lett. 29, 2602-2604 (2004).
    [CrossRef] [PubMed]
  17. O. E. Martinez, J. P. Gordon, and R. L. Fork, "Negative group-velocity dispersion using refraction," J. Opt. Soc. Am. A 1, 1003-1006 (1984).
    [CrossRef]

2008 (2)

2006 (2)

2005 (2)

2004 (3)

2002 (2)

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1513-1515 (2002).
[CrossRef]

S. A. Crooker, "Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields," Rev. Sci. Instrum. 73, 3258-3264 (2002).
[CrossRef]

2001 (2)

1994 (1)

1984 (1)

Ben-Yakar, A.

Campbell, S.

Cavalieri, A. L.

Chen, P.

Cheng, J. -X.

Clark, S. W.

Crooker, S. A.

S. A. Crooker, "Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields," Rev. Sci. Instrum. 73, 3258-3264 (2002).
[CrossRef]

Dimarcello, F. V.

Durr, N. J.

Ferencz, K.

Fork, R. L.

Foster, M. A.

Fritz, D. M.

Fu, L.

Gaeta, A. L.

Gan, X.

Ghalmi, S.

Göbel, W.

Gordon, J. P.

Gu, M.

Helmchen, F.

Hoy, C. L.

Huff, T. B.

Ilday, F. Ö.

Jasapara, J.

Knight, J.

Krausz, F.

Larson, A. M.

Lee, S. H.

Luan, F.

Mangan, B.

Martinez, O. E.

Moll, K. D.

Monberg, E.

Moores, M. D.

Myaing, M.

Nicholson, J. W.

Nimmerjahn, A.

Omenetto, F. G.

Ouzounov, D. G.

Piyawattanametha, W.

Ra, H.

Ramachandran, S.

Reid, D.

Reis, D. A.

Reitze, D. H.

Roberts, P.

Russell, P.

Solgaard, O.

Spielmann, C.

Szipöcs, R.

Taylor, A. J.

Wang, H.

Webb, W. W.

Williams, D.

Wise, F. W.

Wisk, P.

Xiao, D.

Yan, M. F.

Yeh, A. T.

Zipfel, W. R.

J. Opt. Soc. Am. A (1)

Opt. Express (4)

Opt. Lett. (9)

S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, "High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber," Opt. Lett. 30, 3225-3227 (2005).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, and J. -X. Cheng, "Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber," Opt. Lett. 31, 1417-1419 (2006).
[CrossRef] [PubMed]

J. W. Nicholson, S. Ramachandran, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Propagation of femtosecond pulses in large-mode-area, higher-order-mode fiber," Opt. Lett. 31, 3191-3193 (2006).
[CrossRef] [PubMed]

W. Göbel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber," Opt. Lett. 29, 1285-1287 (2004).
[CrossRef] [PubMed]

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. Myaing, and D. A. Reis," Adaptive dispersion compensation for remote fiber delivery of near-infrared femtosecond pulses," Opt. Lett. 29, 2602-2604 (2004).
[CrossRef] [PubMed]

R. Szipöcs, K. Ferencz, C. Spielmann, F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers," Opt. Lett. 19, 201 (1994).
[CrossRef] [PubMed]

F. G. Omenetto, A. J. Taylor, M. D. Moores, and D. H. Reitze, "Adaptive control of femtosecond pulse propagation in optical fibers," Opt. Lett. 26, 938-940 (2001).
[CrossRef]

S. W. Clark, F. Ö. Ilday, and F. W. Wise, "Fiber delivery of femtosecond pulses from a Ti:sapphire laser," Opt. Lett. 26, 1320-1322 (2001).
[CrossRef]

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1513-1515 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

S. A. Crooker, "Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields," Rev. Sci. Instrum. 73, 3258-3264 (2002).
[CrossRef]

Other (2)

G. Tempea et al., "All-Chirped-Mirror Pulse Compressor for Nonlinear Microscopy," Contributed paper CLEO 2006.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, CA, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Setup of the fiber delivery using a double prism pair. A denotes the aperture, I the optical isolator, and L the fiber coupling lens

Fig. 2.
Fig. 2.

Prism and chirped mirror compressor: Evolution of the spectral bandwidth and pulse duration vs. output power at the fiber output.

Fig. 3.
Fig. 3.

Fringe resolved autocorrelation measurement indicates 25.1 fs for 0.7 nJ pulses after the 1.6 m LMA single-mode fiber. The right graph shows the spectrum before (ex laser) and after the fiber illustrating the effect of spectral narrowing for the same pulse energy.

Fig. 4.
Fig. 4.

Non-collinear autocorrelation measurement for 1.1 nJ pulses after the fiber. The grey curve shows the pulse measurement if higher order dispersion is not accordingly compensated.

Fig. 5.
Fig. 5.

Solid curves indicate the calculated evolutions of the pulse duration and the spectral bandwidth with increasing power after a 1.6 m LMA fiber. 100 mW corresponds to 1.2 nJ (82 MHz) pulse energy. Measured data are shown by triangles and squares, respectively.

Fig. 6.
Fig. 6.

Calculated pulse duration and pulse shape for different pulse energies. Intensities are normalized to the lowest peak. While the temporal pulse width increases with the pulse energy the slope of intensity envelope remains fairly constant. For pulses at 0.7 nJ the slope is slightly smaller since the pulse energy is also distributed into a minor pedestal.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

L D = 2 π c λ 2 τ 2 D , L N L = A eff λ 2 π n 2 P .
U z = α 2 U ( k = 2 N β k i k 1 k ! k t k ) U + i γ ( U 2 U + i ω t ( U 2 U ) T R U t U 2 )
γ = n 2 ω 0 c A eff
T R = f R 0 t · τ 1 + τ 2 τ 1 τ 2 2 · exp ( t τ 2 ) sin ( t τ 1 ) d t
ϕ g = 2 ω L g / c 1 ( 2 π c / ω d sin ξ ) 2
( ω ω 0 ) 3 M θ 3 / 6 + ( ω ω 0 ) 4 M θ 4 / 24

Metrics